Applications of halophilic enzymes in the pharmaceutical industry and medicine

Authors

DOI:

https://doi.org/10.3126/njes.v13i2.74503

Keywords:

Economical, ecofriendly, intracellular, microorganisms, purification

Abstract

Halophiles are an important group of microorganisms that can grow under high salt conditions. The paper here describes the enzymes of halophiles and their mode of action. The application of halophiles in industries is also covered. The halophilic microorganisms have immense significance; hence, this paper describes the halophilic microorganisms and their enzymes. The paper highlights mainly the enzymes, i.e., cellulase, esterase, lipase, protease, laccase, L-asparaginase, and L-glutaminase from halophiles, which have industrial applications, and the study of these enzymes is very important.

Downloads

Download data is not yet available.
Abstract
88
PDF
50

References

Amoozegar, M.A., Safarpour, A., Noghabi, K.A., Bakhtiary, T., & Ventosa, A. (2019). Halophiles and their vast potential in biofuel production. Frontiers in Microbiology, 10, 1895.

Anbu, P., Gopinath, S.B., Cihan, A.C., & Chaulagain, B.P. (2013). Microbial enzymes and their applications in industries and medicine. Biomed Research International, 2013, 204014.

Biswas, J., & Paul, A. (2017). Diversity and production of extracellular polysaccharide by halophilic microorganisms. Biodiversity International Journal, 1, 32-39.

Bolobova, A.V., Simankova, M.V., & Markovitch, N.A. (1992). Cellulase complex of a new halophilic bacterium, Halocella cellulolytica. Microbiology, 61, 557-562.

Bonete, M.J., Pire, C., Llorca, F.I., & Camacho, M.L. (1996). Glucose dehydrogenase from the halophilic Archaeon Haloferax Mediterranei: Enzyme purification, characterisation and N-terminal sequence. FEBS Letters, 383, 227-229.

Cai, Z.W., Ge, H.H., Yi, Z.W., Zeng, R.Y., & Zhang, G.Y. (2018). Characterization of a novel psychrophilic and halophilic β-1,3-xylanase from deep-sea bacterium, Flammeovirgapacifica strain WPAGA1. International Journal of Biological Macromolecules, 118, 2176-2184.

Camacho, R.M., Mateos, J.C., González-Reynoso, O., Prado, L.A., & Cordova, J. (2009). Production and characterization of esterase and lipase from Haloarcula marismortui. Journal of Industrial Microbiology and Biotechnology, 36, 901-909.

Chand, S., & Mishra, P. (2003). Research and application of microbial enzymes. India's. Contribution. Advances in Biochemical Engineering/ Biotechnology, 85, 95-124.

Chuprom, J., Bovornreungroj, P., Ahmad, M., Kantachote, D., & Dueramae, S. (2016). Approach toward enhancement of halophilic protease production by Halobacterium sp. strain LBU50301 using statistical design response surface methodology. Biotechnology Reports, 10, 17-28

Marden, D., & Zaccai, G. (2004). Molecular adaptation: the malate dehydrogenase from the extreme halophilic bacterium Salinibacterruber behaves like a non-halophilic protein. Biochimie, 86, 295-303.

Danis, O., Ogan, A., Tatlican, P., Attar, A., Cakmakci, E., Mertoglu, B., & Birbir, M. (2015). Preparation of poly (3-hydroxybutyrate-co-hydroxyvalerate) films from halophilic archaea and their potential use in drug delivery. Extremophiles, 19, 515-524.

DasSarma, S., & DasSarma, P. (2015). Halophiles and their enzymes: negativity put to good use. Current Opinion in Microbiology, 25, 120-126.

Dutta, B., & Bandopadhyay, R. (2022). Biotechnological potentials of halophilic microorganisms and their impact on mankind. Beni-Suef University Journal of Basic and Applied Sciences, 11, 75.

Dym, A., Mavaerech, M., & Sussman, J.L. (1995). Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium. Science, 267, 1344-1346.

Edbeib, M. F., Wahab, R.A., & Huyop, F. (2016). Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments. World Journal of Microbiology and Biotechnology, 32, 1-23.

