Extended Spectrum ß-Lactamase Producing Escherichia coli from Bagmati River Water: a Threat of Spread of Resistant Bacterial Infection to Human

Authors

  • Mandira Niroula Central Department of Microbiology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
  • Megha Raj Banjara Central Department of Microbiology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal https://orcid.org/0000-0002-5024-6127

DOI:

https://doi.org/10.3126/jist.v29i2.60056

Keywords:

Bagmati River water, CTX-M gene, E. coli, extended spectrum ß-lactamase

Abstract

Aquatic environments can be the sources for the spread of antibiotic-resistant microorganisms and resistance genes. Escherichia coli is one of the bacteria taken as an indicator of water contamination with human faecal matter. CTX-M producing E. coli is the most common type of extended-spectrum ß- lactamase (ESBL) producing E. coli worldwide. This study was conducted from October 2019 to December 2020 to determine the proportion of CTX-M gene among ESBL E. coli isolated from the Bagmati River. Thirty-nine water samples in triplicates were collected from 13 different points of Bagmati River in Kathmandu Valley and analyzed for isolation of E. coli. Antimicrobial susceptibility test was performed by modified Kirby- Bauer disc diffusion method. ESBL was confirmed phenotypically by the combination disk method recommended by CLSI guidelines. Alkaline hydrolysis method was used for plasmid DNA extraction and CTX-M gene was detected by a polymerase chain reaction and agarose gel electrophoresis. E. coli was isolated from 76.9% (n= 30) samples and 80% (n= 24) of E. coli isolates were multidrug-resistant (MDR). Out of 24 MDR E. coli, 33.3% (n= 10) were ESBL producers. Among 10 ESBL E. coli, 70% (n= 7) had CTX-M gene. It shows that Bagmati River water is polluted due to anthropogenic activities. The resistant bacteria may circulate from water to the community posing a potential threat of infection. Effective treatment of river water is recommended to prevent the spread of antibiotic-resistant microorganisms.

Downloads

Download data is not yet available.
Abstract
114
PDF
92

References

Adelowo, O.O., Vollmers, J., Mäusezahl, I., Kaster, A.K., & Müller, J.A. (2018). Detection of the carbapenemase gene blaVIM-5 in members of the Pseudomonas putida group isolated from polluted Nigerian wetlands. Scientific Report, 8(1), 15116. https://doi.org/10.1038/s41598-018-33535-3

Amarasiri, M., Takezawa, T., Malla, B., Furukawa, T., Sherchand, J. B., Haramoto, E., & Sei, K. (2022). Prevalence of antibiotic resistance genes in drinking and environmental water sources of the Kathmandu Valley, Nepal. Frontiers in Microbiology, 13, 894014. https://doi.org/10.3389/fmicb.2022.894014

Amaya, E., Reyes, D., Paniagua, M., Calderon, S., Rashid, M.U., Colque, P., Kühn, I., Möllby, R., Weintraub, A., & Nord, C.E. (2012). Antibiotics resistance patterns of Escherichia coli isolates from different aquatic environmental sources in Leon, Nicaragua. Clinical Microbiology and Infection, 18, 347- 354. https://doi.org/10.1111/j.1469-0691.2012.03930.x

APHA/AWWA/WEF. (2017). Standard methods for the examination of water and wastewater. 23rd Edition, American Public Health Association, American Water Works Association, Water Environment Federation, Denver.

Amos, G. C., Ploumakis, S., Zhang, L., Hawkey, P. M., Gaze, W. H., & Wellington, E. M. (2018). The widespread dissemination of integrons throughout bacterial communities in a riverine system. The ISME Journal, 12(3), 681-691. https://doi.org/10.1038/s41396-017-0030-8

Bajpai, T., Pandey, M., Varma, M., & Bhatambare, G.S. (2017). Prevalence of TEM, SHV, and CTX-M beta- lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna Journal of Medicine, 7(1), 12- 16. https://doi.org/10.4103/2231-0770.197508

Bajracharya, R., & Tamrakar, N.K. (2008). Environmental status of Manahara River, Kathmandu, Nepal. Bulletin of the Department of Geology, 10, 21–32. https://doi.org/10.3126/bdg.v10i0.1417

