Argeli Bast Fiber as Wonder Reinforcing Agent for Biodegradable Polymer Composites
DOI:
https://doi.org/10.3126/njes.v12i2.68409Keywords:
Argeli fiber, morphology, PLA/PBAT blend, polymer composites, shore hardnessAbstract
This paper has aimed to concisely discuss the insight into the potential of the Argeli bast fibers as reinforcing agents in eco-friendly polymer composites. The Argeli fibers used in this work as biofiller were prepared by mechanical disintegration of the sun-dried Argeli bast fiber bundles followed by chemical treatments and hence incorporated into the matrix of the PLA/PBAT blend via melt compounding. The materials were characterized by advanced analytical tools such as tensile and Shore D hardness testing, and optical and electron microscopy. The Argeli fibers, originally comprising the compact bundles of microfibrils glued together, were found to exfoliate into constituent microfibers and distribute uniformly in the PLA/PBAT blends matrix upon melt processing. The addition of Argeli fiber into the PLA/PBAT mixture led to a reinforcement of the polymeric matrix with an increase in the tensile modulus as well as Shore D hardness, the properties being further enhanced with chemical treatments of the fibers. The latter enhancement in properties was attributed to the chemical treatment-induced formation of a highly crystalline pure cellulosic framework due to the dissolution of the amorphous parts as well as other impurities from the neat fibers. The Argeli fibers exhibited a potential reinforcing agent for the biodegradable polymer composite.
Downloads
References
Adhikari, R., Bhandari, N. L., Causin, V., Le, H. H., Radusch, H.-J., Michler, G. H., & Saiter, J. M. (2012). Study of morphology, mechanical properties, and thermal behavior of green aliphatic-aromatic copolyester/bamboo flour composites. Polymer and Engineering Science, 52 (11), 2296–2303, https://doi.org/10.1002/pen.23335
Al-Itry, R., Lamnawar, K., & Maazouz, A. (2012). Improvement of thermal stability, rheological, and mechanical properties of PLA, PBAT, and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, 97(10), 1898–1914. https://doi.org/10.1016/j.polymdegradstab.2012.06.028
Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977–1984. https://doi.org/10.1098/rstb.2008.0304
Chaiwutthinan, P., Chuayjuljit, S., Srasomsub, S., & Boonmahitthisud, A. (2019). Composites of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with wood fiber and wollastonite: Physical properties, morphology, and biodegradability. Journal of Applied Polymer Science, 136(21), 8–10. https://doi.org/10.1002/app.47543
Correia, C. A., & Valera, T. S. (2019). Cellulose nanocrystals and jute fiber-reinforced natural rubber composites: Cure characteristics and mechanical properties. Materials Research, 22, 1–9. https://doi.org/10.1590/1980-5373-MR-2019-0192
Devasahayam, S., Bhaskar Raju, G., & Mustansar Hussain, C. (2019). Utilization and recycling of end-of-life plastics for sustainable and clean industrial processes including the iron and steel industry. Materials Science for Energy Technologies, 2(3), 634–646. https://doi.org/10.1016/j.mset.2019.08.002
Dhakal, K. N., Khanal, S., Krause, B., Lach, R., Grellmann, W., Le, H. H., Das, A., Wießner, S., Heinrich, G., Pionteck, J., & Adhikari, R. (2022a). Electrically conductive and piezoresistive polymer nanocomposites using multiwalled carbon nanotubes in a flexible copolyester: Spectroscopic, morphological, mechanical, and electrical properties. Nano-Structures and Nano-Objects, 29, 100806. https://doi.org/10.1016/j.nanoso.2021.100806
Dhakal, K. N., Krause, B., Lach, R., Wutzler, A., Grellmann, W., Le, H. H., Das, A., Wießner, S., Heinrich, G., & Adhikari, R. (2022b). Electrically conductive nanocomposites based on poly(lactic acid)/flexible copolyester blends with multi-walled carbon nanotubes. Journal of Applied Polymer Science, 139(4), 1–12. https://doi.org/10.1002/app.51554
Fukushima, K., Abbate, C., Tabuani, D., Gennari, M., & Camino, G. (2009). Biodegradation of poly(lactic acid) and its nanocomposites. Polymer Degradation and Stability, 94 (10),1646 – 1655. https://doi.org/10.1016/j.polymdegradstab.2009.07.001.
