Oxidation of 2'-Hydroxy Chalcone Imines Dr. Bimal Kumar Kanth, Research Lab, Tribhuvan University M.M.A.M. Campus Biratnagar

Email : bimal.kanth@mmamc.tu.edu.np

Abstract

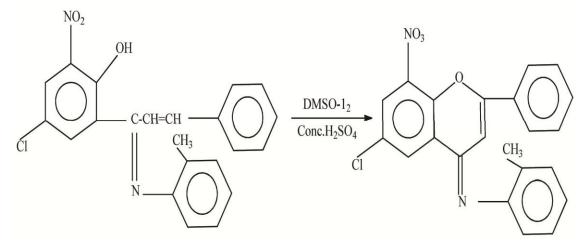
2'-hydroxy chalcone imines (III_{A-T}) on refluxing in DMSO for 2 hours in presence of catalytic amount of iodine in presence of conc. H_2SO_4 , afford the corresponding amino flavone (IV_{A-T}) in high yield. This method is quicker and appears to be of general applicability. The structures were established on the basis of spectral data (IR, NMR) and chemical reactions.

Kewords :- chalcone, refluxing, amino flavone, applicability

Articles information : Manuscript Receive : 20/07/2021, Review Date : 22/05/2022, Date of Acceptance : 15/10/2022, Publisher : Mahendra Morang Adarsh Multiple Campus, TUTA Unit, Biratnagar. DOI : https://doi.org/10.3126/tutaj.v10i1.74327 Journal Homepage : <u>https://nepjol.info/index.php/tutaj/index</u> Copy right (c) 2024 TUTA Journal This work is licensed under the Creative Commons CC BY-NC License. https://creativecommons.org/licenses/by-nc/4.0/

Introduction

The conversion of 2'-hydroxy chalcones into flavones by prolonged refluxing with SeO₂ in isoamyl alcohol [1] is time consuming and is applicable in those chalcones which do not have free hydroxyl group other than at 2'-position. The Kostanecki [2] method of converting 2'-hydroxy chalcones into flavones by the action of ethanolic alkali on chalcone dibromide has limited applications. The use of dimethyl sulphoxide (DMSO) as an oxidizing agent for affecting this conversion has been reported by several workers [3-5]. However the reagent DMSO-I₂ for the oxidation of 2'-hydroxy chalcones to flavones hasnot been used so far, though recently iodine-DMSO-sulphuric acid system has been applied [6] for dehydration of flavonoids. Recently 2-hydroxy chalcone or flavanone when refluxed with DMSO [7] in presence of catalytic amount of I₂ gives corresponding flavone in more than 80% yield and flavanone was converted into flavone by the use of DDQ [8] in dioxane. Recently chalconeimine is converted into flavone imine by oxidative cyclisation in presence of DMSO-I₂ [9-10].


In this communication synthesis of flavoneimine by oxidative cyclisation of chalconeimines is performed in DMSO medium in presence of catalytic amount of iodine and 2-3 drops of conc. H_2SO_4 .

Experimental

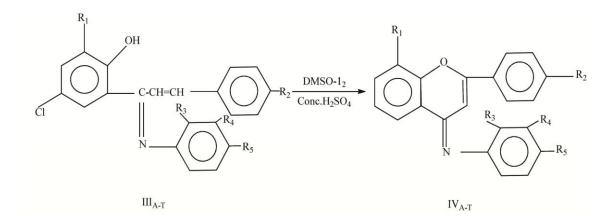
Synthesis of 6-chloro-8-nitro-4(0-methyl phenyl) imino flavone. 2'-hydroxy-3'- nitro-5'-chloro N-(0-methyl phenyl) chalcone imine (III_B) (0.01 mole) was dissolved in dimethyl

TUTA Journal Vol 9/10 (1), 2021/2022, ISSN : 2350-8892

sulphoxide (DMSO) (40 ml) and 2-3 drops of conc. H_2SO_4 and catalytic amount of iodine was added to this mixture and was refluxed for 2-3' hours on water both, cooled and diluted with ice cold water. The resulting solid was treated with 10% sodium thiosulphate solution to remove unreacted iodine and finally with water and crystallized from ethanol to give yellow crystalline compound. m.p. 286°C, yield 81%.

