Exploring the Protective Effects of Surfactants against Corrosion: A Comprehensive Review

Authors

DOI:

https://doi.org/10.3126/jist.v29i2.70352

Keywords:

Aggregation, anti-corrosive material, critical micelle concentration, surfactants

Abstract

Corrosion is the spontaneous chemical or electrochemical reaction of metal with its surrounding environment. There have been ongoing worries about how corrosion affects the strength and stability of metal surfaces. Chemical corrosion inhibitors are often used in manufacturing and processing activities to prevent the deterioration of materials. Surfactants are a highly affordable, readily available, and environmentally friendly choice for corrosion inhibitors. This article outlines surfactants' capacity to prevent corrosion on various metal surfaces. The properties of multiple surfactants and their possible applications for corrosion inhibitors have also been discussed. This review article also explores additional factors, such as how varying levels of surfactants contribute to the mechanisms behind corrosion inhibition.

Downloads

Download data is not yet available.
Abstract
68
PDF
39

References

Abdel-Gaber, A.M., Rahal, H.T., & Beqai, F.T. (2020). Eucalyptus leaf extract as a eco-friendly corrosion inhibitor for mild steel in sulfuric and phosphoric acid solutions. International Journal of Industrial Chemistry, 11(2), 123–132. https://doi.org/10.1007/s40090-020-00207-z

Abdel-Gaber, A.M., Rahal, H.T., Thebian, N., & Younes, G. (2024). Experimental and Theoretical Chemical Studies of Linalool and Caffeine as Corrosion Inhibitors for Mild Steel in Sulfuric Acid Solutions. Biointerface Research in Applied Chemistry,14(1), 3. https://doi.org/10.33263/BRIAC141.003

Alagta, A., Felhösi, I., Bertoti, I., & Kálmán, E. (2008). Corrosion protection properties of hydroxamic acid self-assembled monolayer on carbon steel. Corrosion Science, 50(6), 1644–1649. https://doi.org/10.1016/j.corsci.2008.02.008

Al‐Rawashdeh, N.A.F., & Maayta, A.K. (2005). Cationic surfactant as corrosion inhibitor for aluminum in acidic and basic solutions. Anti-Corrosion Methods and Materials, 52(3), 160-166. https://doi.org/10.1108/00035590510595157

Aslam, R., Mobin, M., Aslam, J., Aslam, A., Zehra, S., & Masroor, S. (2021). Application of surfactants as anticorrosive materials: A comprehensive review. Advances in Colloid and Interface Science, 295, 102481.https://doi.org/10.1016/j.cis.2021.102481

Assem, R., Fouda, A.S., Ibrahim, A.A., & Saadawy, M. (2018). Some anionic surfactants as corrosion inhibitors for carbon steel in hydrochloric acid solution. Key Engineering Materials, 786, 134-148. https://doi.org/10.4028/www.scientific.net/KEM.786.134

Bashir, S., Singh, G., & Kumar, A. (2017). Shatavari (Asparagus Racemosus) as green corrosion inhibitor of aluminium in acidic medium. Journal of Materials and Environmental Science, 8(12), 4284–4291. https://doi.org/10.26872/jmes.2017.8.12.451

Belhaj, A.F., Elraies, K.A., Mahmood, S.M., Zulkifli, N.N., Akbari, S., & Hussien, O.S.E. (2020). The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review. Journal of Petroleum Exploration and Production Technology, 10(1), 125–137. https://doi.org/10.1007/s13202-019-0685-y

Bijapur, K., Molahalli, V., Shetty, A., Toghan, A., De Padova, P., & Hegde, G. (2023). Recent Trends and Progress in Corrosion Inhibitors and Electrochemical Evaluation. Applied Sciences, 13(18), 10107. https://doi.org/10.3390/app131810107

Bentiss, F., Jama, C., Mernari, B., Attari, H. El, Kadi, L. El, Lebrini, M., … Lagrenée, M. (2009). Corrosion control of mild steel using 3,5-bis(4-methoxyphenyl)-4-amino-1,2,4-triazole in normal hydrochloric acid medium. Corrosion Science, 51(8), 1628–1635. https://doi.org/10.1016/j.corsci.2009.04.009

