Intensifying Haze and Disappearing Dense Fog in Winter at Tribhuvan International Airport, Kathmandu: Impacts in Aviation

Authors

DOI:

https://doi.org/10.3126/jist.v29i1.56933

Keywords:

Aviation, fog, haze, Kathmandu, visibility

Abstract

In winter, Tribhuvan International Airport (TIA) in Kathmandu, Nepal, is badly affected by poor visibility conditions due to the occurrence of thick haze and dense fog. In this study, we examined the microclimatic behaviors (e.g., consecutive duration and onset/dispersal) of the winter fog. Alongside, we analyzed the trend in the occurrence of fog, dense fog, and winter haze in TIA from a historic global hourly climatological dataset (1976–2022) from TIA. We found that radiation fog in the valley is mostly short spells having a consecutive duration of less than an hour (~86% of fog, ~95% of dense fog). The onset of fog starts most favorably in the early morning (05:45–09:00 am) and disperses mostly before noon. To ascertain the synergetic effect of enhanced natural and anthropogenic forcing, urbanization, and meteorological changes on winter haze and fog, we assessed their trend for the same period. There was a marked change in visibility around the year 2000 together with important changes in humidity and dew point depression. We observed an upward trend of winter haze frequency (2.36% day/year, at 0.001 level of significance (α)) and fog frequency (0.46% day/year, at α = 0.05) in regime-I (1976–2000). Whereas the trend of winter haze flattened to 0.36% day/year (at α = 0.05) and dense fog declined at the rate of 1.28% day per annum (at α = 0.01) in regime-II (2001–2022). By careful examination of all plausible climatological drivers of the change (relative humidity, temperature, wind speed, and dew point depression), we found strong evidence of decreasing humidity and increasing dew point depression after the year 2000. Effective air pollution and urbanization control measures are imminent to lessen the adverse impact of the increased frequency of haze and fog at the country’s major international airport, TIA.

Downloads

Download data is not yet available.
Abstract
195
PDF 135
PDF 43

References

AIC. (2015). Final Report on the Investigation of the Accident of TC-JOC, A330-303, at TIA, KTM on 4 March. Accident Investigation Commission (AIC), Government of Nepal. https://reports.aviation-safety.net/2015/20150304-0_A333_TC-JOC.pdf

Aryal, R.K., Lee, B.K., Karki, R., Gurung, A., Kandasamy, J., Pathak, B.K., Sharma, S., & Giri, N. (2008). Seasonal PM10 dynamics in Kathmandu valley. Atmospheric Environment, 42(37), 8623-8633. https://doi.org/10.1016/j.atmosenv.2008.08.016

Becker, S., Sapkota, R.P., Pokharel, B., Adhikari, L., Pokhrel, R.P., Khanal, S., & Giri, B. (2021). Particulate matter variability in Kathmandu based on in-situ measurements, remote sensing, and reanalysis data. Atmospheric Research, 258, 105623. https://doi.org/10.1016/j.atmosres.2021.105623

Bhushan, B., Trivedi, H.K.N., Bhatia, R.C., Dube, R.K., Giri, R.K., & Negi, R.S. (2003). On the persistence of fog over northern parts of India. MAUSAM, 54(4), 851-860. https://doi.org/10.54302/mausam.v54i4.1585

Chang, D., Song, Y., & Liu, B. (2009). Visibility trends in six megacities in China 1973-2007. Atmospheric Research, 94(2), 161-167. https://doi.org/10.1088/1475-7516/2009/05/006

Chen, J., Zhao, C.S., Ma, N., Liu, P.F., Göbel, T., Hallbauer, E., Deng, Z.Z., Ran, L., Xu, W.Y., & Liang, Z. (2012). A parameterization of low visibilities for hazy days in the North China Plain. Atmospheric Chemistry and Physics, 12(11), 4935-4950. https://doi.org/10.5194/acp-12-4935-2012

Chen, Y., & Xie, S. (2013). Long-term trends and characteristics of visibility in two megacities in southwest China: Chengdu and Chongqing. Journal of the Air & Waste Management Association, 63(9), 1058-1069. https://doi.org/10.1080/10962247.2013.791348

De, U.S., & Dandekar, M.M. (2001). Natural disasters in urban areas. Deccan Geographer, 39(2), 1-12.

