Exploring the Protective Effects of Surfactants against Corrosion: A Comprehensive Review
DOI:
https://doi.org/10.3126/jist.v29i2.70352Keywords:
Aggregation, anti-corrosive material, critical micelle concentration, surfactantsAbstract
Corrosion is the spontaneous chemical or electrochemical reaction of metal with its surrounding environment. There have been ongoing worries about how corrosion affects the strength and stability of metal surfaces. Chemical corrosion inhibitors are often used in manufacturing and processing activities to prevent the deterioration of materials. Surfactants are a highly affordable, readily available, and environmentally friendly choice for corrosion inhibitors. This article outlines surfactants' capacity to prevent corrosion on various metal surfaces. The properties of multiple surfactants and their possible applications for corrosion inhibitors have also been discussed. This review article also explores additional factors, such as how varying levels of surfactants contribute to the mechanisms behind corrosion inhibition.
Downloads
References
Abdel-Gaber, A.M., Rahal, H.T., & Beqai, F.T. (2020). Eucalyptus leaf extract as a eco-friendly corrosion inhibitor for mild steel in sulfuric and phosphoric acid solutions. International Journal of Industrial Chemistry, 11(2), 123–132. https://doi.org/10.1007/s40090-020-00207-z
Abdel-Gaber, A.M., Rahal, H.T., Thebian, N., & Younes, G. (2024). Experimental and Theoretical Chemical Studies of Linalool and Caffeine as Corrosion Inhibitors for Mild Steel in Sulfuric Acid Solutions. Biointerface Research in Applied Chemistry,14(1), 3. https://doi.org/10.33263/BRIAC141.003
Alagta, A., Felhösi, I., Bertoti, I., & Kálmán, E. (2008). Corrosion protection properties of hydroxamic acid self-assembled monolayer on carbon steel. Corrosion Science, 50(6), 1644–1649. https://doi.org/10.1016/j.corsci.2008.02.008
Al‐Rawashdeh, N.A.F., & Maayta, A.K. (2005). Cationic surfactant as corrosion inhibitor for aluminum in acidic and basic solutions. Anti-Corrosion Methods and Materials, 52(3), 160-166. https://doi.org/10.1108/00035590510595157
Aslam, R., Mobin, M., Aslam, J., Aslam, A., Zehra, S., & Masroor, S. (2021). Application of surfactants as anticorrosive materials: A comprehensive review. Advances in Colloid and Interface Science, 295, 102481.https://doi.org/10.1016/j.cis.2021.102481
Assem, R., Fouda, A.S., Ibrahim, A.A., & Saadawy, M. (2018). Some anionic surfactants as corrosion inhibitors for carbon steel in hydrochloric acid solution. Key Engineering Materials, 786, 134-148. https://doi.org/10.4028/www.scientific.net/KEM.786.134
Bashir, S., Singh, G., & Kumar, A. (2017). Shatavari (Asparagus Racemosus) as green corrosion inhibitor of aluminium in acidic medium. Journal of Materials and Environmental Science, 8(12), 4284–4291. https://doi.org/10.26872/jmes.2017.8.12.451
Belhaj, A.F., Elraies, K.A., Mahmood, S.M., Zulkifli, N.N., Akbari, S., & Hussien, O.S.E. (2020). The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review. Journal of Petroleum Exploration and Production Technology, 10(1), 125–137. https://doi.org/10.1007/s13202-019-0685-y
Bijapur, K., Molahalli, V., Shetty, A., Toghan, A., De Padova, P., & Hegde, G. (2023). Recent Trends and Progress in Corrosion Inhibitors and Electrochemical Evaluation. Applied Sciences, 13(18), 10107. https://doi.org/10.3390/app131810107
Bentiss, F., Jama, C., Mernari, B., Attari, H. El, Kadi, L. El, Lebrini, M., … Lagrenée, M. (2009). Corrosion control of mild steel using 3,5-bis(4-methoxyphenyl)-4-amino-1,2,4-triazole in normal hydrochloric acid medium. Corrosion Science, 51(8), 1628–1635. https://doi.org/10.1016/j.corsci.2009.04.009
Brycki, B., & Szulc, A. (2021). Gemini surfactants as corrosion inhibitors. A review. Journal of Molecular Liquids, 344, 117686.https://doi.org/10.1016/j.molliq.2021.117686
Cacua, K., Ordoñez, F., Zapata, C., Herrera, B., Pabón, E., & Buitrago-Sierra, R. (2019). Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583, 123960.https://doi.org/10.1016/j.colsurfa.2019.123960
del Río, J.M.L., López, E.R., & Fernández, J. (2024). Tribological behavior of electric vehicle transmission oils using Al2O3 nanoadditives. Journal of Molecular Liquids, 397, 124036. https://doi.org/10.1016/j.molliq.2024.124036
D’Souza, R., Nithin, T.P., & Sirisha, N. (2015). Review of Action of Cationic and Anionic Surfactants on Corrosion Inhibition of Steel in Acidic Medium. International Journal of Advance Research In Science And Engineering, 4(2), 69–76.
