Conformational Analysis with Elucidation on Molecular Structure, Electronic Properties, and Reactivity of the Nitroglycerin from DFT

Authors

  • Tirth Raj Paneru Department of General Science, Far Western University, Kanchanpur, 10400, Nepal; Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu, Nepal
  • Poonam Tandon Department of Physics, University of Lucknow, Lucknow-226007, India https://orcid.org/0000-0002-8120-0498
  • Bhawani Datt Joshi Department of Physics, Siddhanath Science Campus, Tribhuvan University, Mahendranagar, 10406, Nepal https://orcid.org/0000-0003-3276-9319

DOI:

https://doi.org/10.3126/jist.v29i2.70127

Keywords:

DOS spectrum, electrostatic potential, nitroglycerin, thermodynamic, UV-Vis spectra

Abstract

This work involved the use of a one-dimensional potential energy surface scan to investigate the most stable conformer of nitroglycerin through conformational analysis. The goal of this work is to perform a quantum chemical calculation using density functional theory to gain insight onto molecular structure, reactivity, and electronic properties with the most stable structure. The most stable conformer of nitroglycerin was investigated, and its geometrical parameters were compared with experimental values. Non-covalent interaction was also performed, which illustrates the various intra-molecular interactions. The reactive sites were predicted using electrostatic potential surface analysis, with H16 as the best electrophile and N11 as a nucleophile, indicating the location of intermolecular interaction for biological action and crystal packing. The energy gap in the solvent ethanol was determined to be 6.628 eV, while in the gaseous medium; it was 6.684 eV, indicating that nitroglycerin is more reactive and polarizable in the solvent ethanol. A blue shift in the absorption wavelength of UV-Vis spectra was observed by employing time dependent density functional theory with a polarized continuum model in solvent ethanol. The hyperconjugative interactions π(O4-N10)→σ*(O5-N10), σ(O5-N10)→π*(O4-N10), LP(3)O8→σ*(O6-N11), and LP(3)O9→π*(O7-N12) have higher stabilization energy and are crucial to stabilizing the molecule.

Downloads

Download data is not yet available.
Abstract
0
PDF
0

References

Antipin, M.Y., Struchkov, Y.T., Philippov, V.A., Tsirel’Son, V.G., Ozerov, R.P., & Svetlov, B.S. (1984). Structure of 1,2,3-propanetriol trinitrate (β Modification), C3H5N309. Acta crystallography, C40, 2096-2098

Becke, A.D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 7. https://doi.org/10.1063/1.464913

Chaudhary, M.K., Karthick, T., Joshi, B.D., Prajapati, P., De Santana, M.S.A., Ayala, A.P., Reeda, V.S.J., & Tandon, P. (2021). Molecular structure and quantum descriptors of cefradine by using vibrational spectroscopy (IR and Raman), NBO, AIM, chemical reactivity and molecular docking. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 246, 118976. https://doi.org/10.1016/j.saa.2020.118976

Chaudhary, M.K., Prajapati, P., & Joshi, B.D. (2020). Quantum chemical calculation and DFT study of sitagliptin: Insight from computational evaluation and docking approach. Journal of Nepal Physical Society, 6(1), 73–83. https://doi.org/10.3126/jnphyssoc.v6i1.30553

Chaudhary, M.K., Srivastava, A., Singh, K.K., Tandon, P., & Joshi, B.D. (2020). Computational evaluation on molecular stability, reactivity, and drug potential of frovatriptan from DFT and molecular docking approach. Computational and Theoretical Chemistry, 1191, 113031. https://doi.org/10.1016/j.comptc.2020.113031

Chaudhary, T., Chaudhary, M.K., & Joshi, B.D. (2021). Topological and reactivity descriptor of carisoprodol from DFT and molecular docking approach. Journal of Institute of Science and Technology, 26(1), 74–82. https://doi.org/10.3126/jist.v26i1.37828

Chaudhary, T., Chaudhary, M.K., & Joshi, B.D. (2022). A Theoretical study on charge transfer and hyperpolarizability of (S)-2-amino-3-(3,4-dihydroxyphenyl)-2-methyl-propanoic acid. Journal of Nepal Physical Society, 8(1), 16–21. https://doi.org/10.3126/jnphyssoc.v8i1.48280

Chaudhary, T., & Joshi, B.D. (2022). Electronic, thermodynamic properties, nonlinear optical responses, and molecular docking studies on dephalexin. Journal of Institute of Science and Technology, 27(1), 83–92. https://doi.org/10.3126/jist.v27i1.46361

Chen, Z., Zhang, J., & Stamler, J.S. (2002). Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proceedings of the National Academy of Sciences, 99(12), 8306–8311. https://doi.org/10.1073/pnas.122225199

Cossi, M., Scalmani, G., Rega, N., & Barone, V. (2002). New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. The Journal of Chemical Physics, 117(1), 43–54. https://doi.org/10.1063/1.1480445

Dennington, R., Keith, T.A., Millam, John, M., (2016) GaussView 06 Semichem Inc. Shawnee Mission, KS .

