Green Synthesis of Zinc Oxide Nanoparticles Using Swertia chirayita for Photocatalytic and Antimicrobial Activity

Authors

DOI:

https://doi.org/10.3126/jist.v30i1.72209

Keywords:

Antimicrobial activity, phytochemicals, photocatalytic degradation, zinc oxide nanoparticles

Abstract

This research work utilized an environmentally friendly and sustainable method to produce zinc oxide nanoparticles (ZnO NPs) using zinc nitrate as a precursor and the leaf extract of Swertia chirayita. The resulting nanoparticles were characterized using various analytical techniques, including UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), and energy-dispersive spectroscopy (EDS). The ZnO nanoparticles were found to have a well-defined crystalline structure, with their average crystallite size measured at around 10.88 nm. Agar well diffusion was used to study the antimicrobial activity, revealing notable antibacterial and antifungal properties, indicating broad-spectrum antimicrobial potential. A degradation efficiency of 95.73 % was achieved for methylene blue (MB) dye by photocatalysis under sunlight within 210 minutes. These findings demonstrate that ZnO NPs synthesized using Swertia chirayita exhibit excellent antimicrobial and photocatalytic properties, making them promising candidates for environmental remediation and biomedicine. This study underscores the potential of green synthesis approaches for developing sustainable nanomaterials.

Downloads

Abstract
106
PDF
61

References

Abdol Aziz, R.A., Abd Karim, S.F., & Rosli, N.A. (2019). The ffect of pH on zinc oxide nanoparticles characteristics synthesized from banana peel extract. Key Engineering Materials, 797, 271–279. https://doi.org/10.4028/www.scientific.net/KEM.797.271.

Abdullah, F.H., Bakar, N.H.H.A., & Bakar, M.A. (2022). Current advancements on the fabrication, modification, and industrial application of zinc oxide as photocatalyst in the removal of organic and inorganic contaminants in aquatic systems. Journal of Hazardous Materials, 424, 127416. https://doi.org/10.1016/j.jhazmat.2021.127416.

Abdullahi Ari, H., Adewole, A.O., Ugya, A.Y., Asipita, O.H., Musa, M.A., & Feng, W. (2023). Biogenic fabrication and enhanced photocatalytic degradation of tetracycline by bio structured ZnO nanoparticles. Environmental Technology, 44(9), 1351–1366. https://doi.org/10.1080/09593330.2021.2001049.

Abomuti, M.A., Danish, E.Y., Firoz, A., Hasan, N., & Malik, M.A. (2021). Green synthesis of zinc oxide nanoparticles using Salvia officinalis leaf extract and their photocatalytic and antifungal activities. Biology, 10(11), 1075. https://doi.org/10.3390/biology10111075.

Ahmad, T., Bustam, M.A., Irfan, M., Moniruzzaman, M., Asghar, H.M.A., & Bhattacharjee, S. (2019). Mechanistic investigation of phytochemicals involved in green synthesis of gold nanoparticles using aqueous Elaeis guineensis leaves extract: Role of phenolic compounds and flavonoids. Biotechnology and Applied Biochemistry, 66(4), 698–708. https://doi.org/10.1002/bab.1787.

Aiyegoro, O.A., & Okoh, A.I. (2010). Preliminary phytochemical screening and In vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC. BMC Complementary and Alternative Medicine, 10(1), 21. https://doi.org/10.1186/1472-6882-10-21.

Aldalbahi, A., Alterary, S., Ali Abdullrahman Almoghim, R., Awad, M.A., Aldosari, N.S., Fahad Alghannam, S., Nasser Alabdan, A., Alharbi, S., Ali Mohammed Alateeq, B., Abdulrahman Al Mohsen, A., Alkathiri, M.A., & Abdulrahman Alrashed, R. (2020). Greener synthesis of zinc oxide nanoparticles: characterization and multifaceted applications. Molecules, 25(18), 4198. https://doi.org/10.3390/molecules25184198.

Alharbi, F.N., Abaker, Z.M., & Makawi, S.Z.A. (2023). Phytochemical substances—mediated synthesis of zinc oxide nanoparticles (ZnO NPS). Inorganics, 11(8), 328. https://doi.org/10.3390/inorganics11080328.

