Use of geometric Brownian motion to forecast stock market scenario using post covid-19 NEPSE index

Authors

DOI:

https://doi.org/10.3126/bibechana.v18i2.31180

Keywords:

Stochastic process, Geometric Brownian motion, NEPSE Index, Python simulation

Abstract

Stock market is one of the fields where the randomness is prominent factor to be considered. Although many stochastic process deals which the randomness found in nature through the interdisciplinary subject like Econophysics, many of them exhibits cumbersome trends. So, Geometric Brownian motion (GBM) is used to analyze the market scenario of Nepal on the basis of the parameter; NEPSE Index along with the prediction of indices through python programming platform. Python simulation was carried out to check the consistency by implying it to the stable market timeline 2003/2004. And after the verification of the model proposed in the stable market year, the model (GBM) is employed to the unstable timeline; pandemic situation by COVID-19 in 2020. Mapping of Nepal stock market through GBM was found to be consistent with the standard forecasting accuracy making GBM one of the flexible and consistent to predict stock market scenario of Nepal accounting the random nature.

BIBECHANA 18 (2) (2021) 50-60

Downloads

Download data is not yet available.
Abstract
717
pdf
474

Author Biography

Binil Aryal, Central Department of Physics, Tribhuvan University

Head of Central Department of Physics, Tribhuvan University

 

Downloads

Published

2021-02-25

How to Cite

Thapa, P., & Aryal, B. (2021). Use of geometric Brownian motion to forecast stock market scenario using post covid-19 NEPSE index. BIBECHANA, 18(2), 50–60. https://doi.org/10.3126/bibechana.v18i2.31180

Issue

Section

Research Articles