In-Silico Analysis of Secondary Metabolites that Inhibit Aldose Reductase Targeting Diabetic Retinopathy

Authors

DOI:

https://doi.org/10.3126/jist.v30i1.76562

Keywords:

Enzyme inhibition, diabetic retinopathy, myrciacitrin IV, natural products

Abstract

Diabetic retinopathy (DR) is a harmful microvascular consequence of diabetes. Aldose reductase, an enzyme involved in the polyol pathway during hyperglycaemic conditions, is responsible for DR. Some commercially available enzyme inhibitors, such as epalrestat, zenarestat, etc., are recommended medications to control pathophysiology; nevertheless, most of them have been unable to satisfy the criteria to be considered a good drug choice. This study aims to explore a pool of secondary metabolites associated with their impressive anti-diabetic properties because they are related to undesirable side of the commercial medications currently on the market. We screened the most potent aldose reductase inhibitor via a thorough in silico study, which has been reported as good in vitro activity against human aldose reductase and rat lens aldose reductase. High-throughput computational techniques were applied to study the potency of 90 metabolites against target proteins. In silico pharmacokinetics and toxicity were evaluated for screened metabolites with binding energy less than -9.0 kcal/mol obtained through the molecular docking method. Among selected metabolites, myrciacitrin IV exhibited the best binding affinity (-9.1 kcal/mol and -11.8 kcal/mol) with both proteins and displayed the least band gap energy (3.379 eV), comparable with the standard drug. Further, molecular dynamics (MD) simulation and Molecular Mechanics Generalised-Born Surface Area (MM/GBSA) investigations confirm myrciacitrin IV as a potent drug candidate targeting aldose reductase.

Downloads

Download data is not yet available.
Abstract
116
PDF 62
Supplementary Materials 75

References

Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001

Abu-Melha, S. (2018). Design, synthesis and DFT/DNP modeling study of New 2-Amino-5-arylazothiazole derivatives as potential antibacterial agents. Molecules, 23(2), 434. https://doi.org/10.3390/molecules23020434

Agu, P.C., Afiukwa, C.A., Orji, O.U., Ezeh, E.M., Ofoke, I.H., Ogbu, C.O., … & Aja, P.M. (2023). Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific Reports, 13(1), 13398. https://doi.org/10.1038/s41598-023-40160-2

Ahammad, F., Alam, R., Mahmud, R., Akhter, S., Talukder, E.K., Tonmoy, A.M., … & Qadri, I. (2021). Pharmacoinformatics and molecular dynamics simulation-based phytochemical screening of neem plant (Azadiractha indica) against human cancer by targeting MCM7 protein. Briefings in Bioinformatics, 22(5), bbab098. https://doi.org/10.1093/bib/bbab098

Antonetti, D.A., Klein, R., & Gardner, T.W. (2012). Diabetic retinopathy. New England Journal of Medicine, 366(13), 1227–1239. https://doi.org/10.1056/NEJMra1005073

Banditelli, S., Boldrini, E., Vilardo, P.G., Cecconi, I., Cappiello, M., Dal monte, M., … & Mura, U. (1999). A New approach against sugar cataract through aldose reductase inhibitors. Experimental Eye Research, 69(5), 533–538. https://doi.org/10.1006/exer.1999.0729

Banerjee, P., Eckert, A.O., Schrey, A.K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318

Brownlee, M. (2005). The pathobiology of diabetic complications. Diabetes, 54(6), 1615–1625. https://doi.org/10.2337/diabetes.54.6.1615

Bugnon, M., Goullieux, M., Röhrig, U.F., Perez, M.A.S., Daina, A., Michielin, O., & Zoete, V. (2023). SwissParam 2023: A modern web-based tool for efficient small molecule parametrization. Journal of Chemical Information and Modeling, 63(21), 6469–6475. https://doi.org/10.1021/acs.jcim.3c01053

Ciulla, T.A., Amador, A.G., & Zinman, B. (2003). Diabetic retinopathy and diabetic macular edema: pathophysiology, screening, and novel therapies. Diabetes Care, 26(9), 2653–2664. https://doi.org/10.2337/diacare.26.9.2653

Cournia, Z., Allen, B., & Sherman, W. (2017). Relative binding free energy calculations in drug discovery: Recent advances and practical considerations. Journal of Chemical Information and Modeling, 57(12), 2911–2937. https://doi.org/10.1021/acs.jcim.7b00564

Dwivedi, A., Baboo, V., & Bajpai, A. (2015). Fukui function analysis and optical, electronic, and vibrational properties of tetrahydrofuran and its derivatives: A complete quantum chemical study. Journal of Theoretical Chemistry, 2015, e345234. https://doi.org/10.1155/2015/345234

Ekins, S., Mestres, J., & Testa, B. (2007). In silico pharmacology for drug discovery: Methods for virtual ligand screening and profiling. British Journal of Pharmacology, 152(1), 9–20. https://doi.org/10.1038/sj.bjp.0707305