Azizi, S., Mohamad, R., Bahadoran, A., Bayat, S., Rahim, R.A., Ariff, A., & Saad, W.Z. (2016). Effect of annealing temperature on antimicrobial and structural properties of bio-synthesized zinc oxide nanoparticles using flower extract of Anchusa italica. Journal of Photochemistry and Photobiology B: Biology, 161, 441–449. https://doi.org/10.1016/j.jphotobiol.2016.06.007.

Baral, J., Pokharel, N., Dhungana, S., Tiwari, L., Khadka, D., Pokhrel, M.R., & Poudel, B.R. (2025). Green synthesis of copper oxide nanoparticles using Mentha (mint) leaves characterization and its antimicrobial properties with phytochemicals screening. Journal of Nepal Chemical Society, 45(1), 111–121. https://doi.org/10.3126/jncs.v45i1.74491.

Barzinjy, A.A., & Azeez, H.H. (2020). Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Applied Sciences, 2(5), 991. https://doi.org/10.1007/s42452-020-2813-1.

Batra, V., Kaur, I., Pathania, D., Sonu, & Chaudhary, V. (2022). Efficient dye degradation strategies using green synthesized ZnO-based nanoplatforms: A review. Applied Surface Science Advances, 11, 100314. https://doi.org/10.1016/j.apsadv.2022.100314.

Coates, J. (2006). Interpretation of infrared spectra, A practical approach. In Encyclopedia of Analytical Chemistry. Wiley. https://doi.org/10.1002/9780470027318.a5606.

Dadi, R., Azouani, R., Traore, M., Mielcarek, C., & Kanaev, A. (2019). Antibacterial activity of ZnO and CuO nanoparticles against Gram positive and Gram negative strains. Materials Science and Engineering: C, 104, 109968. https://doi.org/10.1016/j.msec.2019.109968.

El-Khawaga, A.M., Elsayed, M.A., Gobara, M., Suliman, A.A., Hashem, A.H., Zaher, A.A., Mohsen, M., & Salem, S.S. (2023). Green synthesized ZnO nanoparticles by Saccharomyces cerevisiae and their antibacterial activity and photocatalytic degradation. Biomass Conversion and Biorefinery, 15, 2673-2684. https://doi.org/10.1007/s13399-023-04827-0.

Faisal, S., Jan, H., Shah, S.A., Shah, S., Khan, A., Akbar, M.T., Rizwan, M., Jan, F., Wajidullah, Akhtar, N., Khattak, A., & Syed, S. (2021). Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans : their characterizations and biological and environmental applications. ACS Omega, 6(14), 9709–9722. https://doi.org/10.1021/acsomega.1c00310.

Fouda, A., Saied, E., Eid, A.M., Kouadri, F., Alemam, A.M., Hamza, M.F., Alharbi, M., Elkelish, A., & Hassan, S.E.-D. (2023). Green synthesis of zinc oxide nanoparticles using an aqueous extract of Punica granatum for antimicrobial and catalytic activity. Journal of Functional Biomaterials, 14(4), 205. https://doi.org/10.3390/jfb14040205.

Hamza, M.F., Wei, Y., Althumayri, K., Fouda, A., & Hamad, N.A. (2022). Synthesis and characterization of functionalized chitosan nanoparticles with pyrimidine derivative for enhancing ion sorption and application for removal of contaminants. Materials, 15(13), 4676. https://doi.org/10.3390/ma15134676.

Hanif, M., Lee, I., Akter, J., Islam, M., Zahid, A., Sapkota, K., & Hahn, J. (2019). Enhanced photocatalytic and antibacterial performance of ZnO nanoparticles prepared by an efficient thermolysis method. Catalysts, 9(7), 608. https://doi.org/10.3390/catal9070608.

Harborne, J.B. (1998). Phytochemical methods a guide to modern techniques qf plant analysis (Third Edition). Chapman & Hall.

Herlekar, M., Barve, S., & Kumar, R. (2014). Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticles, 2014, 1–9. https://doi.org/10.1155/2014/140614.

Jalal, R., Goharshadi, E.K., Abareshi, M., Moosavi, M., Yousefi, A., & Nancarrow, P. (2010). ZnO nanofluids: Green synthesis, characterization, and antibacterial activity. Materials Chemistry and Physics, 121(1–2), 198–201. https://doi.org/10.1016/j.matchemphys.2010.01.020.

Jamdagni, P., Khatri, P., & Rana, J.S. (2018). Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. Journal of King Saud University - Science, 30(2), 168–175. https://doi.org/10.1016/j.jksus.2016.10.002.