El Sayed, M.Y., Abdel-Gaber, A.M., & Rahal, H.T. (2019). Safranin—A Potential Corrosion Inhibitor for Mild Steel in Acidic Media: A Combined Experimental and Theoretical Approach. Journal of Failure Analysis and Prevention, 19(4), 1174–1180. https://doi.org/10.1007/s11668-019-00719-6
Elewady, G.Y., El-Said, I.A., & Fouda, A.S. (2008). Anion surfactants as corrosion inhibitors for aluminum dissolution in HCl solutions. International Journal of Electrochemical Science, 3(2), 177-190.https://doi.org/10.1016/S1452-3981(23)15437-X.
Farahmand, R., Sohrabi, B., Ghaffarinejad, A., & Meymian, M.R.Z. (2018). Synergistic effect of molybdenum coating and SDS surfactant on corrosion inhibition of mild steel in presence of 3.5% NaCl. Corrosion Science, 136, 393-401. https://doi.org/ 10.1016/j.corsci.2018.03.030.
Fayomi, O.S.I., Popoola, A.P.I., Oloruntoba, T., & Ayoola, A.A. (2017). Inhibitive characteristics of cetylpyridinium chloride and potassium chromate addition on type A513 mild steel in acid/chloride media. Cogent Engineering, 4(1), 1–9. https://doi.org/10.1080/23311916.2017.1318736
Fouda, A.S., El-Ghaffar, M.A.A., Sherif, M.H., El-Habab, A.T., & El-Hossiany, A. (2020). Novel anionic 4-tert-octyl phenol ethoxylate phosphate surfactant as corrosion inhibitor for C-steel in acidic media. Protection of Metals and Physical Chemistry of Surfaces, 56, 189-201. https://doi.org/10.1134/S2070205120010086
Free, M.L. (2002). Understanding the effect of surfactant aggregation on corrosion inhibition of mild steel in acidic medium. Corrosion Science, 44(12), 2865–2870. https://doi.org/10.1016/S0010-938X(02)00080-X
Goldraich, M., Schwartz, J.R., Burns, J.L., & Talmon, Y. (1997). Microstructures formed in a mixed system of a cationic polymer and an anionic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 125(2–3), 231–244. https://doi.org/10.1016/S0927-7757(96)03895-2
Hegazy, M.A. (2015). Novel cationic surfactant based on triazole as a corrosion inhibitor for carbon steel in phosphoric acid produced by dihydrate wet process. Journal of Molecular Liquids, 208, 227-236.https://doi.org/10.1016/j.molliq.2015.04.042
Hosseini, M., Mertens, S.F., & Arshadi, M.R. (2003). Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine. Corrosion Science, 45(7), 1473-1489. https://doi.org/10.1016/s0010-938x(02)00246-9
Jia, H., Lian, P., Leng, X., Han, Y., Wang, Q., Jia, K., ... & Lv, K. (2019). Mechanism studies on the application of the mixed cationic/anionic surfactant systems to enhance oil recovery. Fuel, 258, 116156.https://doi.org/10.1016/j.fuel.2019.116156
Kilo, M., Rahal, H.T., El-Dakdouki, M.H., & Abdel-Gaber, A.M. (2021). Study of the corrosion and inhibition mechanism for carbon steel and zinc alloys by an eco-friendly inhibitor in acidic solution. Chemical Engineering Communications, 208(12), 1676–1685. https://doi.org/10.1080/00986445.2020.1811239
Li, Y., Wang, D., & Zhang, L. (2019). Experimental and theoretical research on a new corrosion inhibitor for effective oil and gas acidification. RSC Advances, 9(45), 26464–26475. https://doi.org/10.1039/c9ra04638k