Properties and constitution of the compound (IV_B)

- 1. It is brown yellow crystalline solid m.p. 287°C.
- 2. From analytical data, compound (IVB) agreed with molecular formula $C_{22}H_{15}O_3N_2Cl$.
- 3. Elemental analysis of compound(IV_B)


Analysis	% C	%Н	% N
Found	65.23	3.10	7.12
Calculated	65.93	3.57	7.69

Spectral data of the compound (IV_B) is as follows:

- **IR (KBr) :-** 3072 cm⁻¹ (CH aromatic stretching), 2922 cm⁻¹ (CH aliphatic stretching), 1651 cm⁻¹ (C=N stretching), 1612 cm⁻¹ (C=C aromatic stretching), 1533 cm⁻¹ (C-NO₂ asymmetric stretching), 1354 cm⁻¹ (C-NO₂ symmetric stretching), 1252 cm⁻¹ (C-O stretching), 886 cm⁻¹ (tri substituted), 774 cm⁻¹ (C-Cl stretching).
- ii. NMR (ð) :- 1.25 (d, 3-H, -CH, -CH₃) 2.63 (S, 1H, C=CH) 6.94-8.47 (m, 11H, Ar-

TUTA Journal Vol 9/10 (1), 2021/2022, ISSN : 2350-8892

H). The other flavoneimines were prepared by the same method and are listed inTable I.

S.No.	Compound	R_1	R ₂	R ₃	R_4	R ₅	M.F.	M.W.	mp ^o C	%yie
										1
1	IV _A	NO_2	Н	Н	Η	Η	C21H13O3N2	376.5	107	82
							Cl			
2	IV _B	NO_2	Н	CH ₃	Η	Н	C22H1503N2C	390.5	287	82
							1			
3	IV _C	NO_2	Η	Н	Η	CH_3	C22H1503N2C	390.5	200	88
							1			
4	IV _D	NO_2	Η	NO_2	Η	Н	C21H12O5N3	421.5	75	84
							C1			
5	IV_E	NO_2	Η	Н	NO_2	Н	C21H12O5N3	421.5	74	85
							Cl			
6	IV_F	NO_2	Н	Н	Η	NO_2	C21 H12 O5 N3	421.	116	85
							C1			
7	IV_G	NO_2	Н	C1	Η	Н	C21H12O3N2	412	118	88
							C ₁₂			
8	IV_{H}	NO_2	Η	Н	Η	ОН	C21H13O3N2	376.	220	86
							C1			
9	IV_I	NO_2	Η	ОН	Η	Н	C21H13O3N2	376.	212	87
							C1			
10	IV_J	NO_2	Н	Н	Η	СООН		420.	120	82
							C1			
Π	IV _K	NO_2	OCH ₃	Н	Η	н	C22H15 O	406.	102	84
							4N2C1			
12	IV_L	NO_2	OCH ₃	CH_3	Η	Η	C23H17	420.	106	86

TUTA Journal Vol 9/10 (1), 2021/2022, ISSN : 2350-8892

							O4N2C1			
13	IV _M	NO ₂	OCH ₃	Н	Н	CH ₃	C23H17	420.5	112	86
							O4N2C1			
14	IV _N	NO ₂	OCH ₃	NO_2	Н	Н	C22H14	451.	118	87
							O6N3C1			
15	IVo	NO ₂	OCH ₃	Н	NO_2	Η	C22H14	451.	122	84
							O6N3C1			
16	IV _P	NO ₂	OCH ₃	Н	Н	NO_2	C22H14	451.	98	87
							O6N3C1			
17	IV _Q	NO ₂	OCH ₃	C1	Н	Η	C22H14	441	92	84
							O4N2C12			
18	IV _R	NO_2	OCH ₃	Н	Н	ОН	C22H15O4N2	406.	110	83
							C1			
19	IVs	NO ₂	OCH ₃	ОН	Н	Η	C22H15O4N2	406.	110	87
							C1			
20	IV _T	NO ₂	OCH ₃	Η	Η	СООН	C23H15O6N2	450.	92	82
							C1			

References

Mahal, H. S. and Venktraman, K., J. Chem. Soc., 569 (1936).

- Kessel Kaul, L. and Kostaneck, S., Von Ber dt Chem. Ges, 29, 1886, (1896).
- Barton, D. H. R., Gardener, B. J. and Wightman, R. H., J. Chem. Soc., 1855 (1964).
- Traynelir, V. J. and Hergenrother, W. L., J. Am. Chem. Soc., 86, 298 (1964).
- Albright, J. D. and Goldman, L., J. Am. Chem. Soc., 87, 4214 (1965).
- Fatma, Waseem, lqbal, Jawaid, Manchanda, Veena, Shaidawara and Raman, Wasiur, J. *Chem. Res. Synop*, 9, 289 (1984).
- Doshi, A. G., Soni, P. A. and Gupta, B. J., Indian J. of Chem., 25 (B), 759 (1986).

Mahal, H. S., Rai, K. S. and Venktraman, K. I., Chem. Soc., 866 (1936).

Ram, A. W., Doshi, A. G. and Raghuwanshi, P. R., Oriental, J. Chem., 14(2), 337-338 (1998).

Rajput, N. D., Ph. D. Thesis, "Reaction of para-chloro-meta cresol in the synthesis ofoxygen and nitrogen, containing hetercycles'. Amravati University, Amravati, 128-131 (2002).