Kalaba, M.H., El-Sherbiny, G.M., Ewais, E.A., Darwesh, O.M., & Moghannem, S.A. (2024). Green synthesis of zinc oxide nanoparticles (ZnO-NPs) by Streptomyces baarnensis and its active metabolite (Ka): a promising combination against multidrug-resistant ESKAPE pathogens and cytotoxicity. BMC Microbiology, 24(1), 254. https://doi.org/10.1186/s12866-024-03392-4.

Khadka, D., Gautam, P., Dahal, R., Ashie, M.D., Paudyal, H., Ghimire, K.N., Pant, B., Poudel, B.R., Bastakoti, B.P., & Pokhrel, M.R. (2024). Evaluating the photocatalytic activity of green synthesized iron oxide nanoparticles. Catalysts, 14(11), 751. https://doi.org/10.3390/catal14110751.

Li, M., Zhu, L., & Lin, D. (2011). Toxicity of ZnO nanoparticles to Escherichia coli : mechanism and the influence of medium components. Environmental Science & Technology, 45(5), 1977–1983. https://doi.org/10.1021/es102624t.

López-López, J., Tejeda-Ochoa, A., López-Beltrán, A., Herrera-Ramírez, J., & Méndez-Herrera, P. (2021). Sunlight photocatalytic performance of ZnO nanoparticles synthesized by green chemistry using different botanical extracts and zinc acetate as a precursor. Molecules, 27(1), 6. https://doi.org/10.3390/molecules27010006.

Maheo, A.R., Vithiya B, S.M., Arul Prasad T, A., Mangesh, V.L., Perumal, T., Al-Qahtani, W.H., & Govindasamy, M. (2023). Cytotoxic, antidiabetic, and antioxidant study of biogenically improvised Elsholtzia blanda and chitosan-assisted zinc oxide nanoparticles. ACS Omega, 8(12), 10954–10967. https://doi.org/10.1021/acsomega.2c07530.

Mongy, Y., & Shalaby, T. (2024). Green synthesis of zinc oxide nanoparticles using Rhus coriaria extract and their anticancer activity against triple-negative breast cancer cells. Scientific Reports, 14(1), 13470. https://doi.org/10.1038/s41598-024-63258-7.

Mousa, H.M., Alenezi, J.F., Mohamed, I.M.A., Yasin, A.S., Hashem, A.-F.M., & Abdal-hay, A. (2021). Synthesis of TiO2@ZnO heterojunction for dye photodegradation and wastewater treatment. Journal of Alloys and Compounds, 886, 161169. https://doi.org/10.1016/j.jallcom.2021.161169.

Mousa, S.A., Wissa, D.A., Hassan, H.H., Ebnalwaled, A.A., & Khairy, S.A. (2024). Enhanced photocatalytic activity of green synthesized zinc oxide nanoparticles using low-cost plant extracts. Scientific Reports, 14(1), 16713. https://doi.org/10.1038/s41598-024-66975-1.

Muhammad, W., Ullah, N., Haroon, M., & Abbasi, B.H. (2019). Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC Advances, 9(51), 29541–29548. https://doi.org/10.1039/C9RA04424H.

MuthuKathija, M., Sheik Muhideen Badhusha, M., & Rama, V. (2023). Green synthesis of zinc oxide nanoparticles using Pisonia alba leaf extract and its antibacterial activity. Applied Surface Science Advances, 15, 100400. https://doi.org/10.1016/j.apsadv.2023.100400.

Naseer, M., Aslam, U., Khalid, B., & Chen, B. (2020). Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Scientific Reports, 10(1), 9055. https://doi.org/10.1038/s41598-020-65949-3.

Patterson, A.L. (1939). The Scherrer Formula for X-Ray Particle Size Determination. Physical Review, 56(10), 978–982. https://doi.org/10.1103/PhysRev.56.978.

Rahman, F., Majed Patwary, M.A., Bakar Siddique, M.A., Bashar, M.S., Haque, M.A., Akter, B., Rashid, R., Haque, M.A., & Royhan Uddin, A.K.M. (2022). Green synthesis of zinc oxide nanoparticles using Cocos nucifera leaf extract: characterization, antimicrobial, antioxidant and photocatalytic activity. Royal Society Open Science, 9(11). https://doi.org/10.1098/rsos.220858.

Sachin, J., Singh, N., Singh, R., Shah, K., & Pramanik, B.K. (2023). Green synthesis of zinc oxide nanoparticles using lychee peel and its application in anti-bacterial properties and CR dye removal from wastewater. Chemosphere, 327, 138497. https://doi.org/10.1016/j.chemosphere.2023.138497.