Dunning, T.H. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. The Journal of Chemical Physics, 90(2), 2. https://doi.org/10.1063/1.456153

Fathima Rizwana, B., Prasana, J.C., Muthu, S., & Abraham, C.S. (2019). Molecular docking studies, charge transfer excitation and wave function analyses (ESP, ELF, LOL) on valacyclovir: A potential antiviral drug. Computational Biology and Chemistry, 78, 9–17. https://doi.org/10.1016/j.compbiolchem.2018.11.014

Ferreira, J.C.B., & Mochly-Rosen, D. (2012). Nitroglycerin use in myocardial infarction patients risks and benefits. Circulation Journal, 76(1), 15–21. https://doi.org/10.1253/circj.CJ-11-1133

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., & Fox, D.J. (2016). Gaussian 16 Revision.

Glendening, E.D., Reed, A.E., Carpenter, J.E., & Weinhold, F. (2003). NBO 3.1 Gaussian Inc., Pittsburg.

Gong, X.D., & Xiao, H.M. (2001). Studies on the molecular structures, vibrational spectra and thermodynamic properties of organic nitrates using density functional theory and ab initio methods. Journal of Molecular Structure: THEOCHEM, 572(1–3), 213–221. https://doi.org/10.1016/S0166-1280(01)00633-9

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136(3B), B864-B871. https://doi.org/10.1103/PhysRev.136.B864.

Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 1. https://doi.org/10.1016/0263-7855(96)00018-5

Jia, Z., Pang, H., Li, H., & Wang, X. (2019). A density functional theory study on complexation processes and intermolecular interactions of triptycene-derived oxacalixarenes. Theoretical Chemistry Accounts, 138(9), 113. https://doi.org/10.1007/s00214-019-2502-6

Johnson, E.R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A.J., & Yang, W. (2010). Revealing Noncovalent Interactions. Journal of the American Chemical Society, 132(18), 18. https://doi.org/10.1021/ja100936w

Joshi, B.D. (2016). Chemical reactivity, dipole moment and first hyperpolarizability of aristolochic acid I. Journal of Institute of Science and Technology, 21(1), 1–9. https://doi.org/10.3126/jist.v21i1.16030

Joshi, B.D., Mishra, R., Tandon, P., Oliveira, A.C., & Ayala, A.P. (2014). Quantum chemical studies of structural, vibrational, NBO and hyperpolarizability of ondansetron hydrochloride. Journal of Molecular Structure, 1058, 31–40. https://doi.org/10.1016/j.molstruc.2013.10.062

Joshi, B.D., Srivastava, A., Tandon, P., & Jain, S. (2011). Molecular structure, vibrational spectra and HOMO, LUMO analysis of yohimbine hydrochloride by density functional theory and ab initio Hartree–Fock calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 82(1), 1. https://doi.org/10.1016/j.saa.2011.07.047

Koopmans, T. (1934). Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica, 1(1–6), 104-113. https://doi.org/10.1016/S0031-8914(34)90011-2

Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 5. https://doi.org/10.1002/jcc.22885

Marsh, N., & Marsh, A. (2000). A short history of nitroglycerin and nitric oxide in pharmacology and physiology. Clinical and Experimental Pharmacology and Physiology, 27(4), 313–319. https://doi.org/10.1046/j.1440-1681.2000.03240.x

Meenakshi, R., Jaganathan, L., Gunasekaran, S., & Srinivasan, S. (2012). Molecular structure and vibrational spectroscopic investigation of nitroglycerin using DFT calculations. Molecular Simulation, 38(3), 204–210. https://doi.org/10.1080/08927022.2011.614240

Meenakshi, R., Jagannathan, L., Gunasekaran, S., & Srinivasan, S. (2010). FT-IR, FT-Raman and UV-Vis spectra and quantum chemical investigation of trimetazidine. Molecular Simulation, 36(12), 969–977. https://doi.org/10.1080/08927022.2010.497925