Du, K., Mu, C., Deng, J., & Yuan, F. (2013). Study on atmospheric visibility variations and the impacts of meteorological parameters using high temporal resolution data: An application of Environmental Internet of Things in China. International Journal of Sustainable Development & World Ecology, 20(3), 238-247. https://doi.org/10.1080/13504509.2013.783886

Fu, X., Wang, X., Hu, Q., Li, G., Ding, X., Zhang, Y., He, Q., Liu, T., Zhang, Z., & Yu, Q. (2016). Changes in visibility with PM2.5 composition and relative humidity at a background site in the Pearl River Delta region. Journal of Environmental Sciences, 40, 10-19. https://doi.org/10.1016/j.jes.2015.12.001

Ghude, S.D., Bhat, G.S., Prabhakaran, T., Jenamani, R.K., Chate, D.M., Safai, P.D., Karipot, A.K., et al. (2017). Winter fog experiment over the Indo-Gangetic plains of India. Current Science, 12(4), 767-784. https://doi.org/10.18520/cs/v112/i04/767-784

Gultepe, I., Tardif, R., Michaelides, S.C., Cermak, J., Bott, A., Bendix, J., Müller, M.D., Pagowski, M., Hansen, B., Ellrod, G., Jacobs, W., Toth, G., & Cober, S.G. (2007). Fog research: A review of past achievements and future perspectives. Pure and Applied Geophysics, 164(6-7), 1121-1159. https://doi.org/10.1007/s00024-007-0211-x

Hameed, S., Mirza, M.I., Ghauri, B.M., Siddiqui, Z.R., Javed, R., Khan, A.R., Rattigan, O.V., Qureshi, S., & Husain, L. (2000). On the widespread winter fog in northeastern Pakistan and India. Geophysical Research Letters, 27(13), 1891-1894. https://doi.org/10.1029/1999GL011020

Hanesiak, J.M., & Wang, X.L. (2005). Adverse-weather trends in the Canadian Arctic. Journal of Climate, 18(16), 3140-3156. https://doi.org/10.1175/JCLI3505.1

Hu, Y., Yao, L., Cheng, Z., & Wang, Y. (2017). Long-term atmospheric visibility trends in megacities of China, India and the United States. Environmental Research, 159, 466-473. https://doi.org/10.1016/j.envres.2017.08.018

Hunova, I., Brabec, M., Malý, M., Dumitrescu, A., & Geletič, J. (2021). Terrain and its effects on fog occurrence. Science of the Total Environment, 768, 144359. https://doi.org/10.1016/j.scitotenv.2020.144359

Hunova, I., Brabec, M., Malỳ, M., & Valeriánová, A. (2020). Long-term trends in fog occurrence in the Czech Republic, Central Europe. Science of the Total Environment, 711, 135018. https://doi.org/10.1016/j.scitotenv.2019.135018

Inhaber, H. (1976). Changes in Canadian national visibility. Nature, 260(5547), 129-130. https://doi.org/10.1038/260129a0

Jaswal, A.K., Kumar, N., Prasad, A.K., & Kafatos, M. (2013). Decline in horizontal surface visibility over India (1961-2008) and its association with meteorological variables. Natural Hazards, 68(2), 929-954. https://doi.org/10.1007/s11069-013-0666-2

Jenamani, R.K. (2007). Alarming rise in fog and pollution causing a fall in maximum temperature over Delhi. Current Science, 314-322.

