Molecular Insights into CO2 Sequestration in MOF-74
DOI:
https://doi.org/10.3126/jist.v29i2.66020Keywords:
Diffusion, interaction energy, metal organic frameworks, molecular dynamics, sequestrationAbstract
Advancements in materials for efficient carbon sequestration are crucial in addressing the rising levels of CO₂. Metal Organic Frameworks (MOFs) have emerged as a key focus due to their high CO₂ absorption capacity and versatility. This study focuses on evaluating the equilibrium CO₂ adsorption properties of Mg-MOF-74 using hybrid MD / GCMC simulation in LAMMPS. The simulations were conducted at a temperature of 313 K with pressure variations ranging from 1 to 40 bar. The resulting CO₂ uptake was 10.185 mmol/g even at a low pressure of 1 bar. As pressure increases, CO₂ adsorption steadily rises, reaching 12.810 mmol/g at 40 bar. The Radial Distribution Function (RDF) analysis of CO₂ molecules within Mg-MOF-74 clarified the significant role of ligands in CO₂ adsorption. The observed decrease in the diffusion coefficient with increasing pressure suggests slower diffusion and indicates a strong interaction between CO₂ and the MOF at higher pressures. Moreover, the increasingly negative trend of interaction energy with rising pressure indicates enhanced adsorption at higher pressures, with van der Waals interactions contributing predominantly to the total interaction energy between adsorbate and adsorbent. This research sheds light on the potential of Mg-MOF-74 as an effective material for CO₂ capture and sequestration.
Downloads
References
Adhikari, D., Karki, R., Adhikari, K., & Pantha, N. (2024). First-Principles Study on the Selective Separation of Toxic Gases by Mg-MOF-74. ACS Omega.
Bae, Y.-S., & Snurr, R.Q. (2011). Development and evaluation of porous materials for carbon dioxide separation and capture. Angewandte Chemie International Edition, 50(49), 11586–11596.
Bao, Z., Yu, L., Ren, Q., Lu, X., & Deng, S. (2011). Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. Journal of Colloid and Interface Science, 353(2), 549–556.
Barpaga, D., Nguyen, V.T., Medasani, B.K., Chatterjee, S., McGrail, B.P., Motkuri, R.K., & Dang, L.X. (2019). Insight into Fluorocarbon Adsorption in Metal-Organic Frameworks via Experiments and Molecular Simulations. Scientific Reports, 9(1), 10289. https://doi.org/10.1038/s41598-019-46269-7
Birdi, K. (2019). Surface chemistry of carbon capture: Climate change aspects. CRC Press.
IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, 184 pp., doi: 10.59327/IPCC/AR6-9789291691647.
Díaz, E., Munoz, E., Vega, A., & Ordonez, S. (2008). Enhancement of the CO2 retention capacity of Y zeolites by Na and Cs treatments: Effect of adsorption temperature and water treatment. Industrial & Engineering Chemistry Research, 47(2), 412–418.
Ding, M., Flaig, R.W., Jiang, H.-L., & Yaghi, O.M. (2019). Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 48(10), 2783–2828.
Du, Z., Nie, X., Deng, S., Zhao, L., Li, S., Zhang, Y., & Zhao, J. (2020). Comparative analysis of calculation method of adsorption isosteric heat: Case study of CO2 capture using MOFs. Microporous and Mesoporous Materials, 298, 110053. https://doi.org/10.1016/j.micromeso.2020.110053
Elhenawy, S.E.M., Khraisheh, M., AlMomani, F., & Walker, G. (2020). Metal-organic frameworks as a platform for CO2 capture and chemical processes: Adsorption, membrane separation, catalytic-conversion, and electrochemical reduction of CO2. Catalysts, 10(11), 1293.
Elsaidi, S.K., Mohamed, M.H., Banerjee, D., & Thallapally, P.K. (2018). Flexibility in metal–organic frameworks: A fundamental understanding. Coordination Chemistry Reviews, 358, 125–152.
Herm, Z.R., Swisher, J.A., Smit, B., Krishna, R., & Long, J.R. (2011). Metal−Organic Frameworks as Adsorbents for Hydrogen Purification and Precombustion Carbon Dioxide Capture. Journal of the American Chemical Society, 133(15), 5664–5667. https://doi.org/10.1021/ja111411q
Hollingsworth, S.A., & Dror, R.O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143.
Jiang, H., Zhang, W., Kang, X., Cao, Z., Chen, X., Liu, Y., & Cui, Y. (2020). Topology-based functionalization of robust chiral Zr-based metal–organic frameworks for catalytic enantioselective hydrogenation. Journal of the American Chemical Society, 142(21), 9642–9652.
Lee, J.G. (2016). Computational materials science: An introduction. CRC press. https://doi.org/10.1201/9781315368429
Li, H., Li, L., Lin, R.-B., Zhou, W., Zhang, Z., Xiang, S., & Chen, B. (2019). Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 1(1), 100006.
Li, Z., Liu, P., Ou, C., & Dong, X. (2020). Porous metal–organic frameworks for carbon dioxide adsorption and separation at low pressure. ACS Sustainable Chemistry & Engineering, 8(41), 15378–15404.
Liu, Y., Wang, Z.U., & Zhou, H.-C. (2012). Recent advances in carbon dioxide capture with metal-organic frameworks. Greenhouse Gases: Science and Technology, 2(4), 239–259.