Baniya, B., Khadka, N., Ghimire, S.K., Baniya, H., Sharma, S., Dhital, Y.P., Bhatta, R., & Bhattarai, B. (2019). Water quality assessment along the segments of Bagmati river in Kathmandu valley, Nepal. Nepal Journal of Environmental Science, 7, 1-10. https://doi.org/10.3126/njes.v7i0.34314

Banu, R.A., Alvarez, J.M., Reid, A.J., Enbiale, W., Labi, A.K., Ansa, E.D., Annan, E.A., Akrong, M.O., Borbor, S., Adomako, L.A., & Ahmed, H. (2021). Extended spectrum beta-lactamase Escherichia coli in river waters collected from two cities in Ghana, 2018–2020. Tropical Medicine and Infectious Disease, 6(2), 105. https://doi.org/10.3390/tropicalmed6020105

Bradford, P.A. (2001). Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Reviews, 14(4), 933-51. https://doi.org/10.1128/CMR.14.4.933-951.2001

Chapra, S.C., Camacho, L.A., & McBride, G.B. (2021). Impact of global warming on dissolved oxygen and BOD assimilative capacity of the world’s rivers: Modeling analysis. Water, 13(17), 2408. https://doi.org/10.3390/w13172408

Cinque, K., Stevens, M.A., Roser, D.J., Ashbolt, N.J., & Leeming, R. (2004). Assessing the health implications of turbidity and suspended particles in protected catchments. Water Science and Technology, 50(1), 205- 210. https://doi.org/10.2166/wst.2004.0055

CLSI. (2018). Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute (CLSI), Wayne.

DOI. (2003). Ground water project, Nepal Gazette, 2001 and 2003. Department of Irrigation (DOI), Nepal.

Edelstein, M., Pimkin, M., Palagin, I., Edelstein, I., & Stratchounski, L. (2003). Prevalence and molecular epidemiology of CTX-M extended spectrum ß-lactamases producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrobial Agents and Chemotherapy, 47 (12), 3724- 3732. https://doi.org/10.1128/AAC.47.12.3724-3732.2003

George, E.A., Sankar, S., Jesudasan, M.V., Sudandiradoss, C., & Nandagopal, B. (2015). Molecular characterization of CTX-M type extended spectrum beta-lactamase producing E. coli isolated from human and the environment. Indian Journal of Medical Microbiology, 33, 73-79. https://doi.org/10.4103/0255-0857.150896

Ghimire, B., Pokherel, M.K., Banjara, M.R., Rijal, K.R., & Ghimire, P. (2024). Extended spectrum beta lactamase Escherichia coli in Bagmati River, Kathmandu Valley. Journal of Nepal Health Research Council, 21(4), 672–679.

Ismail, A. & Abed, G. (2013). BOD and DO modeling for Tigris river at Baghdad city portion using QUAL2K model. Journal of Kerbela University, 11(3), 257273.

Kaur, M. & Aggarwal, A. (2013). Occurrence of the CTX-M, SHV and the TEM genes among the extended spectrum beta-lactamase producing isolates of Enterobacteriaceae in a tertiary care hospital of North India. Journal of Clinical and Diagnostic Research, 7, 642-645. https://doi.org/10.7860/JCDR/2013/5081.2872

KC, Sudeep, Khanal, S., Joshi, T.P., Khadka, D., Tuladhar, R., & Joshi, D.R. (2024). Antibiotic resistance determinants among carbapenemase producing bacteria isolated from wastewaters of Kathmandu, Nepal. Environmental Pollution, 343, 123155. https://doi.org/10.1016/j.envpol.2023.123155

Kelly, S.A., O'Connell, N.H., Thompson, T.P., Dillon, L., Wu, J., Creevey, C., Kiely, P.A., Slevin, B., Powell, J., Gilmore, B.F., & Dunne, C.P. (2023). Large-scale characterization of hospital wastewater system microbiomes and clinical isolates from infected patients: profiling of multi-drug-resistant microbial species. Journal of Hospital Infection, 141, 152-166. https://doi.org/10.1016/j.jhin.2023.09.001

