First Principles Study of the Electronic, Optical, Elastic, and Thermal Properties of Double Perovskite Sr₂MgWO₆ for Optoelectronic Applications
DOI:
https://doi.org/10.3126/jist.v30i2.76851Keywords:
Double perovskite, Electronic properties, Formation energy, Tolerance factor, Structural stability, DielectricAbstract
The double perovskite Sr₂MgWO₆ exhibits outstanding mechanical, electronic, and optical properties, making it a potential candidate for high-performance optical and optoelectronic applications. In this regard, we investigated the electronic, magnetic, optical, elastic, and structural properties of the double perovskite Sr₂MgWO₆ using the Quantum ESPRESSO code. Structural stability has been confirmed through calculations of formation energy and the tolerance factor. The material exhibited a wide-band-gap (3.18 eV) semiconductor with intense polarization (ε₁(ω) = 12.46) and a decreasing ε₂(ω) peak with photon energy. Elastic parameters, including elastic constants, bulk modulus, shear modulus, and Young's modulus, were determined using the stress-strain method. The calculated elastic constants satisfied Born-Huang criteria for mechanical stability. Calculated high value of bulk modulus (B), and Young's modulus (E) indicated the material's high resistance to volumetric deformation and stiffness, with a moderate shear modulus. A G/B ratio greater than 0.57, a negative Cauchy constant, and a low Poisson's ratio collectively indicated brittle behavior. The calculated Debye temperature of 492.34 K and specific heat capacity (Cᵥ) of 373.4 J/mol-K further emphasized the mechanical strength, thermal stability, and high thermal conductivity of the material. These findings suggest that Sr₂MgWO₆ could be an excellent material for optical waveguides, light-emitting devices, and other optoelectronic technologies.
Downloads
References
Anderson, O. L. (1963). A simplified method for calculating the Debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7), 909–917. https://doi.org/10.1016/0022-3697(63)90067-2.
Aziz, A., Aldaghfag, S. A., Zahid, M., Iqbal, J., Yaseen, M., & Somaily, H. H. (2022). Theoretical investigation of X2NaIO6 (X= Pb, Sr) double perovskites for thermoelectric and optoelectronic applications. Physica B: Condensed Matter, 630, 413694. https://doi.org/10.1016/j.physb.2022.413694.
Bao, L., Kong, Z., Qu, D., & Duan, Y. (2020). Revealing the elastic properties and anisotropies of Mg2X (X = Si, Ge and Sn) with different structures from a first-principles calculation. Materials Today Communications, 24, 101337. https://doi.org/10.1016/j.mtcomm.2020.101337.
Bao, W., Liu, D., Li, P., & Duan, Y. (2019). Structural properties, elastic anisotropies and thermal conductivities of tetragonal LnB2C2 (Ln = Rare Earth) compounds from first-principles calculations. Ceramics International, 45(2), 1857–1867. https://doi.org/10.1016/j.ceramint.2018.10.077.
Blanco, M. A., Francisco, E., & Luaña, V. (2004). GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications, 158(1), 57–72. https://doi.org/10.1016/j.comphy.2003.12.001.
Dar, S. A., Sharma, R., Srivastava, V., & Sakalle, U. K. (2019). Investigation on the electronic structure, optical, elastic, mechanical, thermodynamic and thermoelectric properties of wide band gap semiconductor double perovskite Ba2InTaO6. RSC Advances, 9(17), 9522–9532. https://doi.org/10.1039/C9RA00313D.
Dar, S. A., Srivastava, V., & Sakalle, U. K. (2019). Structural, elastic, mechanical, electronic, magnetic, thermoelectric and thermodynamic investigation of half-metallic double perovskite oxide Sr2MnTaO6. Journal of Magnetism and Magnetic Materials, 484, 298–306. https://doi.org/10.1016/j.jmmm.2019.04.048.
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502. https://doi.org/10.1088/0953-8984/21/39/395502.
Golesorkhtabar, R., Pavone, P., Spitaler, J., Puschnig, P., & Draxl, C. (2013). Elastic: A tool for calculating second-order elastic constants from first principles. Computer Physics Communications, 184(8), 1861–1873. https://doi.org/10.1016/j.cpc.2013.03.010.