Enache, M., & Kamekura, M. (2010). Hydrolytic enzymes of halophilic microorganisms and their economic values. Romanian Journal of Biochemistry, 47, 47-59.

Fathepure, B.Z. (2014). Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Frontiers in Microbiology, 5, 173.

Fitt, P.S., & Baddoo, P. (1979). Separation and purification of the alkaline phosphatase and a phosphodiesterase from Halobacterium cutirubrum. Biochemical Journal, 181, 347-53.

Fukushima, T., Mizuki, T., Echigo, A., Inoue, A., & Usami, R. (2005). Organic solvent tolerance of halophilic α-amylase from a Haloarchaeon, Haloarcula sp. strain S-1. Extremophiles, 9, 85-89.

Gao, C., Jin, M., Yi, Z., & Zeng, R.J. (2015). Characterization of a recombinant thermostable arylsulfatase from deep-sea bacterium Flammeovirgapacifica. Journal of Microbiology and Biotechnology, 25, 1894-1901.

Ghosh, M., Grunden, A.M., Dunn, D.M., Weiss, R., & Adams, M.W. (1998). Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcusfuriosus. Journal of Bacteriology, 180, 4781-4789.

Ghosh, S., Kumar, S., & Khare, S. K. (2019). Microbial diversity of saline habitats: an overview of biotechnological applications. In Giri, B., & Varma, A. (Eds.), Microorganisms in Saline Environments: Strategies and Functions. Springer, Cham, pp. 65-92.

Haque, R., Paradisi, F., & Allers, T. (2020). Haloferax volcanii for biotechnology applications: challenges, current state and perspectives. Applied Microbiology and Biotechnology, 104, 1371-1382.

Hou, J., & Cui, H.L. (2018). In-vitro antioxidant, antihemolytic, and anticancer activity of the carotenoids from halophilic archaea. Current Microbiology, 75, 266-271.

Jeon, H., Jeong, J., Baek, K., McKie-Krisberg, Z., Polle, J.W., & Jin, E. (2016). Identification of the carbonic anhydrases from the unicellular green alga Dunaliella salina strain CCAP 19/18. Algal Research, 19, 12-20.

Kanekar, P., Kanekar, S., Kelkar, A., & Dhakephalkar, P. (2012). Halophiles-taxonomy, diversity, physiology and applications. In Satyanarayana, T., & Johri, B. (Eds.), Microorganisms in Environmental Management. Springer, Dordrecht, pp. 1-34.

Karbalaei-Heidari, H.R., Amoozegar, M.A., Hajighasemi, M., Ziaee, A.A., & Ventosa, A. (2009). Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium Halobacillus karajensis. Journal of Industrial Microbiology and Biotechnology, 36, 21-27.

Karray, F., Ben Abdallah, M., Kallel, N., Hamza, M., Fakhfakh, M., & Sayadi, S. (2018). Extracellular hydrolytic enzymes produced by halophilic bacteria and archaea isolated from hypersaline lake. Molecular Biology Reports, 45, 1297-1309.

Le Borgne, S., Paniagua, D., & Vazquez-Duhalt, R. (2014). Biodegradation of organic pollutants by halophilic bacteria and archaea. Journal of Molecular Microbiology and Biotechnology, 15, 74-92.

Lee, Y.H., & Fan, L.T. (1980). Properties and mode of action of cellulase. In Advances in Biochemical Engineering. Springer, Berlin, Heidelberg.

Li, A.N., & Li, D.C. (2009). Cloning, expression and characterization of the serine protease gene from Chaetomium thermophilum. Journal of Applied Microbiology, 106, 369-380.

Madern, D., Ebel, C., & Zaccai, G. (2000). Halophilic adaptation of enzymes. Extremophiles. 4, 91-98.

Makhdoumi, K.A., Amoozegar, M.A., & Mahmodi, K.E. (2011). Diversity of hydrolytic enzymes in haloarchaeal strains isolated from Salt Lake. International Journal of Environmental Science and Technology, 8, 705-714.