Gautam, P., Grossmann L., Pradhan S., Bhandari N. L., Nase M., & Adhikari, R. (2024). Physicochemical and structural investigation of Argeli (Edgeworthia gardneri) bast fiber. Journal of Research Updates in Polymer Science, (13), 54-65. https://doi.org/10.6000/1929-5995.2024.13.07
Giri, J., Lach, R., Grellmann, W., Susan, M. A. B. H., Saiter, J. M., Henning, S., Katiyar, V., & Adhikari, R. (2019). Compostable composites of wheat stalk micro- and nanocrystalline cellulose and poly(butylene adipate-co-terephthalate): Surface properties and degradation behavior. Journal of Applied Polymer Science, 136(43), 1–11. https://doi.org/10.1002/app.48149
Heredia-Guerrero, J. A., Benítez, J. J., Domínguez, E., Bayer, I. S., Cingolani, R., Athanassiou, A., & Heredia, A. (2014). Infrared and Raman spectroscopic features of plant cuticles: A review. Frontiers in Plant Science, 5, 305. https://doi.org/10.3389/fpls.2014.00305
Hernández-López, M., Correa-Pacheco, Z. N., Bautista-Baños, S., Zavaleta-Avejar, L., Benítez-Jiménez, J. J., Sabino-Gutiérrez, M. A., & Ortega-Gudiño, P. (2019). Bio-based composite fibers from pine essential oil and PLA/PBAT polymer blend. Morphological, physicochemical, thermal, and mechanical characterization. Materials Chemistry and Physics, 234, 345–353. https://doi.org/10.1016/j.matchemphys.2019.01.034
Husnil, Y. A., Ismojo, Handayani, A. S., Setiaji, D. A., & Chalid, M. (2019). The effect of alkalization and bleaching treatment of Sorghum fibre on the crystallinity index of PP composite. IOP Conference Series: Materials Science and Engineering, 509(1), 012016. https://doi.org/10.1088/1757-899X/509/1/012016
Inoué, S., & Leblond, C. P. (1986). The microfibrils of connective tissue: I. Ultrastructure. American Journal of Anatomy, 176(2), 121–138. https://doi.org/10.1002/aja.1001760203
Ku, H., Wang, H., Pattarachaiyakoop, N., & Trada, M. (2011). A review on the tensile properties of natural fiber-reinforced polymer composites. Composites Part B: Engineering, 42(4), 856–873. https://doi.org/10.1016/j.compositesb.2011.01.010
Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092
Peterlin, A., & Ingram, P. (1970). Morphology of secondary wall fibrils in cotton. Textile Research Journal, 40(4), 345–354. https://doi.org/10.1177/004051757004000407
Pokhrel, S., Sigdel, A., Lach, R., Slouf, M., Sirc, J., Katiyar, V., & Adhikari R. (2021). Starch-based biodegradable film with poly(butylene adipate-co-terephthalate): preparation, morphology, thermal and biodegradation properties. Journal of Macromolecular Science, Part A, 58(9), 610–621. https://doi.org/10.1080/10601325.2021.1920838
Sobczak, L., Brüggemann, O., & Putz, R. F. (2013). Polyolefin composites with natural fibers and wood-modification of the fiber/filler-matrix interaction. Journal of Applied Polymer Science, 127(1), 1–17. https://doi.org/10.1002/app.36935
Tokiwa, Y., Calabia, B. P., Ugwu, C. U., & Aiba, S. (2009). Biodegradability of plastics. International Journal of Molecular Sciences, 10(9), 3722–3742. https://doi.org/10.3390/ijms10093722
Weng, Y. X., Jin, Y. J., Meng, Q. Y., Wang, L., Zhang, M., & Wang, Y. Z. (2013). Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polymer Testing, 32(5), 918–926. https://doi.org/10.1016/j.polymertesting.2013.05.001
Wu, Y., Gao, X., Wu, J., Zhou, T., Nguyen, T. T., & Wang, Y. (2023). Biodegradable polylactic acid and its composites: Characteristics, processing, and sustainable applications in sports. Polymers, 15(14), 3096. https://doi.org/10.3390/polym15143096
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Central Department of Environmental Science, Tribhuvan University
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.