Brycki, B., & Szulc, A. (2021). Gemini surfactants as corrosion inhibitors. A review. Journal of Molecular Liquids, 344, 117686.https://doi.org/10.1016/j.molliq.2021.117686

Cacua, K., Ordoñez, F., Zapata, C., Herrera, B., Pabón, E., & Buitrago-Sierra, R. (2019). Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583, 123960.https://doi.org/10.1016/j.colsurfa.2019.123960

del Río, J.M.L., López, E.R., & Fernández, J. (2024). Tribological behavior of electric vehicle transmission oils using Al2O3 nanoadditives. Journal of Molecular Liquids, 397, 124036. https://doi.org/10.1016/j.molliq.2024.124036

D’Souza, R., Nithin, T.P., & Sirisha, N. (2015). Review of Action of Cationic and Anionic Surfactants on Corrosion Inhibition of Steel in Acidic Medium. International Journal of Advance Research In Science And Engineering, 4(2), 69–76.

El Sayed, M.Y., Abdel-Gaber, A.M., & Rahal, H.T. (2019). Safranin—A Potential Corrosion Inhibitor for Mild Steel in Acidic Media: A Combined Experimental and Theoretical Approach. Journal of Failure Analysis and Prevention, 19(4), 1174–1180. https://doi.org/10.1007/s11668-019-00719-6

Elewady, G.Y., El-Said, I.A., & Fouda, A.S. (2008). Anion surfactants as corrosion inhibitors for aluminum dissolution in HCl solutions. International Journal of Electrochemical Science, 3(2), 177-190.https://doi.org/10.1016/S1452-3981(23)15437-X.

Farahmand, R., Sohrabi, B., Ghaffarinejad, A., & Meymian, M.R.Z. (2018). Synergistic effect of molybdenum coating and SDS surfactant on corrosion inhibition of mild steel in presence of 3.5% NaCl. Corrosion Science, 136, 393-401. https://doi.org/ 10.1016/j.corsci.2018.03.030.

Fayomi, O.S.I., Popoola, A.P.I., Oloruntoba, T., & Ayoola, A.A. (2017). Inhibitive characteristics of cetylpyridinium chloride and potassium chromate addition on type A513 mild steel in acid/chloride media. Cogent Engineering, 4(1), 1–9. https://doi.org/10.1080/23311916.2017.1318736

Fouda, A.S., El-Ghaffar, M.A.A., Sherif, M.H., El-Habab, A.T., & El-Hossiany, A. (2020). Novel anionic 4-tert-octyl phenol ethoxylate phosphate surfactant as corrosion inhibitor for C-steel in acidic media. Protection of Metals and Physical Chemistry of Surfaces, 56, 189-201. https://doi.org/10.1134/S2070205120010086

Free, M.L. (2002). Understanding the effect of surfactant aggregation on corrosion inhibition of mild steel in acidic medium. Corrosion Science, 44(12), 2865–2870. https://doi.org/10.1016/S0010-938X(02)00080-X

Goldraich, M., Schwartz, J.R., Burns, J.L., & Talmon, Y. (1997). Microstructures formed in a mixed system of a cationic polymer and an anionic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 125(2–3), 231–244. https://doi.org/10.1016/S0927-7757(96)03895-2

Hegazy, M.A. (2015). Novel cationic surfactant based on triazole as a corrosion inhibitor for carbon steel in phosphoric acid produced by dihydrate wet process. Journal of Molecular Liquids, 208, 227-236.https://doi.org/10.1016/j.molliq.2015.04.042

Hosseini, M., Mertens, S.F., & Arshadi, M.R. (2003). Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine. Corrosion Science, 45(7), 1473-1489. https://doi.org/10.1016/s0010-938x(02)00246-9

Jia, H., Lian, P., Leng, X., Han, Y., Wang, Q., Jia, K., ... & Lv, K. (2019). Mechanism studies on the application of the mixed cationic/anionic surfactant systems to enhance oil recovery. Fuel, 258, 116156.https://doi.org/10.1016/j.fuel.2019.116156

Kilo, M., Rahal, H.T., El-Dakdouki, M.H., & Abdel-Gaber, A.M. (2021). Study of the corrosion and inhibition mechanism for carbon steel and zinc alloys by an eco-friendly inhibitor in acidic solution. Chemical Engineering Communications, 208(12), 1676–1685. https://doi.org/10.1080/00986445.2020.1811239