Hill, R. (1952). The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65(5), 349–354. https://doi.org/10.1088/0370-1298/65/5/307.
Nye, J. F. (1985). Physical properties of crystals: Their representation by tensors and matrices. Oxford university press.
Koch, W., & Holthausen, M. C. (2015). A chemist’s guide to density functional theory. John Wiley & Sons.
Lucarini, V., Peiponen, K. E., Saarinen, J. J., & Vartiainen, E. M. (2005). Kramers-Kronig relations in optical materials research. Berlin, Heidelberg: Springer Berlin Heidelberg.
Langreth, D. C., & Perdew, J. P. (1980). Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works. Physical Review B, 21(12), 5469–5493. https://doi.org/10.1103/PhysRevB.21.5469.
Lu, L., Pan, X., Luo, J., & Sun, Z. (2020). Recent Advances and Optoelectronic Applications of Lead‐Free Halide Double Perovskites. Chemistry – A European Journal, 26(71), 16975–16984. https://doi.org/10.1002/chem.202000788.
Lu, Y., Duan, Y., Peng, M., Yi, J., & Li, C. (2021). First-principles calculations of electronic, optical, phononic and thermodynamic properties of C40-type TMSi2 (TM = Cr, Mo, W) disilicides. Vacuum, 191, 110324. https://doi.org/10.1016/j.vacuum.2021.110324.
Manzoor, M., Bahera, D., Sharma, R., Tufail, F., Iqbal, M. W., & Mukherjee, S. K. (2022). Investigated the structural, optoelectronic, mechanical, and thermoelectric properties of Sr2BTaO6 (B = Sb, Bi) for solar cell applications. International Journal of Energy Research, 46(15), 23698–23714. https://doi.org/10.1002/er.8669.
Meng, Y., Li, X., Wang, S., Lau, C., Hu, H., Ke, Y., Tan, G., Yang, J., & Long, Y. (2022). Flexible smart photovoltaic foil for energy generation and conservation in buildings. Nano Energy, 91, 106632. https://doi.org/10.1016/j.nanoen.2021.106632.
Miao, N., Sa, B., Zhou, J., & Sun, Z. (2011). Theoretical investigation on the transition-metal borides with Ta3B4-type structure: A class of hard and refractory materials. Computational Materials Science, 50(4), 1559–1566. https://doi.org/10.1016/j.commatsci.2010.12.015.
Pack, J. D., & Monkhorst, H. J. (1977). Special points for Brillouin-zone integrations—a reply. Physical Review B, 16(4), 1748–1749. https://doi.org/10.1103/PhysRevB.16.1748.
Parr, R. G., & Yang, W. (1989). Density functional theory of atoms and molecules (2nd ed.). Oxford University Press.
Patwe, S. J., Achary, S. N., Mathews, M. D., & Tyagi, A. K. (2005). Synthesis, phase transition and thermal expansion studies on M2MgWO6 (M=Ba2+ and Sr2+) double perovskites. Journal of Alloys and Compounds, 390(1–2), 100–105. https://doi.org/10.1016/j.jallcom.2004.05.093.
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.
Pokharel, P., Yadav, S. K., Pantha, N., & Adhikari, D. (2024a). First‐Principles Investigations of Structural, Electronic, and Elastic Properties of ZrSiO3 Perovskite: Layer Dependence, Surface Termination, and Pressure Effects. Physica Status Solidi (b), 261(8) 2400156. https://doi.org/10.1002/pssb.202400156.
Pokharel, P., Yadav, S. K., Pantha, N., & Adhikari, D. (2024b). Strain-dependent electronic, mechanical and piezoelectric properties of ZrSiO3 2D monolayer: A first principles approach. Journal of Physics and Chemistry of Solids, 193, 112198. https://doi.org/10.1016/j.jpcs.2024.112198.
Pokharel, P., Yadav, S. K., Pantha, N., Sharma, B., & Adhikari, D. (2024). Structural, electronic, optical, magnetic, and mechanical properties of SmMnO3 perovskite with europium and yttrium doping: A first-principles study. AIP Advances, 14(12), 125309 https://doi.org/10.1063/5.0232439.
Pokharel, P., Yadav, S. K., Pantha, N., Sharma, B., & Adhikari, D. (2025). Elastic Anisotropy and Thermal Properties of Sr2ZrMoO6 Double Perovskite under Different Pressures. Physica Status Solidi (b), 262(5), 2400625. https://doi.org/10.1002/pssb.202400625.
