First Principles Study of the Electronic, Optical, Elastic, and Thermal Properties of Double Perovskite Sr₂MgWO₆ for Optoelectronic Applications

Authors

  • Peshal Pokharel Central Department of Physics, Tribhuvan University, Kritipur, Nepal; Department of Physics, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar, Nepal; Central Campus of Technology, Tribhuvan University, Dharan, Nepal.
  • Shashit Kumar Yadav Department of Physics, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar, Nepal.
  • Devendra Adhikari Department of Physics, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar, Nepal.
  • Nurapati Pantha Central Department of Physics, Tribhuvan University, Kritipur, Nepal

DOI:

https://doi.org/10.3126/jist.v30i2.76851

Keywords:

Double perovskite, Electronic properties, Formation energy, Tolerance factor, Structural stability, Dielectric

Abstract

The double perovskite Sr₂MgWO₆ exhibits outstanding mechanical, electronic, and optical properties, making it a potential candidate for high-performance optical and optoelectronic applications. In this regard, we investigated the electronic, magnetic, optical, elastic, and structural properties of the double perovskite Sr₂MgWO₆ using the Quantum ESPRESSO code. Structural stability has been confirmed through calculations of formation energy and the tolerance factor. The material exhibited a wide-band-gap (3.18 eV) semiconductor with intense polarization (ε₁(ω) = 12.46) and a decreasing ε₂(ω) peak with photon energy. Elastic parameters, including elastic constants, bulk modulus, shear modulus, and Young's modulus, were determined using the stress-strain method. The calculated elastic constants satisfied Born-Huang criteria for mechanical stability. Calculated high value of bulk modulus (B), and Young's modulus (E) indicated the material's high resistance to volumetric deformation and stiffness, with a moderate shear modulus. A G/B ratio greater than 0.57, a negative Cauchy constant, and a low Poisson's ratio collectively indicated brittle behavior. The calculated Debye temperature of 492.34 K and specific heat capacity (Cᵥ) of 373.4 J/mol-K further emphasized the mechanical strength, thermal stability, and high thermal conductivity of the material. These findings suggest that Sr₂MgWO₆ could be an excellent material for optical waveguides, light-emitting devices, and other optoelectronic technologies.

Downloads

Download data is not yet available.
Abstract
0
PDF
0

References

Anderson, O. L. (1963). A simplified method for calculating the Debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7), 909–917. https://doi.org/10.1016/0022-3697(63)90067-2.

Aziz, A., Aldaghfag, S. A., Zahid, M., Iqbal, J., Yaseen, M., & Somaily, H. H. (2022). Theoretical investigation of X2NaIO6 (X= Pb, Sr) double perovskites for thermoelectric and optoelectronic applications. Physica B: Condensed Matter, 630, 413694. https://doi.org/10.1016/j.physb.2022.413694.

Bao, L., Kong, Z., Qu, D., & Duan, Y. (2020). Revealing the elastic properties and anisotropies of Mg2X (X = Si, Ge and Sn) with different structures from a first-principles calculation. Materials Today Communications, 24, 101337. https://doi.org/10.1016/j.mtcomm.2020.101337.

Bao, W., Liu, D., Li, P., & Duan, Y. (2019). Structural properties, elastic anisotropies and thermal conductivities of tetragonal LnB2C2 (Ln = Rare Earth) compounds from first-principles calculations. Ceramics International, 45(2), 1857–1867. https://doi.org/10.1016/j.ceramint.2018.10.077.

Blanco, M. A., Francisco, E., & Luaña, V. (2004). GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications, 158(1), 57–72. https://doi.org/10.1016/j.comphy.2003.12.001.

Dar, S. A., Sharma, R., Srivastava, V., & Sakalle, U. K. (2019). Investigation on the electronic structure, optical, elastic, mechanical, thermodynamic and thermoelectric properties of wide band gap semiconductor double perovskite Ba2InTaO6. RSC Advances, 9(17), 9522–9532. https://doi.org/10.1039/C9RA00313D.

Dar, S. A., Srivastava, V., & Sakalle, U. K. (2019). Structural, elastic, mechanical, electronic, magnetic, thermoelectric and thermodynamic investigation of half-metallic double perovskite oxide Sr2MnTaO6. Journal of Magnetism and Magnetic Materials, 484, 298–306. https://doi.org/10.1016/j.jmmm.2019.04.048.

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502. https://doi.org/10.1088/0953-8984/21/39/395502.