Loginova, E., Schollbach, K., Proskurnin, M., & Brouwers, H.J.H. (2021). Municipal solid waste incineration bottom ash fines: Transformation into a minor additional constituent for cements. Resources, Conservation and Recycling, 166, 105354. https://doi.org/10.1016/j.resconrec.2020.105354
Lone, B.A., Tabassum, M., Bhushan, A., Rani, D., Dhiman, U., Ahmad, A., ... & Gupta, P. (2023). Trilliumosides K and L, two novel steroidal saponins from rhizomes of Trillium govanianum, as potent anti-cancer agents targeting apoptosis in the A-549 cancer cell line. Frontiers in Chemistry, 11, 1306271.https://doi.org/10.3389/fchem.2023.1306271
Maayta, A.K., & Al-Rawashdeh, N.A.F. (2004). Inhibition of acidic corrosion of pure aluminum by some organic compounds. Corrosion Science, 46(5), 1129–1140. https://doi.org/10.1016/j.corsci.2003.09.009
Malik, M.A., Hashim, M.A., Nabi, F., AL-Thabaiti, S.A., & Khan, Z. (2011). Anti-corrosion ability of surfactants: A review. International Journal of Electrochemical Science, 6(6), 1927–1948. https://doi.org/10.1016/s1452-3981(23)18157-0
Mandal, H.K. (2023). Effect of Microheterogeneous Environments on Reaction Rate: Theoretical Explanation through Different Models. Open Access books http://dx.doi.org/10.5772/intechopen.112532
Mangat, C.K., & Kaur, S. (2015). Effect of pH, salt concentration and chain length of surfactants on the MO removal from water by pyridinium-based gemini surfactant. Desalination and Water Treatment, 54(10), 2739–2747. https://doi.org/10.1080/19443994.2014.906323
Massarweh, O., & Abushaikha, A.S. (2020). The use of surfactants in enhanced oil recovery: A review of recent advances. Energy Reports, 6, 3150–3178. https://doi.org/10.1016/j.egyr.2020.11.009
Migahed, M.A., Azzam, E.M.S., & Al-Sabagh, A.M. (2004). Corrosion inhibition of mild steel in 1 M sulfuric acid solution using anionic surfactant. Materials Chemistry and Physics, 85(2-3), 273-279. https://doi.org/10.1016/j.matchemphys.2003.12.027.
Migahed, M.A., & Al-Sabagh, A.M. (2009). Beneficial role of surfactants as corrosion inhibitors in petroleum industry: A review article. Chemical Engineering Communications, 196(9), 1054–1075. https://doi.org/10.1080/00986440902897095
Mirgorod, Y., Chekadanov, A., & Dolenko, T. (2019). Structure of micelles of sodium dodecyl sulphate in water: An X-ray and dynamic light scattering study. Chemistry Journal of Moldova, 14(1), 107–119. https://doi.org/10.19261/cjm.2019.572
Musa, A.Y., Takriff, M.S., Daud, A.R., & Kamarudin, S.K. (2009). Investigation on Ethylenediaminetetra-Acetic Acid as Corrosion Inhibitor for Mild Steel in 1.0 M Hydrochloric Acid. Modern Applied Science, 3(4), 90-94. https://doi.org/10.5539/mas.v3n4p90
Musso, M., & Holovko, M. (2011). Journal of Molecular Liquids: Editorial. Journal of Molecular Liquids, 159(1), 1. https://doi.org/10.1016/j.molliq.2011.01.017
Negm, N.A., Kandile, N.G., Aiad, I.A., & Mohammad, M.A. (2011). New eco-friendly cationic surfactants: Synthesis, characterization and applicability as corrosion inhibitors for carbon steel in 1 N HCl. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 391(1-3), 224-233. https://doi.org/10.1016/j.colsurfa.2011.09.032