Li, Y., Wang, D., & Zhang, L. (2019). Experimental and theoretical research on a new corrosion inhibitor for effective oil and gas acidification. RSC Advances, 9(45), 26464–26475. https://doi.org/10.1039/c9ra04638k

Loginova, E., Schollbach, K., Proskurnin, M., & Brouwers, H.J.H. (2021). Municipal solid waste incineration bottom ash fines: Transformation into a minor additional constituent for cements. Resources, Conservation and Recycling, 166, 105354. https://doi.org/10.1016/j.resconrec.2020.105354

Lone, B.A., Tabassum, M., Bhushan, A., Rani, D., Dhiman, U., Ahmad, A., ... & Gupta, P. (2023). Trilliumosides K and L, two novel steroidal saponins from rhizomes of Trillium govanianum, as potent anti-cancer agents targeting apoptosis in the A-549 cancer cell line. Frontiers in Chemistry, 11, 1306271.https://doi.org/10.3389/fchem.2023.1306271

Maayta, A.K., & Al-Rawashdeh, N.A.F. (2004). Inhibition of acidic corrosion of pure aluminum by some organic compounds. Corrosion Science, 46(5), 1129–1140. https://doi.org/10.1016/j.corsci.2003.09.009

Malik, M.A., Hashim, M.A., Nabi, F., AL-Thabaiti, S.A., & Khan, Z. (2011). Anti-corrosion ability of surfactants: A review. International Journal of Electrochemical Science, 6(6), 1927–1948. https://doi.org/10.1016/s1452-3981(23)18157-0

Mandal, H.K. (2023). Effect of Microheterogeneous Environments on Reaction Rate: Theoretical Explanation through Different Models. Open Access books http://dx.doi.org/10.5772/intechopen.112532

Mangat, C.K., & Kaur, S. (2015). Effect of pH, salt concentration and chain length of surfactants on the MO removal from water by pyridinium-based gemini surfactant. Desalination and Water Treatment, 54(10), 2739–2747. https://doi.org/10.1080/19443994.2014.906323

Massarweh, O., & Abushaikha, A.S. (2020). The use of surfactants in enhanced oil recovery: A review of recent advances. Energy Reports, 6, 3150–3178. https://doi.org/10.1016/j.egyr.2020.11.009

Migahed, M.A., Azzam, E.M.S., & Al-Sabagh, A.M. (2004). Corrosion inhibition of mild steel in 1 M sulfuric acid solution using anionic surfactant. Materials Chemistry and Physics, 85(2-3), 273-279. https://doi.org/10.1016/j.matchemphys.2003.12.027.

Migahed, M.A., & Al-Sabagh, A.M. (2009). Beneficial role of surfactants as corrosion inhibitors in petroleum industry: A review article. Chemical Engineering Communications, 196(9), 1054–1075. https://doi.org/10.1080/00986440902897095

Mirgorod, Y., Chekadanov, A., & Dolenko, T. (2019). Structure of micelles of sodium dodecyl sulphate in water: An X-ray and dynamic light scattering study. Chemistry Journal of Moldova, 14(1), 107–119. https://doi.org/10.19261/cjm.2019.572

Musa, A.Y., Takriff, M.S., Daud, A.R., & Kamarudin, S.K. (2009). Investigation on Ethylenediaminetetra-Acetic Acid as Corrosion Inhibitor for Mild Steel in 1.0 M Hydrochloric Acid. Modern Applied Science, 3(4), 90-94. https://doi.org/10.5539/mas.v3n4p90

Musso, M., & Holovko, M. (2011). Journal of Molecular Liquids: Editorial. Journal of Molecular Liquids, 159(1), 1. https://doi.org/10.1016/j.molliq.2011.01.017

Negm, N.A., Kandile, N.G., Aiad, I.A., & Mohammad, M.A. (2011). New eco-friendly cationic surfactants: Synthesis, characterization and applicability as corrosion inhibitors for carbon steel in 1 N HCl. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 391(1-3), 224-233. https://doi.org/10.1016/j.colsurfa.2011.09.032