El-Shamy, N.T., Alkaoud, A.M., Hussein, R.K., Ibrahim, M.A., Alhamzani, A.G., & Abou-Krisha, M.M. (2022). DFT, ADMET and molecular docking investigations for the antimicrobial activity of 6,6′-Diamino-1,1′,3,3′-tetramethyl-5,5′-(4-chlorobenzylidene)bis[pyrimidine-2,4(1H,3H)-dione]. Molecules, 27(3), 620. https://doi.org/10.3390/molecules27030620

Ferreira, L.G., Dos Santos, R.N., Oliva, G., & Andricopulo, A.D. (2015). Molecular docking and structure-based drug design strategies. Molecules (Basel, Switzerland), 20(7), 13384–13421. https://doi.org/10.3390/molecules200713384

Ganesan, A., Coote, M.L., & Barakat, K. (2017). Molecular dynamics-driven drug discovery: Leaping forward with confidence. Drug Discovery Today, 22(2), 249–269. https://doi.org/10.1016/j.drudis.2016.11.001

Garg, A., Tadesse, A., & Eswaramoorthy, R. (2021). A four-component domino reaction: An eco-compatible and highly efficient construction of 1,8-naphthyridine derivatives, their In Silico molecular docking, drug likeness, ADME, and toxicity studies. Journal of Chemistry, 2021, e5589837. https://doi.org/10.1155/2021/5589837

Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936

Geraldes, P., & King, G.L. (2010). Activation of protein kinase C isoforms and its impact on diabetic complications. Circulation Research, 106(8), 1319–1331. https://doi.org/10.1161/CIRCRESAHA.110.217117

Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545

Grewal, A.S., Bhardwaj, S., Pandita, D., Lather, V., & Sekhon, B.S. (2016). Updates on aldose reductase inhibitors for management of diabetic complications and non-diabetic diseases. Mini Reviews in Medicinal Chemistry, 16(2), 120–162. https://doi.org/10.2174/1389557515666150909143737

Grewal, A.S., Thapa, K., Kanojia, N., Sharma, N., & Singh, S. (2020). Natural compounds as source of aldose reductase (ar) inhibitors for the treatment of diabetic complications: A mini review. Current Drug Metabolism, 21(14), 1091–1116. https://doi.org/10.2174/1389200221666201016124125

Hassan, A.U., Sumrra, S.H., Mustafa, G., Mohyuddin, A., Imran, M., Mehmood, R.F., & Mohyuddin, A. (2024). Novel pull–push solar switches with a D-π-D-π-A framework of the thiophene core: Computed absorbance/fluorescence ability with device parameters. Structural Chemistry, 35(1), 47–64. https://doi.org/10.1007/s11224-023-02172-6

Hefti, F.F. (2008). Requirements for a lead compound to become a clinical candidate. BMC Neuroscience, 9(3), S7. https://doi.org/10.1186/1471-2202-9-S3-S7

Hendrick, A.M., Gibson, M.V., & Kulshreshtha, A. (2015). Diabetic retinopathy. Primary Care: Clinics in Office Practice, 42(3), 451–464. https://doi.org/10.1016/j.pop.2015.05.005

Karmakar, R., Chatterjee, S., Datta, D., & Chakraborty, D. (2024). Application of harmony search algorithm in optimizing autoregressive integrated moving average: A study on a data set of Coronavirus Disease 2019. Systems and Soft Computing, 6, 200067. https://doi.org/10.1016/j.sasc.2023.200067

Khatun, S., Bhagat, R.P., Amin, S.A., Jha, T., & Gayen, S. (2024). Density functional theory (DFT) studies in HDAC-based chemotherapeutics: Current findings, case studies and future perspectives. Computers in Biology and Medicine, 175, 108468. https://doi.org/10.1016/j.compbiomed.2024.108468

Kitchen, D.B., Decornez, H., Furr, J.R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews. Drug Discovery, 3(11), 935–949. https://doi.org/10.1038/nrd1549

Klein, R., Klein, B.E.K., & Moss, S.E. (1989). The wisconsin epidemiological study of diabetic retinopathy: A review. Diabetes/Metabolism Reviews, 5(7), 559–570. https://doi.org/10.1002/dmr.5610050703

Kolb, P., Ferreira, R.S., Irwin, J.J., & Shoichet, B.K. (2009). Docking and chemoinformatic screens for new ligands and targets. Current Opinion in Biotechnology, 20(4), 429–436. https://doi.org/10.1016/j.copbio.2009.08.003

Lagorce, D., Douguet, D., Miteva, M.A., & Villoutreix, B.O. (2017). Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Scientific Reports, 7(1), 46277. https://doi.org/10.1038/srep46277

Macalino, S.J.Y., Gosu, V., Hong, S., & Choi, S. (2015). Role of computer-aided drug design in modern drug discovery. Archives of Pharmacal Research, 38(9), 1686–1701. https://doi.org/10.1007/s12272-015-0640-5

Maccari, R., & Ottanà, R. (2015). Targeting Aldose Reductase for the Treatment of Diabetes Complications and Inflammatory Diseases: New Insights and Future Directions. Journal of Medicinal Chemistry, 58(5), 2047–2067. https://doi.org/10.1021/jm500907a