Ning, Z., Zhu, Y., & Free, M.L. (2016). Experimental investigation and modeling of the performance of pure and mixed surfactant inhibitors: Micellization and corrosion inhibition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 489, 407-422.https://doi.org/10.1016/j.colsurfa.2015.11.005
Parekh, P., Varade, D., Parikh, J., & Bahadur, P. (2011). Anionic-cationic mixed surfactant systems: Micellar interaction of sodium dodecyl trioxyethylene sulfate with cationic gemini surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 385(1–3), 111–120. https://doi.org/10.1016/j.colsurfa.2011.05.057
Pon-On, W., Meejoo, S., & Tang, I.M. (2008). Formation of hydroxyapatite crystallites using organic template of polyvinyl alcohol (PVA) and sodium dodecyl sulfate (SDS). Materials Chemistry and Physics, 112(2), 453–460. https://doi.org/10.1016/j.matchemphys.2008.05.082
Prélot, B., & Zemb, T. (2005). Calcium phosphate precipitation in catanionic templates. Materials Science and Engineering C, 25(5–8), 553–559. https://doi.org/10.1016/j.msec.2005.07.008
Pumera, M. (2005). Microchip-based electrochromatography: Designs and applications. Talanta, 66(4), 1048–1062. https://doi.org/10.1016/j.talanta.2005.01.006
Rahal, H.T., Abdel-Gaber, A.M., Al-Oweini, R., & El-Tabesh, R.N. (2024). Corrosion inhibition and adsorption properties of some manganese metal complexes on mild steel in sulfuric acid solutions. International Journal of Corrosion and Scale Inhibition, 13(2), 708–726. https://doi.org/10.17675/2305-6894-2024-13-2-4
Rahal, H.T., Abdel-Gaber, A.M., Awad, R., & Abdel-Naby, B.A. (2018). Influence of nitrogen immersion and NiO nanoparticles on the electrochemical behavior of (Bi, Pb)-2223 superconductor in sodium sulfate solution. Anti-Corrosion Methods and Materials, 65(4), 430–435. https://doi.org/10.1108/ACMM-02-2018-1900
Rahal, H.T., Abdel-Gaber, A.M., Khatib, L.W.E., & El-Housseiny, S. (2023). Evaluation of Fragaria ananassa and Cucurbita pepo L Leaf Extracts as natural green corrosion inhibitors for copper in 0.5 M hydrochloric acid solution. International Journal of Corrosion and Scale Inhibition, 12(4), 1417–1440. https://doi.org/10.17675/2305-6894-2023-12-4-4
Ramezanzadeh, M., Sanaei, Z., Bahlakeh, G., & Ramezanzadeh, B. (2018). Highly effective inhibition of mild steel corrosion in 3.5% NaCl solution by green Nettle leaves extract and synergistic effect of eco-friendly cerium nitrate additive: experimental, MD simulation and QM investigations. Journal of Molecular Liquids, 256, 67-83. https://doi.org/10.1016/j.molliq.2018.02.021
Shaban, S.M., Aiad, I., El-Sukkary, M.M., Soliman, E.A., & El-Awady, M.Y. (2015). Evaluation of some cationic surfactants based on dimethylaminopropylamine as corrosion inhibitors. Journal of Industrial and Engineering Chemistry, 21, 1029-1038. https://doi.org/10.1016/j. jiec.2014.05.012
Shaban, S.M., Elsharif, A.M., Elged, A.H., Eluskkary, M.M., Aiad, I., & Soliman, E.A. (2021). Some new phospho-zwitterionic Gemini surfactants as corrosion inhibitors for carbon steel in 1.0 M HCl solution. Environmental Technology & Innovation, 24, 102051. https:// doi.org/10.1016/j.eti.2021.102051.
