Evaluation of Antioxidant, Toxicity, and Antidiabetic Activities of Young Sprouts of Hordeum vulgare, Triticum aestivum, and Zea mays

Authors

  • Surya Kant Kalauni Central Department of Chemistry, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal https://orcid.org/0000-0002-4882-4864
  • Gita Bhattarai Department of Chemistry, Prithvi Narayan Campus, Tribhuvan University, Pokhara, Nepal
  • Lekha Nath Khanal Department of Chemistry, Prithvi Narayan Campus, Tribhuvan University, Pokhara, Nepal https://orcid.org/0000-0001-9450-7301

DOI:

https://doi.org/10.3126/jist.v29i1.63637

Keywords:

Antidiabetic activity, antioxidant activity, Hordium vulgare, Triticum aestivum, young sprout, Zea mays

Abstract

The germination of dormant seeds triggers various metabolic reactions, resulting in the production of essential phytochemicals with diverse biological activities. This contributes to the inclination to consume sprout juices among individuals seeking to enhance their immune system, manage oxidative stress, and prevent complaints associated with metabolic disorders. In this study, we evaluated the antioxidant, toxicity, and antidiabetic activity of young sprout extracts of Hordium vulgare, Triticum aestivum, and Zea mays by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, brine shrimp lethality assay, and α-amylase inhibition methods, respectively. The ethanolic extracts showed the presence of alkaloids, flavonoids, tannins, and polyphenols. The extracts showed moderate antioxidant activity, with Z. mays having the highest capacity, followed by T. aestivum and H. vulgare. Their half-maximal concentration (IC50) values were 54.24±3.35, 95.94±3.29, and 129.26±5.97 μg/mL, respectively. The same trend of toxicity against brine shrimp nauplii was obtained with half-maximal lethal concentration (LC50) values of 326.41, 473.61, and 6768.75 mg/mL respectively. The antioxidant activity across various extracts displayed a positive correlation with the total phenolic and total flavonoid contents. The extracts demonstrated moderate activity in the α-amylase inhibition assay conducted through the starch-iodine method. The outcomes of this study underscore the presence of significant phytochemicals in the young sprouts of commonly consumed cereals, suggesting their potential use as immune boosters and in treating diseases associated with free radicals.

Downloads

Download data is not yet available.
Abstract
132
PDF
116

References

Abbas, A., Naqvi, S.A.R., Rasool, M.H., Noureen, A., Mubarik, M.S., & Tareen, R.B. (2021). Phytochemical analysis, antioxidant and antimicrobial screening of Seriphidium oliverianum plant extracts. Dose-Response, 19(1), 1-9. https://doi.org/10.1177/15593258211004739

Adhikari, R., Bhattarai, K., & Sharma, K.R. (2023). Phytochemical analysis and biological activities of Zingiber officinale grown in different geographical regions of Nepal. Amrit Research Journal, 4(1), 1-10. https://doi.org/10.3126/arj.v4i1.61181

Ainsworth, E.A., & Gillespie, K.M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols, 2(4), 875-877. https://doi.org/10.1038/nprot.2007.102

Asmat, U., Abad, K., & Ismail, K. (2016). Diabetes mellitus and oxidative stress- A concise review. Saudi Pharmaceutical Journal, 24(5), 547-553. https://doi.org/10.1016/j.jsps.2015.03.013

Bhandari, S., Khadayat, K., Poudel, S., Shrestha, S., Shrestha, R., Devkota, P., Khanal, S., & Marasini, B.P. (2021). Phytochemical analysis of medicinal plants of Nepal and their antibacterial and antibiofilm activities against uropathogenic Escherichia coli. BMC Complementary Medicine and Therapies, 21(116), 1–11. https://doi.org/10.1186/s12906-021-03293-3

Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft Und-Technologie/Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

Byun, A.R., Chun, H., Lee, J., Lee, S.W., Lee, H.S., & Shim, K.W. (2015). Effects of a dietary supplement with barley sprout extract on blood cholesterol metabolism. Evidence-Based Complementary and Alternative Medicine, 2015, 1–8. https://doi.org/10.1155/2015/473056

Carballo, J.L., Hernandez-Inda, Z.L., Perez, P., & Garcia-Gravalos, M.D. (2002). A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. BMC Biotechnology, 2, 1–5. https://doi.org/10.1186/1472-6750-2-17

Choudhary, S., Kaurav, H., & Chaudhary, G. (2021). Wheatgrass (Triticum aestivum Linn.): a potential substitute of human blood in traditional system of medicine. Asian Journal of Pharmaceutical and Clinical Research, 14(6), 43–47.