Jenamani, R.K. (2012). Micro-climatic study and trend analysis of fog characteristics at IGI airport New Delhi using hourly data (1981-2005). Mausam, 63(2), 203-218. https://doi.org/10.54302/mausam.v63i2.1391

Jenamani, R.K., & Kumar, A. (2013). Bad weather and aircraft accidents - global vis-à-vis Indian scenario. Current Science, 104(3).

Kathayat, B., Panday, A.K., Pokharel, B., Kumar, V., & Chapagain, N.P. (2023). Four decades of aviation visibility at Bhairahawa airport, gateway to Buddha's birthplace Lumbini, Nepal. Atmospheric Research, 288, 106746. https://doi.org/10.1016/j.atmosres.2023.106746

Kim, C.K., Yum, S.S., Kim, H.G., & Kang, Y.H. (2019). A WRF Modeling study on the effects of land use changes on fog off the west coast of the Korean peninsula. Pure and Applied Geophysics, 176(10), 4623-4640. https://doi.org/10.1007/s00024-019-02242-z

Kulkarni, R., Jenamani, R.K., Pithani, P., Konwar, M., Nigam, N., & Ghude, S.D. (2019). Loss to Aviation Economy Due to Winter Fog in New Delhi during the Winter of 2011-2016. Atmosphere, 10(4), 198. https://doi.org/10.3390/atmos10040198

Kutty, S.G., Dimri, A.P., & Gultepe, I. (2020). Climatic trends in fog occurrence over the Indo‐Gangetic plains. International Journal of Climatology, 40(4), 2048-2061. https://doi.org/10.1002/joc.6317

Larssen, S., Gram, F., Haugsbakk, I., Jansen, H., Olsthoorn, X., Giri, A.S., Shah, R., Shrestha, M.L., Shrestha, B., Shah, J.J. [editor, & Nagpal, T. [editor. (1997). Urban air quality management strategy in Asia-Kathmandu Valley report. World Bank.

Liu, D.Y., Niu, S.J., Yang, J., Zhao, L.J., Lü, J.J., & Lu, C.S. (2012). Summary of a 4-Year Fog Field Study in Northern Nanjing, Part 1: Fog Boundary Layer. Pure and Applied Geophysics, 169(5-6), 809-819. https://doi.org/10.1007/s00024-011-0343-x

Malm, W.C. (1999). Introduction to visibility. Colorado State University, USA.

Manandhar, K.B. (2006). The fog episode in southern Terai plains of Nepal: Some observations and concepts. Journal of Hydrology and Meteorology, 3(1). http://soham.org.np/wp-content/uploads/2006/03/v3-95-100.pdf

Mool, E., Bhave, P.V., Khanal, N., Byanju, R.M., Adhikari, S., Das, B., & Puppala, S.P. (2020). Traffic condition and emission factor from diesel vehicles within the Kathmandu valley. Aerosol and Air Quality Research, 20(3), 395-409. https://doi.org/10.4209/aaqr.2019.03.0159

Morisset, T., & Odoni, A. (2011). Capacity, Delay, and Schedule Reliability at Major Airports in Europe and the United States. Transportation Research Record: Journal of the Transportation Research Board, 2214(1), 85-93. https://doi.org/10.3141/2214-11

Mues, A., Rupakheti, M., Münkel, C., Lauer, A., Bozem, H., Hoor, P., Butler, T., & Lawrence, M.G. (2017). Investigation of the mixing layer height derived from ceilometer measurements in the Kathmandu Valley and implications for local air quality. Atmospheric Chemistry and Physics, 17(13), 8157-8176. https://doi.org/10.5194/acp-17-8157-2017

Munn, R.E. (1973). Secular increases in summer haziness in the Atlantic provinces. Atmosphere, 11(4), 156-161. https://doi.org/10.1080/00046973.1973.9648357