Margesin, R., & Schinner, F. (2001). Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles, 5, 73-83.

Martínez Cuesta, S., Rahman, S.A., Furnham, N., & Thornton, J.M. (2015). The classification and evolution of enzyme function. Biophysical Journal, 109, 1082-6.

Maturrano, L., Valens-Vadell, M., Roselló-Mora, R., & Antón, J. (2006). Salicolamarasensis gen. nov., sp. nov., an extremely halophilic bacterium isolated from the Maras solar salterns in Perú. International Journal of Systematic and Evolutionary Microbiology, 56, 1685-1691.

Moreno, M.L., Dolores, P., María, T.G., & Encarnación, M. (2013). Halophilic bacteria as a source of novel hydrolytic enzymes. Life, 3, 38-51.

Moreno, M.L., García, M.T., Ventosa, A., & Mellado, E. (2009). Characterization of Salicola sp. IC10, a lipase- and protease-producing extreme halophile. FEMS Microbiology Ecology, 68, 59-71.

Moshfegh, M., Shahverdi, A.R., Zarrini, G., & Faramarzi, M.A. (2013). Biochemical characterization of an extracellular polyextremophilic α-amylase from the halophilic archaeon Halorubrum xinjiangense. Extremophiles, 17, 677-687.

Munawar, N., & Engel, P. (2013). Halophilic enzymes: Characteristics, structural adaptation and potential applications for biocatalysis. Current Biotechnology, 2, 334-344.

Oren, A. (2002). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology and Biotechnology, 28, 56-63.

Oren, A. (2006). Life at high salt concentrations. The Prokaryotes. 3, 263-282.

Ortenberg, R., Rozenblatt-Rosen, O., & Mevarech, M. (2000). The extremely halophilic archaeon Haloferax volcanii has two very different dihydrofolate reductases. Molecular Microbiology, 35, 1493-1505.

Ovreas, L., Bourne, D., Sandaa, R.A., Casamayor, E.O., Benlloch, S., & Goddard, V. (2003). Response of bacterial and viral communities to nutrient manipulations in sea water mesocosms. Aquatic Microbial Ecology, 31, 109-121.

Oyewusi, H.A., Wahab, R.A., & Huyop, F. (2020). Dehalogenase-producing halophiles and their potential role in bioremediation. Marine Pollution Bulletin, 160, 111603.

Patel, N., Rai, D., Shivam, S., Shahane, & Mishra, U. (2019). Lipases: Sources, production, purification, and applications. Recent Patents on Biotechnology, 13, 45-56.

Patel, S., & Saraf, M. (2015). Perspectives and application of halophilic enzymes. In Maheshwari, D., & Saraf, M. (Eds.), Halophiles: Sustainable Development and Biodiversity. Springer, Cham.

Perez-Pomares F., Bautista, V., Ferrer, J., Pire, C., Marhuenda-Egea, F.C., & Bonete, M.J. 2003. α-amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles, 7, 299-306.

Prakash, B., Vidyasagar, M., Madhukumar, M.S., Muralikrishna, G., & Sreeramulu, K. (2009). Production, purification, and characterization of two extremely halotolerant, thermostable, and alkali-stable α-amylases from Chromohalobacter sp. TVSP 101. Process Biochemistry, 44, 210-215.

Qin, Y., Huang, Z., & Liu, Z. (2013). A novel cold-active and salt-tolerant α-amylase from marine bacterium Zunongwangia profunda: Molecular cloning, heterologous expression and biochemical characterization. Extremophiles, 18, 271-281.

Quillaguamán, J., Guzmán, H., Van-Thuoc, D., & Hatti-Kaul, R. (2010). Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Applied Microbiology and Biotechnology, 85, 1687-1696.

Rathakrishnan, D., & Gopalan, A.K. (2022). Isolation and characterization of halophilic isolates from Indian salterns and their screening for production of hydrolytic enzymes. Environmental Challenges, 6, 100426.

Raza, S., & Ameen, A. (2017). Halophiles and their important enzymes used for biotechnology application. Lahore Garrison University Journal of Life Science, 1, 1-5.