Ning, Z., Zhu, Y., & Free, M.L. (2016). Experimental investigation and modeling of the performance of pure and mixed surfactant inhibitors: Micellization and corrosion inhibition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 489, 407-422.https://doi.org/10.1016/j.colsurfa.2015.11.005

Parekh, P., Varade, D., Parikh, J., & Bahadur, P. (2011). Anionic-cationic mixed surfactant systems: Micellar interaction of sodium dodecyl trioxyethylene sulfate with cationic gemini surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 385(1–3), 111–120. https://doi.org/10.1016/j.colsurfa.2011.05.057

Pon-On, W., Meejoo, S., & Tang, I.M. (2008). Formation of hydroxyapatite crystallites using organic template of polyvinyl alcohol (PVA) and sodium dodecyl sulfate (SDS). Materials Chemistry and Physics, 112(2), 453–460. https://doi.org/10.1016/j.matchemphys.2008.05.082

Prélot, B., & Zemb, T. (2005). Calcium phosphate precipitation in catanionic templates. Materials Science and Engineering C, 25(5–8), 553–559. https://doi.org/10.1016/j.msec.2005.07.008

Pumera, M. (2005). Microchip-based electrochromatography: Designs and applications. Talanta, 66(4), 1048–1062. https://doi.org/10.1016/j.talanta.2005.01.006

Rahal, H.T., Abdel-Gaber, A.M., Al-Oweini, R., & El-Tabesh, R.N. (2024). Corrosion inhibition and adsorption properties of some manganese metal complexes on mild steel in sulfuric acid solutions. International Journal of Corrosion and Scale Inhibition, 13(2), 708–726. https://doi.org/10.17675/2305-6894-2024-13-2-4

Rahal, H.T., Abdel-Gaber, A.M., Awad, R., & Abdel-Naby, B.A. (2018). Influence of nitrogen immersion and NiO nanoparticles on the electrochemical behavior of (Bi, Pb)-2223 superconductor in sodium sulfate solution. Anti-Corrosion Methods and Materials, 65(4), 430–435. https://doi.org/10.1108/ACMM-02-2018-1900

Rahal, H.T., Abdel-Gaber, A.M., Khatib, L.W.E., & El-Housseiny, S. (2023). Evaluation of Fragaria ananassa and Cucurbita pepo L Leaf Extracts as natural green corrosion inhibitors for copper in 0.5 M hydrochloric acid solution. International Journal of Corrosion and Scale Inhibition, 12(4), 1417–1440. https://doi.org/10.17675/2305-6894-2023-12-4-4

Ramezanzadeh, M., Sanaei, Z., Bahlakeh, G., & Ramezanzadeh, B. (2018). Highly effective inhibition of mild steel corrosion in 3.5% NaCl solution by green Nettle leaves extract and synergistic effect of eco-friendly cerium nitrate additive: experimental, MD simulation and QM investigations. Journal of Molecular Liquids, 256, 67-83. https://doi.org/10.1016/j.molliq.2018.02.021

Shaban, S.M., Aiad, I., El-Sukkary, M.M., Soliman, E.A., & El-Awady, M.Y. (2015). Evaluation of some cationic surfactants based on dimethylaminopropylamine as corrosion inhibitors. Journal of Industrial and Engineering Chemistry, 21, 1029-1038. https://doi.org/10.1016/j. jiec.2014.05.012

Shaban, S.M., Elsharif, A.M., Elged, A.H., Eluskkary, M.M., Aiad, I., & Soliman, E.A. (2021). Some new phospho-zwitterionic Gemini surfactants as corrosion inhibitors for carbon steel in 1.0 M HCl solution. Environmental Technology & Innovation, 24, 102051. https:// doi.org/10.1016/j.eti.2021.102051.