Nakajima, C., Chalise, S.R., & Shrestha, M.L. (1980). On the fog in Kathmandu Valley. Journal of the Japanese Society of Snow and Ice, 41(Special), 90-99. https://doi.org/10.5331/seppyo.41.Special_90

Niu, F., Li, Z., Li, C., Lee, K., & Wang, M. (2010). Increase of wintertime fog in China: Potential impacts of weakening of the Eastern Asian monsoon circulation and increasing aerosol loading. Journal of Geophysical Research: Atmospheres, 115(D7), 2009JD013484. https://doi.org/10.1029/2009JD013484

Panday, A.K., & Prinn, R.G. (2009). Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: Observations. Journal of Geophysical Research: Atmospheres, 114(D9), 2008JD009777. https://doi.org/10.1029/2008JD009777

Panday, A.K., Prinn, R.G., & Schär, C. (2009). Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: 2. Modeling results. Journal of Geophysical Research: Atmospheres, 114(D21), 2008JD009808. https://doi.org/10.1029/2008JD009808

Putero, D., Cristofanelli, P., Marinoni, A., Adhikary, B., Duchi, R., Shrestha, S.D., Verza, G.P., Landi, T.C., Calzolari, F., & Busetto, M. (2015). Seasonal variation of ozone and black carbon observed at Paknajol, an urban site in the Kathmandu Valley, Nepal. Atmospheric Chemistry and Physics, 15(24), 13957-13971. https://doi.org/10.5194/acp-15-13957-2015

Regmi, G., Shrestha, S., Maharjan, S., Khadka, A.K., Regmi, R.P., & Kaphle, G.C. (2020). The weather hazards associated with the US-Bangla aircraft accident at the Tribhuvan international airport, Nepal. Weather and Forecasting, 35(5), 1891-1912. https://doi.org/10.1175/WAF-D-19-0183.1

Safai, P.D., Ghude, S., Pithani, P., Varpe, S., Kulkarni, R., Todekar, K., Tiwari, S., Chate, D.M., Prabhakaran, T., Jenamani, R.K., & Rajeevan, M.N. (2019). Two-way relationship between aerosols and fog: A case study at IGI airport, New Delhi. Aerosol and Air Quality Research, 19(1), 71-79. https://doi.org/10.4209/aaqr.2017.11.0542

Saikawa, E., Panday, A., Kang, S., Gautam, R., Zusman, E., Cong, Z., Somanathan, E., & Adhikary, B. (2019). Air Pollution in the Hindu Kush Himalaya. In P. Wester, A. Mishra, A. Mukherji, & A. B. Shrestha (Eds.), The Hindu Kush Himalaya Assessment (pp. 339-387). Springer International Publishing. https://doi.org/10.1007/978-3-319-92288-1_10

Sapkota, B. (2002). Suspended Matter in the Urban Air of Kathmandu Valley.

Sapkota, B.K. (1996). Study of visibility and particulate pollution over Kathmandu Valley. Project Report, Institute of Engineering, Pulchowk Campus.

Sarkar, S., Chokngamwong, R., Cervone, G., Singh, R. P., & Kafatos, M. (2006). Variability of aerosol optical depth and aerosol forcing over India. Advances in Space Research, 37(12), 2153-2159. https://doi.org/10.1016/j.asr.2005.09.043

Sen, P.K. (1968). Estimates of the Regression Coefficient Based on Kendall's Tau. Journal of the American Statistical Association, 63(324), 1379-1389. https://doi.org/10.1080/01621459.1968.10480934

Sharma, C.K. (1997). Urban air quality of Kathmandu valley "Kingdom of Nepal." Atmospheric Environment, 31(17), 2877-2883. https://doi.org/10.1016/S1352-2310(96)00346-9

Shrestha, S., Moore, G.A., & Peel, M.C. (2018). Trends in winter fog events in the Terai region of Nepal. Agricultural and Forest Meteorology, 259, 118-130. https://doi.org/10.1016/j.agrformet.2018.04.018

