Effect of electron temperature in a magnetized plasma sheath using kinetic trajectory simulation
DOI:
https://doi.org/10.3126/bibechana.v18i1.29204Keywords:
Plasma-wall transition, Sheath, Presheath, Bohm criterion, Kinetic simulationAbstract
The understanding of the properties of magnetized plasma sheath has been various beneficial applications in surface treatment, electron emission gun, ion implantation, and nuclear fusion, etc. The effect of electron temperature on the magnetized plasma sheath has been studied for a fixed magnetic field and ion temperature. It has been observed that various plasma sheath parameters can be prominently altered by the varying temperature of the electron. The density of ion is influenced more by the change in electron temperature rather than the electron density. The temperature of the electron has a great effect at the wall, when electron temperature increases, the ion and electron densities at the wall decreases. This shows the potential at the wall also decreases follows the Poisson’s equation. Similarly, the electric field also decreases but total charge density increases when the electron temperature is increased.
BIBECHANA 18 (2021) 58-66
Downloads
Downloads
Published
How to Cite
Issue
Section
License
This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.