Robinson, P.K. (2015). Enzymes: principles and biotechnological applications. Essays in Biochemistry, 59, 1-41.

Rohban, R., Amoozegar, M.A., & Ventosa, A. (2009). Screening and isolation of halophilic bacteria producing extracellular hydrolyses from HowzSoltan Lake, Iran. Journal of Industrial Microbiology and Biotechnology, 36, 333-340.

Ruginescu, R., Gomoiu, I., Popescu, O., Cojoc, R., Neagu, S., Lucaci, I., Batrinescu-Moteau, C., & Enache, M. (2020). Bioprospecting for novel halophilic and halotolerant sources of hydrolytic enzymes in brackish, saline and hypersaline lakes of Romania. Microorganisms, 8, 1903.

Salameh, M.A., & Wiegel, J. (2007). Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica. Applied and Environmental Microbiology, 73, 7725-7731.

Sanchez-Porro, C., Martin, S., Mellado, E., & Ventosa, A. (2003). Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. Journal of Applied Microbiology, 94, 295-300.

Sharma, K.M., Kumar, R., Panwar, S., & Kumar, A. (2017). Microbial alkaline proteases: Optimization of production parameters and their properties. Journal of Genetic Engineering and Biotechnology, 15, 115-126.

Shirazian P., Asad, S., & Amoozegar, M.A. (2016). The potential of halophilic and halotolerant bacteria for the production of antineoplastic enzymes: L-asparaginase and L-glutaminase. EXCLI Journal, 15, 268-279.

Siglioccolo, A., Paiardini, A., Piscitelli, M., & Pascarella, S. (2011). Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Structural Biology, 11, 50.

Tadeo, X., López-Méndez, B., Trigueros, T., Laín, A., Castaño., D., & Millet, O. (2009). Structural basis for the amino acid composition of proteins from halophilic archea. PLoS Biology, 7, e1000257.

Tan, T.C., Mijts, B.N., Swaminathan, K., Patel, B.C., & Divne, C. (2008). Crystal structure of the polyextremophilic α-amylase AmyB from Halothermothrix orenii: Details of a productive enzyme-substrate complex and an N domain with a role in binding raw starch. Journal of Molecular Biology, 378, 850-868.

Tiwari, S., Srivastava, R., Singh, C.S., Shukla, K., Singh, R.K., Singh, P., Singh, R., Singh, N.L., & Sharma. R. (2015). Amylases: an overview with special reference to alpha amylase. Journal of Global Biosciences, 4, 1886-1901.

Ventosa, A., Nieto, J.J., & Oren, A. (1998). Biology of moderately halophilic aerobic bacteria. Microbiology and Molecular Biology Reviews, 62, 504-544.

Ventosa, A., de la Haba, R. R., Sanchez-Porro, C., & Papke, R.T. (2015). Microbial diversity of hypersaline environments: a metagenomic approach. Current Opinion in Microbiology, 25, 80-87.

Vigneshwari, J., Gnanasekaran, A., Kumar, D.K., Manikandan, P., Senthilkumar, P.K., & Vijayakumar, N. (2021). Review on halophilic microbes and their applications. Bulletin of Environment, Pharmacology and Life Sciences, 10, 23-36.

Wang, C.Y., Hsieh, Y.R., Ng, C.C., Chan, H., Lin, H.T., Tzeng, W.S., & Shyu, Y.T. (2009). Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU05. Enzyme and Microbial Technology, 44, 373-379.

Wu, G., Zhang, X., Wei, L., Wu, G., Kumar, A., Mao, T., & Liu, Z. (2015). A cold-adapted, solvent and salt tolerant esterase from marine bacterium Psychrobacter pacificensis. International Journal of Biological Macromolecules, 81, 180-187.

Downloads

Published

2025-09-09

How to Cite

Velankar, R., Shinde, V., Kothari, M., & Gunjal, A. (2025). Applications of halophilic enzymes in the pharmaceutical industry and medicine. Nepal Journal of Environmental Science, 13(2), 23–30. https://doi.org/10.3126/njes.v13i2.74503

Issue

Section

Review Articles