Mori, S., Kubo, S., Akiyoshi, T., Yamada, S., Miyazaki, T., Hotta, H., … & Shigemoto, K. (2012). Antibodies against muscle-specific kinase impair both presynaptic and postsynaptic functions in a murine model of myasthenia gravis. The American Journal of Pathology, 180(2), 798–810. https://doi.org/10.1016/j.ajpath.2011.10.031

Muehlbacher, M., Spitzer, G.M., Liedl, K.R., & Kornhuber, J. (2011). Qualitative prediction of blood-brain barrier permeability on a large and refined dataset. Journal of Computer-Aided Molecular Design, 25(12), 1095–1106. https://doi.org/10.1007/s10822-011-9478-1

Nagini, S., Kallamadi, P.R., Tanagala, K.K.K., & Reddy, G.B. (2024). Aldo-keto reductases: Role in cancer development and theranostics. Oncology Research, 32(8), 1287–1308. https://doi.org/10.32604/or.2024.049918

Putri, S.A., Julaeha, E., Kagawa, N., & Kurnia, D. (n.d.). Phenolic Compounds from Ocimum basilicum Revealed as Antibacterial by Experimental and Computational Screening‐Based Studies against Oral Infections. https://doi.org/10.1155/2024/3696250

Rampogu, S., Lee, G., Park, J.S., Lee, K.W., & Kim, M.O. (2022). Molecular docking and molecular dynamics simulations discover curcumin analogue as a plausible dual inhibitor for SARS-CoV-2. International Journal of Molecular Sciences, 23(3), 1771. https://doi.org/10.3390/ijms23031771

Samuel, Y., Garg, A., & Mulugeta, E. (2021). Synthesis, DFT analysis, and evaluation of antibacterial and antioxidant activities of sulfathiazole derivatives combined with in silico molecular docking and ADMET predictions. Biochemistry Research International, 2021(1), 7534561. https://doi.org/10.1155/2021/7534561

Sarges, R., Schnur, R.C., Belletire, J.L., & Peterson, M.J. (1988). Spiro hydantoin aldose reductase inhibitors. Journal of Medicinal Chemistry, 31(1), 230–243. https://doi.org/10.1021/jm00396a037

Sastry, G.M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8

Sestanj, K., Bellini, F., Fung, S., Abraham, N., Treasurywala, A., Humber, L., … & Dvornik, D. (1984). N-[[5-(Trifluoromethyl)-6-methoxy-1-naphthalenyl]thioxomethyl]-N-methylglycine (Tolrestat), a potent, orally active aldose reductase inhibitor. Journal of Medicinal Chemistry, 27(3), 255–256. https://doi.org/10.1021/jm00369a003

Sharma, P., Tushar, J., Tanuja, J., Subhash, C., & Tamta, S. (2021). Molecular dynamics simulation for screening phytochemicals as α-amylase inhibitors from medicinal plants. Journal of Biomolecular Structure and Dynamics, 39(17), 6524–6538. https://doi.org/10.1080/07391102.2020.1801507

Singh Grewal, A., Bhardwaj, S., Pandita, D., Lather, V., & Singh Sekhon, B. (2015). Updates on aldose reductase inhibitors for management of diabetic complications and non-diabetic diseases. Mini-Reviews in Medicinal Chemistry, 16(2), 120–162. https://doi.org/10.2174/1389557515666150909143737

Sundaram, K., Dhagat, U., Endo, S., Chung, R., Matsunaga, T., Hara, A., & El-Kabbani, O. (2011). Structure of rat aldose reductase-like protein AKR1B14 holoenzyme: Probing the role of His269 in coenzyme binding by site-directed mutagenesis. Bioorganic & Medicinal Chemistry Letters, 21(2), 801–804. https://doi.org/10.1016/j.bmcl.2010.11.086

Valdés-Tresanco, M.S., Valdés-Tresanco, M.E., Valiente, P.A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645

Wacha, A.F., & Lemkul, J.A. (2023). charmm2gmx: An automated method to port the CHARMM additive force field to GROMACS. Journal of Chemical Information and Modeling, 63(14), 4246–4252. https://doi.org/10.1021/acs.jcim.3c00860

Zhang, L., Zhang, H., Zhao, Y., Li, Z., Chen, S., Zhai, J., … & Hu, X. (2013). Inhibitor selectivity between aldo–keto reductase superfamily members AKR1B10 and AKR1B1: Role of Trp112 (Trp111). FEBS Letters, 587(22), 3681–3686. https://doi.org/10.1016/j.febslet.2013.09.031

Internet Source:

RCSB. (2025). RCSB Protein Data Bank. Retrieved February 25, 2025 from https://www.rcsb.org/.

Published

2025-06-21

How to Cite

Khatiwada, R., Shrestha, A., Gyawali, K., Upadhyaya, S. R., Pradhan, R., Phuyal, A., … Parajuli, N. (2025). In-Silico Analysis of Secondary Metabolites that Inhibit Aldose Reductase Targeting Diabetic Retinopathy. Journal of Institute of Science and Technology, 30(1), 197–209. https://doi.org/10.3126/jist.v30i1.76562

Issue

Section

Research Articles