Miar, M., Shiroudi, A., Pourshamsian, K., Oliaey, A.R., & Hatamjafari, F. (2021). Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo ]thiazole-2(3 H )-imine and its para -substituted derivatives: Solvent and substituent effects. Journal of Chemical Research, 45(1–2), 1–2. https://doi.org/10.1177/1747519820932091

Moazemi, K., Chana, J.S., Willard, A.M., & Kocheril, A.G. (2003). Intravenous vasodilator therapy in congestive heart failure: Drugs & Aging, 20(7), 485–508. https://doi.org/10.2165/00002512-200320070-00002

Mulliken, R.S. (1955). Electronic population analysis on LCAO–MO molecular wave functions I. The Journal of Chemical Physics, 23(10), 1833–1840. https://doi.org/10.1063/1.1740588

Nakahama, M., Katoh, K., Kawaguchi, S., Kubota, S., Wada, Y., Ogata, Y., & Arai, M. (2007). Study on the thermal behavior of nitroglycerine. Science and Technology of Energetic Materials, 68(1), 21-24.

O’boyle, N.M., Tenderholt, A.L., & Langner, K.M. (2008). cclib: A library for package‐independent computational chemistry algorithms. Journal of Computational Chemistry, 29(5), 839–845. https://doi.org/10.1002/jcc.20823

Paneru, T.R., Chaudhary, M.K., Tandon, P., & Joshi, B.D. (2024). Cocrystal screening of benznidazole based on electronic transition, molecular reactivity, hydrogen bonding, and stability.Journal of molecular modeling, https://doi.org/10.1007/s00894-024-06146-1

Paneru, T.R., Chaudhary, M.K., Tandon, P., Chaudhary, T., & Joshi, B.D. (2024). Theoretical study on molecular stability, reactivity, and drug potential of cirsilineol from DFT and molecular docking methods. Chemical Physics Impact, 8, 100641. https://doi.org/10.1016/j.chphi.2024.100641

Parr, R.G., & Pearson, R.G. (1983). Absolute hardness: Companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105(26), 7512-7516. https://doi.org/10.1021/ja00364a005.

Parr, R.G., Szentpály, L.V., & Liu, S. (1999). Electrophilicity Index. Journal of the American Chemical Society, 121(9), 9. https://doi.org/10.1021/ja983494x

Pei, L., Dong, K., Tang, Y., Zhang, B., Yu, C., & Li, W. (2017). A density functional theory study of the decomposition mechanism of nitroglycerin. Journal of Molecular Modeling, 23(9), 269. https://doi.org/10.1007/s00894-017-3440-7

Sebastian, S., & Sundaraganesan, N. (2010). The spectroscopic (FT-IR, FT-IR gas phase, FT-Raman and UV) and NBO analysis of 4-Hydroxypiperidine by density functional method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(3), 3. https://doi.org/10.1016/j.saa.2009.11.030

Sidhu, M., Boden, W.E., Padala, S.K., Cabral, K., & Buschmann, I. (2015). Role of short-acting nitroglycerin in the management of ischemic heart disease. Drug Design, Development and Therapy, 4793. https://doi.org/10.2147/DDDT.S79116

Sirajuddin, M., Ali, S., & Badshah, A. (2013). Drug–DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry. Journal of Photochemistry and Photobiology B: Biology, 124, 1–19. https://doi.org/10.1016/j.jphotobiol.2013.03.013

Stratmann, R.E., Scuseria, G.E., & Frisch, M.J. (1998). An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. The Journal of Chemical Physics, 109(19), 8218–8224. https://doi.org/10.1063/1.477483

Waring, C.E., & Krastins, G. (1970). Kinetics and mechanism of the thermal decomposition of nitroglycerin. The Journal of Physical Chemistry, 74(5), 999–1006. https://doi.org/10.1021/j100700a007

Weinhold, F., & Landis, C.R. (2005). Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective. Cambridge University Press.

Yan, Q., Zhu, W., Pang, A., Chi, X., Du, X., & Xiao, H. (2013). Theoretical studies on the unimolecular decomposition of nitroglycerin. Journal of Molecular Modeling, 19(4), 1617–1626. https://doi.org/10.1007/s00894-012-1724-5

Downloads

Published

2024-12-23

How to Cite

Paneru, T. R., Tandon, P., & Joshi, B. D. (2024). Conformational Analysis with Elucidation on Molecular Structure, Electronic Properties, and Reactivity of the Nitroglycerin from DFT . Journal of Institute of Science and Technology, 29(2), 117–128. https://doi.org/10.3126/jist.v29i2.70127

Issue

Section

Research Articles