Shaba, E.Y., Jacob, J.O., Tijani, J.O., & Suleiman, M.A.T. (2021). A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Applied Water Science, 11(2), 48. https://doi.org/10.1007/s13201-021-01370-z.

Sharma, P., Dhungana, S., Rai, R., Khadka, D., Hitan, D. K., Pokhrel, M.R., Gautam, S.K., & Poudel, B.R. (2022). Temperature dependent synthesis of zinc sulphide (ZnS) nanoparticles and its characterization. Amrit Research Journal, 3(01), 67–74. https://doi.org/10.3126/arj.v3i01.50498.

Singh, J., Kumar, S., Alok, A., Upadhyay, S.K., Rawat, M., Tsang, D.C.W., Bolan, N., & Kim, K.-H. (2019). The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. Journal of Cleaner Production, 214, 1061–1070. https://doi.org/10.1016/j.jclepro.2019.01.018.

Singh, K., Singh, J., & Rawat, M. (2019). Green synthesis of zinc oxide nanoparticles using Punica granatum leaf extract and its application towards photocatalytic degradation of Coomassie brilliant blue R-250 dye. SN Applied Sciences, 1(6), 624. https://doi.org/10.1007/s42452-019-0610-5.

Swati, K., Bhatt, V., Sendri, N., Bhatt, P., & Bhandari, P. (2023). Swertia chirayita: A comprehensive review on traditional uses, phytochemistry, quality assessment and pharmacology. Journal of Ethnopharmacology, 300, 115714. https://doi.org/10.1016/j.jep.2022.115714.

Viezbicke, B.D., Patel, S., Davis, B.E., & Birnie, D.P. (2015). Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Physica Status Solidi (B), 252(8), 1700–1710. https://doi.org/10.1002/pssb.201552007.

Vindhya, P.S., Suresh, S., Kunjikannan, R., & Kavitha, V.T. (2023). Antimicrobial, antioxidant, cytotoxicity and photocatalytic performance of Co doped ZnO nanoparticles biosynthesized using Annona Muricata leaf extract. Journal of Environmental Health Science and Engineering, 21(1), 167–185. https://doi.org/10.1007/s40201-023-00851-4.

Weldegebrieal, G.K. (2020). Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review. Inorganic Chemistry Communications, 120, 108140. https://doi.org/10.1016/j.inoche.2020.108140.

Yagoub, A.E.A., Al-Shammari, G.M., Al-Harbi, L.N., Subash-Babu, P., Elsayim, R., Mohammed, M.A., Yahya, M.A., & Fattiny, S.Z.A. (2022). Antimicrobial properties of zinc oxide nanoparticles synthesized from Lavandula pubescens shoot methanol extract. Applied Sciences, 12(22), 11613. https://doi.org/10.3390/app122211613.

Yashni, G., Al-Gheethi, A., Radin Mohamed, R.M.S., Dai-Viet, N.V., Al-Kahtani, A.A., Al-Sahari, M., Nor Hazhar, N.J., Noman, E., & Alkhadher, S. (2021). Bio-inspired ZnO NPs synthesized from Citrus sinensis peels extract for Congo red removal from textile wastewater via photocatalysis: optimization, mechanisms, techno-economic analysis. Chemosphere, 281, 130661. https://doi.org/10.1016/j.chemosphere.2021.130661.

Zhang, L., Jiang, Y., Ding, Y., Povey, M., & York, D. (2007). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research, 9(3), 479–489. https://doi.org/10.1007/s11051-006-9150-1.

Zong, Y., Li, Z., Wang, X., Ma, J., & Men, Y. (2014). Synthesis and high photocatalytic activity of Eu-doped ZnO nanoparticles. Ceramics International, 40(7), 10375–10382. https://doi.org/10.1016/j.ceramint.2014.02.123.

Downloads

Published

2025-02-26

How to Cite

Khadka, D., Bista, P., Baral, J., Gautam, S. K., Bastakoti, B. P., Poudel, B. R., & Pokhrel, M. R. (2025). Green Synthesis of Zinc Oxide Nanoparticles Using Swertia chirayita for Photocatalytic and Antimicrobial Activity. Journal of Institute of Science and Technology, 30(1), 45–56. https://doi.org/10.3126/jist.v30i1.72209

Issue

Section

Research Articles