Golesorkhtabar, R., Pavone, P., Spitaler, J., Puschnig, P., & Draxl, C. (2013). Elastic: A tool for calculating second-order elastic constants from first principles. Computer Physics Communications, 184(8), 1861–1873. https://doi.org/10.1016/j.cpc.2013.03.010.

Hill, R. (1952). The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65(5), 349–354. https://doi.org/10.1088/0370-1298/65/5/307.

Nye, J. F. (1985). Physical properties of crystals: Their representation by tensors and matrices. Oxford university press.

Koch, W., & Holthausen, M. C. (2015). A chemist’s guide to density functional theory. John Wiley & Sons.

Lucarini, V., Peiponen, K. E., Saarinen, J. J., & Vartiainen, E. M. (2005). Kramers-Kronig relations in optical materials research. Berlin, Heidelberg: Springer Berlin Heidelberg.

Langreth, D. C., & Perdew, J. P. (1980). Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works. Physical Review B, 21(12), 5469–5493. https://doi.org/10.1103/PhysRevB.21.5469.

Lu, L., Pan, X., Luo, J., & Sun, Z. (2020). Recent Advances and Optoelectronic Applications of Lead‐Free Halide Double Perovskites. Chemistry – A European Journal, 26(71), 16975–16984. https://doi.org/10.1002/chem.202000788.

Lu, Y., Duan, Y., Peng, M., Yi, J., & Li, C. (2021). First-principles calculations of electronic, optical, phononic and thermodynamic properties of C40-type TMSi2 (TM = Cr, Mo, W) disilicides. Vacuum, 191, 110324. https://doi.org/10.1016/j.vacuum.2021.110324.

Manzoor, M., Bahera, D., Sharma, R., Tufail, F., Iqbal, M. W., & Mukherjee, S. K. (2022). Investigated the structural, optoelectronic, mechanical, and thermoelectric properties of Sr2BTaO6 (B = Sb, Bi) for solar cell applications. International Journal of Energy Research, 46(15), 23698–23714. https://doi.org/10.1002/er.8669.

Meng, Y., Li, X., Wang, S., Lau, C., Hu, H., Ke, Y., Tan, G., Yang, J., & Long, Y. (2022). Flexible smart photovoltaic foil for energy generation and conservation in buildings. Nano Energy, 91, 106632. https://doi.org/10.1016/j.nanoen.2021.106632.

Miao, N., Sa, B., Zhou, J., & Sun, Z. (2011). Theoretical investigation on the transition-metal borides with Ta3B4-type structure: A class of hard and refractory materials. Computational Materials Science, 50(4), 1559–1566. https://doi.org/10.1016/j.commatsci.2010.12.015.

Pack, J. D., & Monkhorst, H. J. (1977). Special points for Brillouin-zone integrations—a reply. Physical Review B, 16(4), 1748–1749. https://doi.org/10.1103/PhysRevB.16.1748.

Parr, R. G., & Yang, W. (1989). Density functional theory of atoms and molecules (2nd ed.). Oxford University Press.

Patwe, S. J., Achary, S. N., Mathews, M. D., & Tyagi, A. K. (2005). Synthesis, phase transition and thermal expansion studies on M2MgWO6 (M=Ba2+ and Sr2+) double perovskites. Journal of Alloys and Compounds, 390(1–2), 100–105. https://doi.org/10.1016/j.jallcom.2004.05.093.

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.

Pokharel, P., Yadav, S. K., Pantha, N., & Adhikari, D. (2024a). First‐Principles Investigations of Structural, Electronic, and Elastic Properties of ZrSiO3 Perovskite: Layer Dependence, Surface Termination, and Pressure Effects. Physica Status Solidi (b), 261(8) 2400156. https://doi.org/10.1002/pssb.202400156.

Pokharel, P., Yadav, S. K., Pantha, N., & Adhikari, D. (2024b). Strain-dependent electronic, mechanical and piezoelectric properties of ZrSiO3 2D monolayer: A first principles approach. Journal of Physics and Chemistry of Solids, 193, 112198. https://doi.org/10.1016/j.jpcs.2024.112198.

Pokharel, P., Yadav, S. K., Pantha, N., Sharma, B., & Adhikari, D. (2024). Structural, electronic, optical, magnetic, and mechanical properties of SmMnO3 perovskite with europium and yttrium doping: A first-principles study. AIP Advances, 14(12), 125309 https://doi.org/10.1063/5.0232439.