Mao, Q., Feng, M., Jiang, X.Z., Ren, Y., Luo, K.H., & van Duin, A.C. (2023). Classical and reactive molecular dynamics: Principles and applications in combustion and energy systems. Progress in Energy and Combustion Science, 97, 101084. https://doi.org/10.1016/j.pecs.2023.101084.
Maurin, G., Serre, C., Cooper, A., & Férey, G. (2017). The new age of MOFs and of their porous-related solids. Chemical Society Reviews, 46(11), 3104–3107.
Metz, B., Davidson, O., De Coninck, H., Loos, M., & Meyer, L. (2005). IPCC special report on carbon dioxide capture and storage. Cambridge: Cambridge University Press.
Park, J., Suh, B.L., & Kim, J. (2020). Computational design of a photoresponsive metal–organic framework for post combustion carbon capture. The Journal of Physical Chemistry C, 124(24), 13162–13167.
Pathak, H., Späh, A., Kim, K.H., Tsironi, I., Mariedahl, D., Blanco, M., Huotari, S., Honkimäki, V., & Nilsson, A. (2019). Intermediate range O–O correlations in supercooled water down to 235 K. The Journal of Chemical Physics, 150(22), 224506. https://doi.org/10.1063/1.5100811
Peng, D.-Y., & Robinson, D.B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59–64.
Pham, T., Forrest, K.A., Banerjee, R., Orcajo, G., Eckert, J., & Space, B. (2015). Understanding the H2 sorption trends in the M-MOF-74 series (M= Mg, Ni, Co, Zn). The Journal of Physical Chemistry C, 119(2), 1078–1090. https://doi.org/10.1021/jp510253m.
Potoff, J.J., & Siepmann, J.I. (2001). Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE Journal, 47(7), 1676–1682.
Putra, I.H., Yulia, F., Zulkarnain, I.A., Ruliandini, R., Zulys, A., Mabuchi, T., Gonçalves, W., & Nasruddin. (2022). Molecular Simulation Study of CO2 Adsorption on Lanthanum-Based Metal Organic Framework. Russian Journal of Physical Chemistry A, 96(13), 3007–3014.
Rezaei, F., Lawson, S., Hosseini, H., Thakkar, H., Hajari, A., Monjezi, S., & Rownaghi, A.A. (2017). MOF-74 and UTSA-16 film growth on monolithic structures and their CO2 adsorption performance. Chemical Engineering Journal, 313, 1346–1353.
Smit, B., Reimer, J.A., Oldenburg, C.M., & Bourg, I.C. (2014). Introduction to carbon capture and sequestration (Vol. 1). World Scientific.
Thompson, A.P., Aktulga, H.M., Berger, R., Bolintineanu, D.S., Brown, W.M., Crozier, P.S., in 't Veld, P.J., Kohlmeyer, A., Moore, S.G., Nguyen, T.D., Shan, R., Stevens, M.J., Tranchida, J., Trott, C., & Plimpton, S.J. (2022). LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271, 108171. https://doi.org/10.1016/j.cpc.2021.108171.
Tian, Z., Dai, S., & Jiang, D. (2016). What can molecular simulation do for global warming? Wiley Interdisciplinary Reviews: Computational Molecular Science, 6(2), 173–197.
Wang, H.-H., Hou, L., Li, Y.-Z., Jiang, C.-Y., Wang, Y.-Y., & Zhu, Z. (2017). Porous MOF with highly efficient selectivity and chemical conversion for CO2. ACS Applied Materials & Interfaces, 9(21), 17969–17976.
Wang, Z., Zhang, Y., Chen, S., Fu, Y., Li, X., & Pei, J. (2021). Molecular simulation of adsorption and diffusion of CH4 and H2O in flexible metal-organic framework ZIF-8. Fuel, 286, 119342.
Yang, P. (2018). A molecular simulation study of CO2 adsorption in metal-organic frameworks [Master’s Thesis]. Western Sydney University (Australia).
Yu, J., Xie, L.-H., Li, J.-R., Ma, Y., Seminario, J.M., & Balbuena, P.B. (2017). CO2 capture and separations using MOFs: Computational and experimental studies. Chemical Reviews, 117(14), 9674–9754.
Zhang, G., Liang, Y., Cui, G., Dou, B., Lu, W., Yang, Q., & Yan, X. (2023). Grand canonical Monte Carlo simulation of the adsorption and separation of carbon dioxide and methane using functionalized Mg-MOF-74. Energy Reports, 9, 2852–2860. https://doi.org/10.1016/j.egyr.2023.01.121
Zhang, J., Webley, P.A., & Xiao, P. (2008). Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas. Energy Conversion and Management, 49(2), 346–356.
Zhang, X., Chen, Z., Liu, X., Hanna, S.L., Wang, X., Taheri-Ledari, R., Maleki, A., Li, P., & Farha, O.K. (2020). A historical overview of the activation and porosity of metal–organic frameworks. Chemical Society Reviews, 49(20), 7406–7427.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Institute of Science and Technology, T.U.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The views and interpretations in this journal are those of the author(s). They are not attributable to the Institute of Science and Technology, T.U. and do not imply the expression of any opinion concerning the legal status of any country, territory, city, area of its authorities, or concerning the delimitation of its frontiers of boundaries.
The copyright of the articles is held by the Institute of Science and Technology, T.U.