Khanal, S., Sudeep, K.C., Joshi, T.P., Han, Z., Wang, C., Maharjan, J., Tuladhar, R., & Joshi, D.R. (2024). Extended-spectrum β-lactamase-producing bacteria and their resistance determinants in different wastewaters and rivers in Nepal. Journal of Hazardous Materials, 473, 134660. https://doi.org/10.1016/j.jhazmat.2024.134660

Koutsoumanis, K., Allende, A., Álvarez‐Ordóñez, A., Bolton, D., Bover‐Cid, S., Chemaly, M., Davies, R., De Cesare, A., Herman, L., Hilbert, F., et al. (2021). Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA Journal, 19(6), e06651. https://doi.org/10.2903/j.efsa.2021.6651

Lechevallier, M.W., Evans, T. M., & Seidler, R. J. (1981). Effect of turbidity on chlorination efficiency and bacterial persistence in drinking water. Applied and Environmental Microbiology, 42, 159-187. https://doi.org/10.1128/aem.42.1.159-167.1981

Mahat, A., Maharjan, K., Regmi, P., Ghimire, K., & Mahapatra, S. (2020). Assessment of water pollution in Bagmati river of Kathmandu valley. Advances in Plant Sciences, 33, 89- 93.

Manga, M., Ngobi, T.G., Okeny, L., Acheng, P., Namakula, H., Kyaterekera, E., Nansubuga, I., & Kibwami, N. (2021). The effect of household storage tanks/vessels and user practices on the quality of water: a systematic review of literature. Environmental Systems Research, 10, 18. https://doi.org/10.1186/s40068-021-00221-9

Mishra, B.K., Regmi, R.K., Masago, Y., Fukushi, K., Kumar, P., & Saraswat, C. (2017). Assessment of Bagmati river pollution in Kathmandu valley: Scenario-based modeling and analysis for sustainable urban development. Sustainability of Water Quality and Ecology, 9-10, 67-77. https://doi.org/10.1016/j.swaqe.2017.06.001

NDWQS. (2005). Implementation directives for National Water Quality Standard (NWQS). Department of Water Supply and Sewerage (DWSS), Kathmandu, Nepal.

Norman, E.P. & Michel, M. (2009). Water quality degradation effect on freshwater availability: Impact of human activities. Water International, 25, 185-193. https://doi.org/10.1080/02508060008686817

Nzima, B., Adegoke, A.A., Ofon, U.A., Al-Dahmoshi, H.O.M., Saki, M., Ndubuisi-Nnaji, U.U., & Inyang, C.U. (2020). Resistotyping and extended-spectrum beta-lactamase genes among Escherichia coli from wastewater treatment plants and recipient surface water for reuse in South Africa. New Microbes and New Infections, 38, 100803. https://doi.org/10.1016/j.nmni.2020.100803

Papajová, I., Šmigová, J., Gregová, G., Šoltys, J., Venglovský, J., Papaj, J., Szabóová, T., Dančová, N., Ihnacik, L., Schusterová, I., & Sušinková, J. (2022). Effect of wastewater treatment on bacterial community, antibiotic-resistant bacteria and endoparasites. International Journal of Environmental Research and Public Health, 19(5), 2750. https://doi.org/10.3390/ijerph19052750

Rimal, U., Thapa, S., & Maharjan, R. (2017). Prevalence of extended spectrum of ß-lactamases producing Escherichia coli and Klebsiella species from urinary specimens of children attending Friendship International Children Hospital. Nepal Journal of Biotechnology, 5, 32-38. https://doi.org/10.3126/njb.v5i1.18868

Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M.C., Michael, I., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Science of the Total Environment, 447, 345- 360. https://doi.org/10.1016/j.scitotenv.2013.01.032

Ruppé, E., Hem, S., Lath, S., Gautier, V., Ariey, F., Sarthou, J.L., Monchy, D., & Arlet, G. (2009). CTX beta-lactamase in Escherichia coli from community–acquired urinary tract infections, Cambodia. Emerging infectious diseases, 15(5), 741. https://doi.org/10.3201/eid1505.071299

Sambrook, K.J. & Russell, D.W. (2001). Molecular Cloning: A Laboratory Manual. 3rd Ed. Cold Spring Harbor Laboratory Press 1, 2100.