Sachin, K.M., Karpe, S.A., Singh, M., & Bhattarai, A. (2019). Self-assembly of sodium dodecylsulfate and dodecyltrimethylammonium bromide mixed surfactants with dyes in aqueous mixtures. Royal Society Open Science, 6(3). https://doi.org/10.1098/rsos.181979

Sah, M.K., Edbey, K., Ettarhouni, Z.O., Bhattarai, A., & Kumar, D. (2024). Conductometric and spectral analyses of dye-surfactant interactions between indigo carmine and N-alkyltrimethylammonium chloride. Journal of Molecular Liquids, 399, 124413. https://doi.org/10.1016/j.molliq.2024.124413

Saulnier, P., Lachaise, J., Morel, G., & Graciaa, A. (1996). Zeta potential of air bubbles in surfactant solutions. Journal of Colloid and Interface Science, 182(2), 395–399. https://doi.org/10.1006/jcis.1996.0479

Shahi, N., Shah, S.K., Singh, S., Yadav, C.K., Yadav, B., Yadav, A.P., & Bhattarai, A. (2024). Comparison of dodecyl trimethyl ammonium bromide (DTAB) and cetylpyridinium chloride (CPC) as corrosion inhibitors for mild steel in sulphuric acid solution. International Journal of Electrochemical Science, 19(5), 100575. https://doi.org/10.1016/j.ijoes.2024.100575

Shalabi, K., Abd El-Lateef, H.M., Hammouda, M.M., & Tantawy, A.H. (2024). Synthesis and evaluation of anticorrosive properties of cationic benzenesulphonamide surfactants on carbon steel under sweet conditions: Empirical and computational investigations. Journal of Molecular Liquids, 415, 126363. https://doi.org/10.1016/j.molliq.2024.126363

Sheokand, B., Pathak, S.R., Mandal, C.K., Gupta, D., Verma, D., Behera, K., ... & Trivedi, S. (2024). Green Corrosion Inhibition: Theory and Practices. In Phytochemistry in Corrosion Science (pp. 1-19). CRC Press.https://doi.org/10.1201/9781003394631-1

Song, H., Xu, Z., Benabou, L., Yin, Z., Guan, H., Yan, H., … Wang, X. (2023). Sodium dodecyl sulfate (SDS) as an effective corrosion inhibitor for Mg-8Li-3Al alloy in aqueous NaCl: A combined experimental and theoretical investigation. Journal of Magnesium and Alloys, 11(1), 287–300. https://doi.org/10.1016/j.jma.2021.07.006

Tan, B., Gong, Z., He, W., Xiong, J., Guo, L., & Marzouki, R. (2024). Insight into the anti-corrosion mechanism of crop waste Arachis hypogaea L. leaf extract for copper in sulfuric acid medium. Sustainable Chemistry and Pharmacy, 38, 101449. https://doi.org/10.1016/j.scp.2024.101449

Wang, E., Dong, J., Cao, Y., Kang, F., Liu, X., Jiang, F., … Kang, K. (2024). Effects of Gd on the microstructure and mechanical properties of GdxCoCrFeNiV0.4 high-entropy alloys. Journal of Materials Research and Technology, 33, 714–724. https://doi.org/10.1016/j.jmrt.2024.09.128

Wang, M., Du, H., Guo, A., Hao, R., & Hou, Z. (2012). Microstructure control in ceramic foams via mixed cationic/anionic surfactant. Materials Letters, 88, 97–100. https://doi.org/10.1016/j.matlet.2012.08.028

White, B., Banerjee, S., O’Brien, S., Turro, N.J., & Herman, I.P. (2007). Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. Journal of Physical Chemistry C, 111(37), 13684–13690. https://doi.org/10.1021/jp070853e

Yadav, C.K., Shahi, N., Adhikari, M.K., Neupane, S., Rakesh, B., Yadav, A.P., & Bhattarai, A. (2024). Effect of cetyl pyridinium chloride on corrosion inhibition of mild steel in acidic medium. International Journal of Electrochemical Science, 19(10), 100776. https://doi.org/10.1016/j.ijoes.2024.100776

Zhu, Y., & Free, M.L. (2015). Evaluation of ion effects on surfactant aggregation from improved molecular thermodynamic modeling. Industrial & Engineering Chemistry Research, 54(36), 9052-9056. https://doi.org/10.1021/acs.iecr.5b02103

Downloads

Published

2024-12-31

How to Cite

Adhikari, M. K., Yadav, C. K., Chaudhary, S., Yadav, A. P., & Bhattarai, A. (2024). Exploring the Protective Effects of Surfactants against Corrosion: A Comprehensive Review. Journal of Institute of Science and Technology, 29(2), 159–174. https://doi.org/10.3126/jist.v29i2.70352

Issue

Section

Review Articles