Structure and Symmetrization of Hydrogen Bonding in Ices VIII and X at High Pressure: A Density Functional Theory Approach
DOI:
https://doi.org/10.3126/jist.v19i2.13846Keywords:
Quantum Espresso, Ice VIII, Ice X, DFTAbstract
We study the change in structural properties of ice by taking initial structure of “ice VIII”, with space group symmetry I41/amd, as a function of elevating pressure up to 120 GPa in density-functional theory (DFT) level of calculations implemented by Quantum ESPRESSO package. Consistent with the standard laws of thermodynamics, our calculations show that the physical size (volume and cell parameters) of the unit cell compresses monotonically on increasing pressure. We also compare our DFT results of these parameters with the available experimental values performed at finite temperature. The comparison shows good agreement between the quantities, within 5%, with slightly higher experimental values. At 100 GPa of pressure, hydrogen atom comes exactly at the midpoint of two boneded oxygens, called hydrogen-bonded symmetrization, which at low pressure remains nearby one of the oxygens. This symmmetrized structure is characterized by a new phase of the system known as “ice X” and the boundary pressure, 100 GPa, defines the transition pressure (P0) for changing phase from “ice VIII” to “ice X”. The transition pressure (P0) of the present work agrees well within 2% of previously reported results.
Journal of Institute of Science and Technology, 2014, 19(2): 14-19
Journal of Institute of Science and Technology, 2014, 19(2): 14-18
Downloads
Downloads
Published
How to Cite
Issue
Section
License
The views and interpretations in this journal are those of the author(s). They are not attributable to the Institute of Science and Technology, T.U. and do not imply the expression of any opinion concerning the legal status of any country, territory, city, area of its authorities, or concerning the delimitation of its frontiers of boundaries.
The copyright of the articles is held by the Institute of Science and Technology, T.U.