Sharma, A.R., Bhatta, D.R., Shrestha, J., & Banjara, M.R. (2013). Antimicrobial susceptibility pattern of Escherichia coli isolated from urinary tract infected patients attending Bir hospital. Nepal Journal of Science and Technology, 14, 177-184. https://doi.org/10.3126/njst.v14i1.8938

Shrestha, R.G., Tandukar, S., Bhandari, D., Sherchan, S.P., Tanaka, Y., Sherchand, J.B., & Haramoto, E. (2018). Prevalence of Arcobacter and other pathogenic bacteria in river water in Nepal. Water, 11(7), 1416. https://doi.org/10.3390/w11071416

Soni, R., Pal, A.K., Tripathi, P., Jha, P. K., & Tripathi, V. (2022). Physicochemical analysis of wastewater discharge and impact on Ganges River of major cities of North India. Water Supply, 22(6), 6157–6178. https://doi.org/10.2166/ws.2022.185

Tadesse, M., Tsegaye, D., & Girma, G. (2018). Assessment of the level of some physico- chemical parameters and heavy metals of Rebu river in Oromia region, Ethiopia. MOJ Biology and Medicine, 3(4), 99-118. https://doi.org/10.15406/mojbm.2018.03.00085

Tandukar, S., Sherchand, J.B., Bhandari, D., Sherchan, S.P., Malla, B., Ghaju Shrestha, R., & Haramoto, E. (2018). Presence of human enteric viruses, protozoa, and indicators of pathogens in the Bagmati river, Nepal. Pathogens, 7, 38. https://doi.org/10.3390/pathogens7020038

Thenmozhi, S., Moorthy, K., Sureshkumar, B.T., & Suresh, M. (2014). Antibiotic resistance mechanism of ESBL producing enterobacteriaceae in the clinical field: A review. Indian Journal of Pure & Applied Biosciences, 2, 207-226.

Uddin, M., Hossain, M. T., Proshad, R., Kormoker, T., Chandra, K., & Rimi, T. A. (2019). Identification of pathogenic Escherichia coli strain from river and sewage water in Bangladesh. Archives of Agriculture and Environmental Science, 4(1), 39-44. https://doi.org/10.26832/24566632.2019.040106

Woldemichael, G., Tulu, T., & Flechsig, G.U. (2016). Solar UV-treatment of water samples for stripping-voltammetric determination of trace heavy metals in Awash River, Ethiopia. Heliyon, 2(3), e00092. https://doi.org/10.1016/j.heliyon.2016.e00091

Young, C.C., Karmacharya, D., Bista, M., Sharma, A.N., Goldstein, T., Mazet, J.A., & Johnson, C.K. (2022). Antibiotic resistance genes of public health importance in livestock and humans in an informal urban community in Nepal. Scientific Reports, 12(1), 13808. https://doi.org/10.1038/s41598-022-14781-y

Zhang, L., Ma, X., Luo, L., Hu, N., Duan, J., Tang, Z., Zhong, R., & Li, Y. (2020). The prevalence of extended-spectrum ß lactamase and carbapenemase producing bacteria from hospital sewage, treated effluents and receiving rivers. International Journal of Environmental Research and Public Health, 17(4), 1188. https://doi.org/10.3390/ijerph17041183

Zou, H., Zheng, B., Sun, M., Ottoson, J., Li, Y., Berglund, B., Chi, X., Ji, X., Li, X., Lundborg, C.S., & Nilsson, L.E. (2019). Evaluating dissemination mechanisms of antibiotic-resistant bacteria in rural environments in China by using CTX-M-producing Escherichia coli as an indicator. Microbial Drug Resistance, 25(7), 975-984. https://doi.org/10.1089/mdr.2018.0431

Downloads

Published

2024-07-13

How to Cite

Niroula, M., & Banjara, M. R. (2024). Extended Spectrum ß-Lactamase Producing Escherichia coli from Bagmati River Water: a Threat of Spread of Resistant Bacterial Infection to Human. Journal of Institute of Science and Technology, 29(2), 1–8. https://doi.org/10.3126/jist.v29i2.60056

Issue

Section

Research Articles