Weaker Forms of Commuting Mappings in Metric and Menger Probabilistic Metric Space
DOI:
https://doi.org/10.3126/jist.v30i1.71306Keywords:
Commuting mappings, compatible mappings, reciprocal continuous, weakly commuting mappingAbstract
This paper aims to discuss the update of the comparative study of non-commuting mappings in metric space and probabilistic metric space. This interrelationship study in weaker commuting maps helps researchers understand, analyze, and reach their research goal.
Downloads
References
Aamri, M.El., & Moutawakil, D. (2002). Some new common fixed point theorems under strict contractive conditions. Journal of Mathematical Analysis and Applications, 270, 181-188.
Agarwal, R.P., Bishta, R.K., & Shahzad, N. (2014). A comparison of various non-commuting conditions in metric fixed point theory and their applications. Fixed Point Theory and Applications, 38, 1-33.
Al-Thagafi, M.A., & Shahzad, N. (2008). Generalized I-nonexpansive selfmaps and invariant approximations. Acta Mathematica Sinica, 24, 867-876.
Ali, J., Imdad, M., MiheŃ, D., & Tanveer, M. (2011). Common fixed points of strict contractions in Menger spaces. Acta Mathematica Hungarica, 132(4), 367-386.
Aoua, L.B., & Aliouche, A. (2015). Common fixed point theorems in intuitionistic Menger space using CLR property. Malaya Journal of Matematik, 3, 368-381.
Banach, S. (1922). Sur les operations dans les ensembles abstraits et leur applications aux equations integral. Fundamenta Mathematicae, 3, 133-181.
Bhatt, A., Chandra, H., & Sahu, D.R. (2010) Common fixed point theorems for occasionally weakly compatible mappings under relaxed conditions. Nonlinear Analysis, 73(1), 176-182.
Chang, S.S. (1981). A common fixed point theorem for commuting mappings. Proceedings of the American Mathematical Society, 83(3), 645–652.
Chaudhary, A.K. (2023). Occasionally weakly compatible mappings and common fixed points in Menger space. Results in Nonlinear Analysis, 6(4), 47-54.
Chaudhary, A.K. (2024), A common fixed point result in Menger space. Communications on Applied Nonlinear Analysis, 31(5s), 458-465.
Chaudhary, A.K., & Jha, K. (2019). Contraction conditions in Probabilistic Metric Space. American Journal of Mathematics and Statistics, 9(5), 199-202.
Chaudhary, A.K., Manandhar, K.B., & Jha, K. (2022). A common fixed point theorem in Menger space with compatible mapping of type (K). Advances in Mathematics: Scientific Journal, 11(10), 883-892.
Chaudhary, A.K., Manandhar, K.B., Jha, K., & Murthy, P.P. (2021). A common fixed point theorem in Menger space with compatible mapping of type (P). The International Journal of Mathematical Sciences and Engineering Applications, 15(2), 59-70.
Cho Y.J., Murthy P.P., & Stojakovic, M. (1992). Compatible mappings of type (A) and common fixed point in Menger space. Communications of the Korean Mathematical Society, 7(2), 325-339.
Cho, Y.J., Sharma, B.K., & Sahu, D.R. (1995). Semi compatibility and fixed points. Mathematica Japonicae, 42, 91-98.
Dhage, B.C. (1999). On a common fixed point of coincidentally commuting mappings in D metric space. Indian Journal of Pure and Applied Mathematics, 30(4), 395–406.
Fisher, B., & Sessa, S. (1989). Two common fixed point theorems for weakly commuting mappings. Periodica Mathematica Hungarica, 20(3), 207–218.
Fréchet, M. (1906). Sur quelques points du calcul fonctionnel. Rendic. Rendiconti del Circolo Matematico di Palermo, 22, 1-72.
Goebel, K. (1968). A coincidence theorem. Bulletin L'Académie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques, 16, 733-735.
Hadzic, O., & Pap, E. (2010). Probabilistic fixed-point theory in probabilistic metric space. Kluwer Academic Publisher, London.
Jha, K., Popa, V., & Manandhar, K.B. (2014). A common fixed point theorem for compatible mappings of type (K) in metric space. The International Journal of Mathematical Sciences and Engineering Applications, 8(1), 383-391.
Jungck, G. (1976). Commuting mappings and fixed points. The American Mathematical Monthly, 83(4), 261-263.
Jungck, G. (1986). Compatible Mapping and common fixed points. International Journal of Mathematics and Mathematical Sciences, 9(4), 771-779.
Jungck, G. (1996). Common fixed points for non-continuous non-self-maps on nonmetric space. Far East Journal of Mathematical Sciences, 4, 199-215.
Jungck, G., Murthy, P.P., & Cho, Y.J. (1993). Compatible mappings of type (A) and common fixed points. Mathematica Japonica, 38(2), 381-390.
Jungck, G., & Pathak, H.K. (1995). Fixed points via biased maps. Proceedings of the American Mathematical Society, 123(7), 2049-2060.
Jungck, G., & Rhoades, B.E. (1998). Fixed points for set valued functions without continuity. Indian Journal of Pure and Applied Mathematics, 29(3), 227–238.
Kohli, J.K., & Vashistha, S. (2007). Common fixed point theorems in probabilistic metric space. Acta Mathematica Hungarica, 115(12), 37-47.