D'Amato, R., De Feudis, M., Guiducci, M., & Businelli, D. (2019). Zea mays L. Grain: Increase in nutraceutical and antioxidant properties due to se fortification in low and high-water regimes. Journal of Agricultural and Food Chemistry, 67(25), 7050-7059.

Gherasim, A., Oprescu, A.C., Gal, A.M., Burlui, A.M., & Mihalache, L. (2023). Lifestyle patterns in patients with type 2 diabetes. Metabolites, 13(7), 1–16. https://doi.org/10.3390/metabo13070831

Huyut, Z., Beydemir, Ş., & Gulcin, I. (2017). Antioxidant and antiradical properties of selected flavonoids and phenolic compounds. Biochemistry Research International, 2017, 1–10. https://doi.org/10.1155/2017/7616791

Jeong, E.Y., Cho, K.S., & Lee, H.S. (2012). α-Amylase and α-glucosidase inhibitors isolated from Triticum aestivum L. sprouts. Journal of the Korean Society for Applied Biological Chemistry, 55(1), 47–51. https://doi.org/10.1007/s13765-012-0008-1

Kabubii, Z.N., Mbaria, J.M., & Mbaabu, P.M. (2015). Phytochemical composition and brine shrimp cytotoxicity effect of Rosmarinus officinalis. American Scientific Research Journal for Engineering, Technology, and Sciences, 11(1), 127–135.

Kanwugu, O.N., Glukhareva, T.V., Danilova, I.G., & Kovaleva, E.G. (2021). Natural antioxidants in diabetes treatment and management: prospects of astaxanthin. Critical Reviews in Food Science and Nutrition, 62(18), 5005–5028. https://doi.org/10.1080/10408398.2021.1881434

Khanal, L.N., Sharma, K.R., Pokharel, Y.R., & Kalauni, S.K. (2022). Phytochemical analysis and in vitro antioxidant and antibacterial activity of different solvent extracts of Beilschmiedia roxburghiana Nees stem barks. Scientific World Journal, 2022, 1–7. https://doi.org/10.1155/2022/6717012

Khin, P.P., Lee, J.H., & Jun, H.S. (2023). Pancreatic beta-cell dysfunction in type 2 diabetes. European Journal of Inflammation, 21, 1–13. https://doi.org/10.1177/1721727X231154152

Kim, J., Kim, J.H., Bang, S.I., Shin, H., Cho, E.J., & Lee, S. (2022). Antioxidant activity of edible sprouts and phytosterol contents by HPLC/UV analysis. Horticulture Environment and Biotechnology, 63(5), 769–778. https://doi.org/10.1007/s13580-022-00434-6

Kumar, S., & Pandey, A.K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013, 1–16. https://doi.org/10.1155/2013/756134

Lee, S., Lee, Y., Lee, H., & Kim, D. (2009). Anti-oxidative and anti-hyperglycemia effects of Triticum aestivum wheat sprout water extracts on the streptozotocin-induced diabetic mice. Korean Journal of Pharmacognosy, 40(4), 408–414.