Rahman, Md. A., Hasan, W., Hasan, Md. Z., Irfan, A., Mouna, S. C., Rukaia khatun, Razzaque Sarker, Md. A., Rahaman, Md. Z., & Rahman, M. (2023). Structural, mechanical, electronic, optical and thermodynamic features of lead-free oxide perovskites AMnO3 (A=Ca, Sr, Ba): DFT simulation based comparative study. Physica B: Condensed Matter, 668, 415215. https://doi.org/10.1016/j.physb.2023.415215.
Ranganathan, S. I., & Ostoja-Starzewski, M. (2008). Universal Elastic Anisotropy Index. Physical Review Letters, 101(5), 055504. https://doi.org/10.1103/PhysRevLett.101.055504.
Ray, R. B., Kaphle, G. C., Rai, R. K., Yadav, D. K., Paudel, R., & Paudyal, D. (2021). Strain induced electronic structure, and magnetic and structural properties in quaternary Heusler alloys ZrRhTiZ (Z = Al, In). Journal of Alloys and Compounds, 867, 158906. https://doi.org/10.1016/j.jallcom.2021.158906.
Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 9(1), 49–58. https://doi.org/10.1002/zamm.19290090104.
Tang, Q., & Zhu, X. (2022). Half-metallic double perovskite oxides: recent developments and future perspectives. Journal of Materials Chemistry C, 10(41), 15301–15338. https://doi.org/10.1039/D2TC03199J
Thompson, R. P., & Clegg, W. J. (2018). Predicting whether a material is ductile or brittle. Current Opinion in Solid State and Materials Science, 22(3), 100–108. https://doi.org/10.1016/j.cossms.2018.04.001
Tidrow, S. C. (2014). Mapping Comparison of Goldschmidt’s Tolerance Factor with Perovskite Structural Conditions. Ferroelectrics, 470(1), 13–27. https://doi.org/10.1080/00150193.2014.922372.
Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11), 7892–7895. https://doi.org/10.1103/PhysRevB.41.7892.
Wang, Y., Lv, Z., Zhou, L., Chen, X., Chen, J., Zhou, Y., Roy, V. A. L., & Han, S.-T. (2018). Emerging perovskite materials for high density data storage and artificial synapses. Journal of Materials Chemistry C, 6(7), 1600–1617. https://doi.org/10.1039/C7TC05326F.
Wu, Y., Bao, L., Wang, X., Wang, Y., Peng, M., & Duan, Y. (2020). Insight into structural, electronic, elastic and thermal properties of A15-type Nb3X (X = Si, Ge, Sn and Pb) compounds. Materials Today Communications, 25, 101410. https://doi.org/10.1016/j.mtcomm.2020.101410.
Wu, Y., Wang, X., Wang, Y., Duan, Y., & Peng, M. (2021). Insights into electronic and optical properties of AGdS2 (A = Li, Na, K, Rb and Cs) ternary gadolinium sulfides. Optical Materials, 114, 110963. https://doi.org/10.1016/j.optmat.2021.110963.
Voigt, W. (1928). A determination of the elastic constants for beta-quartz, Lehrbuch der Kristallphysik. Terubner Leipzig, 40, 2856-2860.
Yang, C., Wu, Y., & Duan, Y. (2022). Theoretical predictions of the electronic, optical and thermodynamic properties of the C40-type TMSi2 (TM = V, Nb and Ta) disilicides. Materials Today Communications, 30, 103115. https://doi.org/10.1016/j.mtcomm.2021.103115.
Zhai, H., Li, X., & Du, J. (2012). First-Principles Calculations on Elasticity and Anisotropy of Tetragonal Tungsten Dinitride under Pressure. Materials Transactions, 53(7), 1247–1251. https://doi.org/10.2320/matertrans.M2011373.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Institute of Science and Technology, T.U.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The views and interpretations in this journal are those of the author(s). They are not attributable to the Institute of Science and Technology, T.U. and do not imply the expression of any opinion concerning the legal status of any country, territory, city, area of its authorities, or concerning the delimitation of its frontiers of boundaries.
The copyright of the articles is held by the Institute of Science and Technology, T.U.