Kubiaczyk, I., & Sharma, S. (2008). Some common fixed point theorems in Menger space under strict contractive conditions. Southeast Asian Bulletin of Mathematics, 32(1), 117-124.
Kumar, S., & Pant, B.D. (2008). A common fixed point theorem in probabilistic metric space using implicit relation. Filomat, 22(2), 43-52.
Machuca, R. (1969). A coincidence theorem. The American Mathematical Monthly, 74, 569-572.
Menger, K. (1942). Statistical Matrices. Proceedings of National Academy of Sciences of USA, 28, 535-537.
Mishra, S.N. (1991). Common fixed points of compatible mappings in probabilistic metric space. Mathematica Japonica, 36, 283-289.
Pant, R.P. (1994). Common fixed points of non-commuting mappings. Journal of Mathematical Analysis and Applications, 188, 436–440.
Pant, R.P. (1998). Common fixed point theorems for contractive maps. Journal of Mathematical Analysis and Applications, 226(1), 251-258.
Pant, R.P. (1999). Discontinuity and fixed points. Journal of Mathematical Analysis and Applications, 240, 284-289.
Pant, B.D., Chauhan, S., & Kumar, S. (2011). Common fixed point theorems for occasionally weakly compatible mappings in Menger spaces. Journal of Advanced Research in Pure Mathematics, 3(4),17-23.
Pathak, H.K. (1990). A Meir-Keeler type fixed point theorem for weakly uniformly contraction maps. Bulletin of the Malaysian Mathematical Sciences Society, 13(1), 21-29.
Pathak, H.K., Chang, S.S., & Cho, Y.J. (1994). Fixed point theorems for compatible mappings of type (P). Indian Journal of Mathematics, 36(2), 151-166.
Pathak, H.K, Cho, Y.J., Chang, S.S., & Kang, S.M. (1996). Compatible mappings of type (P) and fixed point theorem in metric spaces and Probabilistic metric spaces. Novi Sad Journal of Mathematics, 26(2), 87-109.
Pathak, H.K., Cho, Y.J., & Kang, S.M. (1997). Remarks on R-weakly commuting mappings and common fixed point theorems. Bulletin of the Korean Mathematical Society, 34(2), 247-257.
Pathak, H.K., Cho, Y.J., Kang, S.M., & Madharia, B. (1998). Compatible mappings of type (C) and common fixed point theorems of Gregu´s type. Demonstratio Mathematica, 31(3), 499-518.
Pathak, H.K., & Khan, M.S. (1995). Compatible mappings of type (B) and common fixed point theorems of Gregu´stype. Czechoslovak Mathematical Journal, 45(4), 685-698.
Rhoades, B.E., & Sessa, S. (1986). Common fixed point theorems for three mappings under a weak commutativity condition. Indian Journal of Pure and Applied Mathematics, 17(1), 47–57.
Sastry, K.P.R., & Krishna Murthy, I.S.R. (2000). Common fixed points of two partially commuting tangential self-maps on a metric space. Journal of Mathematical Analysis and Applications, 250(2), 731-734.
Sehgal, V.M. (1966). Some common fixed point theorem in functional analysis and probability. PhD Thesis, Wayne State University, USA.
Sessa, S. (1982). On a weak commutativity condition of mappings in fixed point consideration. Publications de l'Institut Mathematique, 32, 149-153.
Shrivastava, P.K., Bawa, N.P.S., & Singh, P. (2000). Coincidence theorems for hybrid contraction II. Soochow Journal of Mathematics, 26(4), 411-421.
Singh, B., & Jain, S. (2004). Semi compatibility and fixed point theorems in Menger spaces. Journal of the Chungcheong Mathematical Society, 17(1), 1-17.
Singh, B., & Jain, S. (2005). A fixed point theorem in Menger space through weak compatibility. Journal of Mathematical Analysis and Applications, 301(2), 439-448.
Singh, S.L., & Pant, B.D., (1983). A fixed point theorem for probabilistic densifying mappings. Indian Journal of Physical and Natural Sciences, 3(B), 21-24.
Singh, S.L., & Tomar, A. (2003). Weaker forms of commuting maps and existence of fixed points. Journal of the Korean Society of Mathematical Education, Series B: Pure and Applied Mathematics, 10(3), 145-160.
Sintunavarat, W., & Kumam, P. (2011). Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces. Journal of Applied Mathematics, 637958, https://doi.org/10.1155/2011/637958.
Singh, M.R., & Singh, Y.M. (2007). Compatible mappings of type (E) and common fixed point theorems of Meir-Keeler type. International Journal of Mathematical Science & Engineering Applications, 1(2), 299-315.
Singh, M.R., & Singh, Y.M. (2011). On various types of compatible maps and common fixed point theorems for non-continuous maps. Hacettepe Journal of Mathematics and Statistics, 40(4), 503–513.
Singh, Y.R. (2002). Studies on fixed points, common fixed points and coincidences. PhD thesis, Manipur University, Kanchipur, India.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Institute of Science and Technology, T.U.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The views and interpretations in this journal are those of the author(s). They are not attributable to the Institute of Science and Technology, T.U. and do not imply the expression of any opinion concerning the legal status of any country, territory, city, area of its authorities, or concerning the delimitation of its frontiers of boundaries.
The copyright of the articles is held by the Institute of Science and Technology, T.U.