Sachin, K.M., Karpe, S.A., Singh, M., & Bhattarai, A. (2019). Self-assembly of sodium dodecylsulfate and dodecyltrimethylammonium bromide mixed surfactants with dyes in aqueous mixtures. Royal Society Open Science, 6(3). https://doi.org/10.1098/rsos.181979
Sah, M.K., Edbey, K., Ettarhouni, Z.O., Bhattarai, A., & Kumar, D. (2024). Conductometric and spectral analyses of dye-surfactant interactions between indigo carmine and N-alkyltrimethylammonium chloride. Journal of Molecular Liquids, 399, 124413. https://doi.org/10.1016/j.molliq.2024.124413
Saulnier, P., Lachaise, J., Morel, G., & Graciaa, A. (1996). Zeta potential of air bubbles in surfactant solutions. Journal of Colloid and Interface Science, 182(2), 395–399. https://doi.org/10.1006/jcis.1996.0479
Shahi, N., Shah, S.K., Singh, S., Yadav, C.K., Yadav, B., Yadav, A.P., & Bhattarai, A. (2024). Comparison of dodecyl trimethyl ammonium bromide (DTAB) and cetylpyridinium chloride (CPC) as corrosion inhibitors for mild steel in sulphuric acid solution. International Journal of Electrochemical Science, 19(5), 100575. https://doi.org/10.1016/j.ijoes.2024.100575
Shalabi, K., Abd El-Lateef, H.M., Hammouda, M.M., & Tantawy, A.H. (2024). Synthesis and evaluation of anticorrosive properties of cationic benzenesulphonamide surfactants on carbon steel under sweet conditions: Empirical and computational investigations. Journal of Molecular Liquids, 415, 126363. https://doi.org/10.1016/j.molliq.2024.126363
Sheokand, B., Pathak, S.R., Mandal, C.K., Gupta, D., Verma, D., Behera, K., ... & Trivedi, S. (2024). Green Corrosion Inhibition: Theory and Practices. In Phytochemistry in Corrosion Science (pp. 1-19). CRC Press.https://doi.org/10.1201/9781003394631-1
Song, H., Xu, Z., Benabou, L., Yin, Z., Guan, H., Yan, H., … Wang, X. (2023). Sodium dodecyl sulfate (SDS) as an effective corrosion inhibitor for Mg-8Li-3Al alloy in aqueous NaCl: A combined experimental and theoretical investigation. Journal of Magnesium and Alloys, 11(1), 287–300. https://doi.org/10.1016/j.jma.2021.07.006
Tan, B., Gong, Z., He, W., Xiong, J., Guo, L., & Marzouki, R. (2024). Insight into the anti-corrosion mechanism of crop waste Arachis hypogaea L. leaf extract for copper in sulfuric acid medium. Sustainable Chemistry and Pharmacy, 38, 101449. https://doi.org/10.1016/j.scp.2024.101449
Wang, E., Dong, J., Cao, Y., Kang, F., Liu, X., Jiang, F., … Kang, K. (2024). Effects of Gd on the microstructure and mechanical properties of GdxCoCrFeNiV0.4 high-entropy alloys. Journal of Materials Research and Technology, 33, 714–724. https://doi.org/10.1016/j.jmrt.2024.09.128
Wang, M., Du, H., Guo, A., Hao, R., & Hou, Z. (2012). Microstructure control in ceramic foams via mixed cationic/anionic surfactant. Materials Letters, 88, 97–100. https://doi.org/10.1016/j.matlet.2012.08.028
White, B., Banerjee, S., O’Brien, S., Turro, N.J., & Herman, I.P. (2007). Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. Journal of Physical Chemistry C, 111(37), 13684–13690. https://doi.org/10.1021/jp070853e
Yadav, C.K., Shahi, N., Adhikari, M.K., Neupane, S., Rakesh, B., Yadav, A.P., & Bhattarai, A. (2024). Effect of cetyl pyridinium chloride on corrosion inhibition of mild steel in acidic medium. International Journal of Electrochemical Science, 19(10), 100776. https://doi.org/10.1016/j.ijoes.2024.100776
Zhu, Y., & Free, M.L. (2015). Evaluation of ion effects on surfactant aggregation from improved molecular thermodynamic modeling. Industrial & Engineering Chemistry Research, 54(36), 9052-9056. https://doi.org/10.1021/acs.iecr.5b02103
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Institute of Science and Technology, T.U.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The views and interpretations in this journal are those of the author(s). They are not attributable to the Institute of Science and Technology, T.U. and do not imply the expression of any opinion concerning the legal status of any country, territory, city, area of its authorities, or concerning the delimitation of its frontiers of boundaries.
The copyright of the articles is held by the Institute of Science and Technology, T.U.