Analysis of L2 Regularization Hyper Parameter for Stock Price Prediction
DOI:
https://doi.org/10.3126/jist.v26i1.37830Keywords:
Gated recurrent unit, L2-regularization, Neural network, Regularization hyperparameter, Stock priceAbstract
Nowadays stock price prediction is an active area of research among machine learning researchers. One of the main problems with machine learning models is overfitting. Regularization techniques are widely used approaches to avoid over-fitted models. L2 regularization is one of the most popular and widely used regularization techniques. Regularization hyperparameter (ʎ) is one key parameter to be optimized for a well-generalized machine learning model. Hyperparameters can’t be learned by machine learning models during the learning process. We need to find their optimal value through experiments. This research work analyzed the L2 regularization hyperparameter used with a gated recurrent unit (GRU) network for stock price prediction. We experimented with five stocks from the Nepal Stock Exchange (NEPSE) and observed that stock price can be predicted with lower mean squared errors (MSEs) when the value of ʎ was around 0.0005. Therefore, this research paper recommended using ʎ=0.0005 with L2 regularization for stock price prediction.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
The views and interpretations in this journal are those of the author(s). They are not attributable to the Institute of Science and Technology, T.U. and do not imply the expression of any opinion concerning the legal status of any country, territory, city, area of its authorities, or concerning the delimitation of its frontiers of boundaries.
The copyright of the articles is held by the Institute of Science and Technology, T.U.