Shrestha, S., Peel, M.C., & Moore, G.A. (2023). Cold waves in Terai region of Nepal and farmer's perception of the effect of fog events and cold waves on agriculture. Theoretical and Applied Climatology, 151(1-2), 29-45. https://doi.org/10.1007/s00704-022-04262-7

Singh, A., & Dey, S. (2012). Influence of aerosol composition on visibility in megacity Delhi. Atmospheric Environment, 62, 367-373. https://doi.org/10.1016/j.atmosenv.2012.08.048

Singh, J., Giri, R.K., & Kant, S. (2007). Radiation fog viewed by INSAT-1 D and Kalpana Geo-Stationary satellite. Mausam, 58(2), 251-260. https://doi.org/10.54302/mausam.v58i2.1228

Srivastava, S.K., Sharma, A.R., & Sachdeva, K. (2016). A ground observation based climatology of winter fog: Study over the Indo-Gangetic Plains, India. International Journal of Environmental and Ecological Engineering, 10(7), 742-753.

Stjern, C.W., Stohl, A., & Kristjánsson, J.E. (2011). Have aerosols affected trends in visibility and precipitation in Europe? Journal of Geophysical Research, 116(D2), D02212. https://doi.org/10.1029/2010JD014603

Streets, D.G., Wu, Y., & Chin, M. (2006). Two‐decadal aerosol trends as a likely explanation of the global dimming/brightening transition. Geophysical Research Letters, 33(15), 2006GL026471. https://doi.org/10.1029/2006GL026471

Syed, F.S., Körnich, H., & Tjernström, M. (2012). On the fog variability over south Asia. Climate Dynamics, 39(12), 2993-3005. https://doi.org/10.1007/s00382-012-1414-0

Timsina, N.P., Shrestha, A., Poudel, D.P., & Upadhyaya, R. (2020). Trend of urban growth in Nepal with a focus in Kathmandu Valley: A review of processes and drivers of change. https://doi.org/10.7488/ERA/722

Vautard, R., Yiou, P., & Van Oldenborgh, G.J. (2009). Decline of fog, mist and haze in Europe over the past 30 years. Nature Geoscience, 2(2), 115-119. https://doi.org/10.1038/ngeo414

Wang, K., Dickinson, R.E., & Liang, S. (2009). Clear Sky Visibility Has Decreased over Land Globally from 1973 to 2007. Science, 323(5920), 1468-1470. https://doi.org/10.1126/science.1167549

WMO. (1992). International meteorological vocabulary, WMO-182. World Meteorological Organization. https://library.wmo.int/records/item/35809-international-meteorological-vocabulary

Wu, D. (2006). More discussions on the differences between haze and fog in city. Guangdong Meteorology, 32, 9-15.

Yan, S., Zhu, B., Huang, Y., Zhu, J., Kang, H., Lu, C., & Zhu, T. (2020). To what extents do urbanization and air pollution affect fog? Atmospheric Chemistry and Physics, 20(9), 5559-5572. https://doi.org/10.5194/acp-20-5559-2020

Yue, S., & Wang, C. (2004). The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resources Management, 18(3), 201-218. https://doi.org/10.1023/B:WARM.0000043140.61082.60

Zhang, Q.H., Zhang, J.P., & Xue, H.W. (2010). The challenge of improving visibility in Beijing. Atmospheric Chemistry and Physics, 10(16), 7821-7827. https://doi.org/10.5194/acp-10-7821-2010

Downloads

Published

2024-07-12

How to Cite

Kathayat, B., Panday, A. K., Pokharel, B., & Chapagain, N. P. (2024). Intensifying Haze and Disappearing Dense Fog in Winter at Tribhuvan International Airport, Kathmandu: Impacts in Aviation. Journal of Institute of Science and Technology, 29(1), 35–45. https://doi.org/10.3126/jist.v29i1.56933

Issue

Section

Research Articles