Lirazan, M., Cua, S.J., & Alvarez, M.R. (2018). In vitro antacid screening of the aqueous and ethanolic leaf extracts of Triticum aestivum (Linn.) and Hordeum vulgare (Linn.). Oriental Journal of Chemistry, 34(1), 93–99. https://doi.org/10.13005/ojc/340110

Liu, H.K., Kang, Y.F., Zhao, X.Y., Liu, Y.P., Zhang, X.W., & Zhang, S.J. (2019). Effects of elicitation on bioactive compounds and biological activities of sprouts. Journal of Functional Foods, 53(13), 136–145. https://doi.org/10.1016/j.jff.2018.12.019

Maharjan, R., Thapa, P., Khadayat, K., & Kalauni, S.K. (2021). Phytochemical analysis and α-amylase inhibitory activity of young and mature leaves of Cinnamomum tamala. Nepal Journal of Biotechnology, 9(2), 14–20. https://doi.org/10.54796/njb.v9i2.41909

Meyer, B.N., Ferrigni, N.R., Putnam, J.E., Jacobsen, L.B., Nichols, D.E., & McLaughlin, J.L. (1982). Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica, 45(1), 31–34. https://doi.org/10.1055/s-2007-971236

Mir, S.A., Farooq, S., Shah, M.A., Sofi, S.A., Dar, B.N., Hamdani, A.M., & Mousavi Khaneghah, A. (2021). An overview of sprouts nutritional properties, pathogens and decontamination technologies. LWT - Food Science and Technology, 141, 1–9. https://doi.org/10.1016/j.lwt.2021.110900

Mohan, Y., Jesuthankaraj, G.N., & Thangavelu, N.R. (2013). Antidiabetic and antioxidant properties of Triticum aestivum in streptozotocin-induced diabetic rats. Advances in Pharmacological Sciences, 2013, 1–9. https://doi.org/10.1155/2013/716073

Mutha, R.E., Tatiya, A.U., & Surana, S.J. (2021). Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. Future Journal of Pharmaceutical Sciences, 7(1), 1–13. https://doi.org/10.1186/s43094-020-00161-8

Naris, S. (2022). Significant role of free radicals in inflammation. Oxidants and Antioxidants in Medical Science, 11(8), 1–2.

Nemzer, B., Lin, Y., & Huang, D. (2018). Antioxidants in sprouts of grains. In Feng, H., Nemzer, B., & DeVries J.W. (Eds.), Sprouted Grains: Nutritional Value, Production, and Applications (pp. 55–68). Elsevier Inc.

Niroula, A., Khatri, S., Khadka, D., & Timilsina, R. (2019). Total phenolic contents and antioxidant activity profile of selected cereal sprouts and grasses. International Journal of Food Properties, 22(1), 427–437. https://doi.org/10.1080/10942912.2019.1588297

Pandey, B.P., Thapa, R., & Upreti, A. (2017). Chemical composition, antioxidant and antibacterial activities of essential oil and methanol extract of Artemisia vulgaris and Gaultheria fragrantissima collected from Nepal. Asian Pacific Journal of Tropical Medicine, 10(10), 952–959. https://doi.org/10.1016/j.apjtm.2017.09.005

Ramakrishna, R., Sarkar, D., Manduri, A., Iyer, S.G., & Shetty, K. (2017). Improving phenolic bioactive-linked anti-hyperglycemic functions of dark germinated barley sprouts (Hordeum vulgare L.) using seed elicitation strategy. Journal of Food Science and Technology, 54(11), 3666–3678.

Randhir, R., Kwon, Y.-I., & Shetty, K. (2008). Effect of thermal processing on phenolics, antioxidant activity and health-relevant functionality of select grain sprouts and seedlings. Innovative Food Science and Emerging Technologies, 9(3), 355–364. https://doi.org/10.1016/j.ifset.2007.10.004

Schendel, R.R. (2019). Phenol content in sprouted grains. In Feng, H., Nemzer, B., & DeVries J.W. (Eds.), Sprouted Grains: Nutritional Value, Production, and Applications (pp. 247-315). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811525-1.00010-5

Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. Journal of Functional Foods, 18, 820–897. https://doi.org/10.1016/j.jff.2015.06.018

Singh, J.P., Kaur, A., Singh, N., Nim, L., Shevkani, K., Kaur, H., & Arora, D.S. (2016). In vitro antioxidant and antimicrobial properties of Jambolan (Syzygium cumini) fruit polyphenols. LWT - Food Science and Technology, 65, 1025–1030. https://doi.org/10.1016/j.lwt.2015.09.038