Pokharel, P., Yadav, S. K., Pantha, N., Sharma, B., & Adhikari, D. (2025). Elastic Anisotropy and Thermal Properties of Sr2ZrMoO6 Double Perovskite under Different Pressures. Physica Status Solidi (b), 262(5), 2400625. https://doi.org/10.1002/pssb.202400625.

Rahman, Md. A., Hasan, W., Hasan, Md. Z., Irfan, A., Mouna, S. C., Rukaia khatun, Razzaque Sarker, Md. A., Rahaman, Md. Z., & Rahman, M. (2023). Structural, mechanical, electronic, optical and thermodynamic features of lead-free oxide perovskites AMnO3 (A=Ca, Sr, Ba): DFT simulation based comparative study. Physica B: Condensed Matter, 668, 415215. https://doi.org/10.1016/j.physb.2023.415215.

Ranganathan, S. I., & Ostoja-Starzewski, M. (2008). Universal Elastic Anisotropy Index. Physical Review Letters, 101(5), 055504. https://doi.org/10.1103/PhysRevLett.101.055504.

Ray, R. B., Kaphle, G. C., Rai, R. K., Yadav, D. K., Paudel, R., & Paudyal, D. (2021). Strain induced electronic structure, and magnetic and structural properties in quaternary Heusler alloys ZrRhTiZ (Z = Al, In). Journal of Alloys and Compounds, 867, 158906. https://doi.org/10.1016/j.jallcom.2021.158906.

Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 9(1), 49–58. https://doi.org/10.1002/zamm.19290090104.

Tang, Q., & Zhu, X. (2022). Half-metallic double perovskite oxides: recent developments and future perspectives. Journal of Materials Chemistry C, 10(41), 15301–15338. https://doi.org/10.1039/D2TC03199J

Thompson, R. P., & Clegg, W. J. (2018). Predicting whether a material is ductile or brittle. Current Opinion in Solid State and Materials Science, 22(3), 100–108. https://doi.org/10.1016/j.cossms.2018.04.001

Tidrow, S. C. (2014). Mapping Comparison of Goldschmidt’s Tolerance Factor with Perovskite Structural Conditions. Ferroelectrics, 470(1), 13–27. https://doi.org/10.1080/00150193.2014.922372.

Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11), 7892–7895. https://doi.org/10.1103/PhysRevB.41.7892.

Wang, Y., Lv, Z., Zhou, L., Chen, X., Chen, J., Zhou, Y., Roy, V. A. L., & Han, S.-T. (2018). Emerging perovskite materials for high density data storage and artificial synapses. Journal of Materials Chemistry C, 6(7), 1600–1617. https://doi.org/10.1039/C7TC05326F.

Wu, Y., Bao, L., Wang, X., Wang, Y., Peng, M., & Duan, Y. (2020). Insight into structural, electronic, elastic and thermal properties of A15-type Nb3X (X = Si, Ge, Sn and Pb) compounds. Materials Today Communications, 25, 101410. https://doi.org/10.1016/j.mtcomm.2020.101410.

Wu, Y., Wang, X., Wang, Y., Duan, Y., & Peng, M. (2021). Insights into electronic and optical properties of AGdS2 (A = Li, Na, K, Rb and Cs) ternary gadolinium sulfides. Optical Materials, 114, 110963. https://doi.org/10.1016/j.optmat.2021.110963.

Voigt, W. (1928). A determination of the elastic constants for beta-quartz, Lehrbuch der Kristallphysik. Terubner Leipzig, 40, 2856-2860.

Yang, C., Wu, Y., & Duan, Y. (2022). Theoretical predictions of the electronic, optical and thermodynamic properties of the C40-type TMSi2 (TM = V, Nb and Ta) disilicides. Materials Today Communications, 30, 103115. https://doi.org/10.1016/j.mtcomm.2021.103115.

Zhai, H., Li, X., & Du, J. (2012). First-Principles Calculations on Elasticity and Anisotropy of Tetragonal Tungsten Dinitride under Pressure. Materials Transactions, 53(7), 1247–1251. https://doi.org/10.2320/matertrans.M2011373.

Downloads

Published

2025-12-23

How to Cite

Pokharel, P., Yadav, S. K., Adhikari, D., & Pantha, N. (2025). First Principles Study of the Electronic, Optical, Elastic, and Thermal Properties of Double Perovskite Sr₂MgWO₆ for Optoelectronic Applications . Journal of Institute of Science and Technology, 30(2), 1–13. https://doi.org/10.3126/jist.v30i2.76851

Issue

Section

Research Articles