First-principles Study of Electronic and Magnetic Properties of Two-dimensional Hexagonal Boron Nitride Doped with Germanium and Tin Atoms
DOI:
https://doi.org/10.3126/jist.v27i1.46717Keywords:
Band gap, density functional theory, formation energy, half metallicityAbstract
For the study of geometrical structure, stability, and electronic and magnetic properties of Germanium and tin-doped two-dimensional hexagonal boron nitride (h-BN), First-principles calculations have been carried out. Plane-wave pseudo-potential method in association with the density functional theory (DFT) framework used in Quantum ESPRESSO codes has been implemented to perform the calculations. A 3X3 supercell size substitutional doping of a single Boron or Nitrogen atom was carried out for the study. Pristine h-BN showed non-magnetic behavior with comprehensive gap material having an indirect band gap of 4.64eV. The doping effect of Ge and Sn atoms at the B-site was energetically more favorable than N-site. The defected h-BN sheet was found to be severely distorted with remarkable alteration in bond length and angles around the defected sites. Ge doped h-BN showed semiconducting properties with a reduced band gap in comparison to the insulating nature of pristine h-BN, whereas half metallicity was noticed in Sn doped h-BN system. Both the systems showed a magnetic moment of 1.0 µB.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Institute of Science and Technology, T.U.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The views and interpretations in this journal are those of the author(s). They are not attributable to the Institute of Science and Technology, T.U. and do not imply the expression of any opinion concerning the legal status of any country, territory, city, area of its authorities, or concerning the delimitation of its frontiers of boundaries.
The copyright of the articles is held by the Institute of Science and Technology, T.U.