Singh, K., Gupta, J.K., Kumar, S., Chopra, H., Kumar, S., Chanchal, D.K., Singh, T., Chaudhary, R., Garg, A., Saha, S., Pathak, D., Mishra, A.K., Agrawal, R., Soni, U., & Dubey, B. (2023). Pharmacological and therapeutic potential of Hordeum vulgare. Pharmacological Research - Modern Chinese Medicine, 8, 1–8. https://doi.org/10.1016/j.prmcm.2023.100300

Solihah, M.A., Rosli, W.W. I., & Nurhanan, A.R. (2012). Phytochemicals screening and total phenolic content of Malaysian Zea mays hair extracts. International Food Research Journal, 19(4), 1533–1538.

Sudha, P., Zinjarde, S.S., Bhargava, S.Y., & Kumar, A.R. (2011). Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complementary and Alternative Medicine, 11, 1–10.

Tayab, M.A., Chowdhury, K.A.A., Jabed, M., Tareq, S.M., Mostafa Kamal, A.T.M., Islam, M.N., Kafil Uddin, A.M., Hossain, M.A., Emran, T.B., & Simal-Gandara, J. (2021). Antioxidant-rich Woodfordia fruticosa leaf extract alleviates depressive-like behaviors and impede hyperglycemia. Plants, 10(2), 1–32. https://doi.org/10.3390/plants10020287

Tessema, S.S., & Tura, A.M. (2018). Allelopathic property of Parthenin on seed germination and seedling growth of wheat (Triticum aestivum) and barley (Hordeum vulgare). International Journal of Chemical and Biochemical Sciences, 14, 23–27.

Tiwari, S., Nepal, S., Sigdel, S., Bhattarai, S., Rokaya, R.K., Pandey, J., Khadka, R.B., Aryal, P., & Bhandari, R. (2020). Phytochemical screening, antibacterial‑guided fractionation, and thin‑layer chromatographic pattern of the extract obtained from Diploknema butyracea. Pharmacognosy Research, 12(4), 437–443. https://doi.org/10.4103/pr.pr_27_20

Usai, R., Majoni, S., & Rwere, F. (2022). Natural products for the treatment and management of diabetes mellitus in Zimbabwe-a review. Frontiers in Pharmacology, 13, 1–21. https://doi.org/10.3389/fphar.2022.980819

Waghulde, S., Kale, M.K., & Patil, V.R. (2019). Brine shrimp lethality assay of the aqueous and ethanolic extracts of the selected species of medicinal plants. Proceedings, 41(47), 1–12.

Yadav, R.K., Gautam, S., Palikhey, E., Joshi, B.K., Ghimire, K.H., Gurung, R., Adhikari, A.R., Pudasaini, N., & Dhakal, R. (2018). Agro-morphological diversity of Nepalese naked barley landraces. Agriculture and Food Security, 7(1), 1–12. https://doi.org/10.1186/s40066-018-0238-5

Yedjou, C.G., Grigsby, J., Mbemi, A., Nelson, D., Mildort, B., Latinwo, L., & Tchounwou, P.B. (2023). The management of diabetes mellitus using medicinal plants and vitamins. International Journal of Molecular Sciences, 24(10), 1–14. https://doi.org/10.3390/ijms24109085

Zhang, C., Zhao, Z., Yang, G., Shi, Y., Zhang, Y., Shi, C., & Xia, X. (2021). Effect of slightly acidic electrolyzed water on natural Enterobacteriaceae reduction and seed germination in the production of alfalfa sprouts. Food Microbiology, 97(22), 103414. https://doi.org/10.1016/j.fm.2020.103414

Downloads

Published

2024-07-12

How to Cite

Kalauni, S. K., Bhattarai, G. ., & Khanal, L. N. (2024). Evaluation of Antioxidant, Toxicity, and Antidiabetic Activities of Young Sprouts of Hordeum vulgare, Triticum aestivum, and Zea mays. Journal of Institute of Science and Technology, 29(1), 75–84. https://doi.org/10.3126/jist.v29i1.63637

Issue

Section

Research Articles