
87Scientific Researches In Academia Vol. 2, Issue 2, July, 2024 ISSN: 3021-9108

Yang, J., Zhang, S., Lou, Y., Long, Q., Liang, Y., Xie, S., & Yuan, J. (2018). The
increased sex differences in susceptibility to emotional stimuli during
adolescence: an event-related potential study. Frontiers in Human
Neuroscience, 11(January), 1–12. https://doi.org/10.3389/fnhum.2017.00660

Yang, X. J., Liu, Q. Q., Lian, S. L., & Zhou, Z. K. (2020). Are bored minds more likely
to be addicted? The relationship between boredom proneness and
problematic mobile phone use. Addictive Behaviors, 108(May), 106426.
https://doi.org/10.1016/j.addbeh.2020.106426

TRAVELING SALESMAN PROBLEM: A COMPREHENSIVE
REVIEW AND COMPUTATIONAL IMPLEMENTATION IN

PYTHON

Saishab Bhattarai
Department of Computational Mathematics,

Kathmandu University, Dhulikhel, Kavre
saishab.bhattarai.75@gmail.com

ABSTRACT

The Traveling Salesman Problem (TSP) is a well-known problem in combinatorial
optimization, in which a salesperson who wishes to sell goods in a specific set of
cities is seeking for the shortest possible course that would take him or her to all the
cities before returning to the original point where he or she is based. Looking at
what we have come up with, it becomes evident that we want to find the shortest
distance possible. Even though Algorithm TSP is a well-researched problem, the
fact that it is NP-resistant has encouraged a lot of work in various solutions. As
such, the aim of this paper is to present a brief discussion of TSP, its history, and
various approaches developed throughout the years. Thus, when considering the
brute force approach implemented in Python we examine its flaws in terms of the
methodological approach and possible computational performance. Using the
notion of visualization, we also offer a means for an intuitive understanding of the
solution space with particular focus placed on the interdependence between data,
computations, and graphics.

Keywords: NP-Hard Problems, Brute Force, City Routing, Computational
Optimization, Python.

Introduction

The traveling salesman problem (TSP) represents a fundamental challenge in
combinatorial optimization and has attracted the attention of many researchers
and scientists from different fields. The basics of TSP is to determine the most
efficient route across a given group of cities, ensuring that each city is visited only
once and ends at the starting location. This may sound simple, but being classified
as an NP-hard problem highlights the inherent complexity and nuances involved.
[1]

The impact of TSP is enormous and goes beyond mere academic curiosity. For
example, in the logistics sector, the right solution can lead to significant operational
efficiency gains and cost savings. Additionally, industries such as manufacturing
and telecommunications regularly suffer from similar challenges to their TSP:

Scientific Researches in Academia	 ISSN: 3021-9108
Vol. 2, Issue 2, July 2024, pp: 87-94	 DOI: https://doi.org/10.3126/sra.v2i2.74286

88

optimizing processes and network routes to improve performance and reduce
effort. [2]

The constant interaction between the theoretical complexity of TSP and its
practical applications has generated a wealth of research. Over the years, a variety
of algorithms, techniques, and heuristics have emerged, each attempting to address
this puzzling problem from a different angle, and have proven their continued
relevance in both academia and industry. [3] The main context of this paper are as
follows, Section II provides Literature Review of previous works done in the field of
Route Optimization, Section III Methodology describes the mathematical use of
Brute Force algorithm and its implementation in Python Programming Language
Section IV Results and discussion gives the summary of implementation of the
algorithm and with its advantages and limitations, Section V Conclusion
summarizes and concludes the project with the future implications.

Literature Review

The traveling salesman problem (TSP), a central subject in combinatorial
optimization, has been the subject of extensive scientific research for decades. The
purpose of this literature review is to capture key moments, methods, and
transformative contributions that have shaped our understanding of TSP.

2.1 Historical Context

Although informal references to the TSP-like problems can be found as early as the
19th century, it wasn't until the 1930s that Menger began formal academic
discussions and analyses on the subject [4]. In 1934, Whitney introduced the
concept of a "graph," a mathematical structure used to model pairwise relations
between objects. This laid the groundwork for a more systematic approach to many
combinatorial problems, including the TSP. Specifically, he explored the properties
of what we now call "Hamiltonian cycles" in a graph [5].

2.2 Exact Solution Approaches

While in early analysis of TSP, emphasis was made on exact solutions techniques.
The goal set was to work toward a deterministic response that provided for
maximum fitness. The 1960s is the starting year of the dynamic programming
approach talked about by Bellman. It provided a clear, methodical framework of
how the path to the TSP could be drawn, which not only was valuable for this
particular problem but also served as a general framework for future research in
combinatorial optimization. The principles of dynamic programming put forward
by Bellman have since then been applied in a plethora of domains way beyond TSP,
which is a perfect testament to the far-reaching importance of his work [6].
Cessenak and Galan 318 Parallel, linear and integer programming methods

Traveling Salesman Problem: A Comprehensive Review and Computational Implementation in Python

89Scientific Researches In Academia Vol. 2, Issue 2, July, 2024 ISSN: 3021-9108

optimizing processes and network routes to improve performance and reduce
effort. [2]

The constant interaction between the theoretical complexity of TSP and its
practical applications has generated a wealth of research. Over the years, a variety
of algorithms, techniques, and heuristics have emerged, each attempting to address
this puzzling problem from a different angle, and have proven their continued
relevance in both academia and industry. [3] The main context of this paper are as
follows, Section II provides Literature Review of previous works done in the field of
Route Optimization, Section III Methodology describes the mathematical use of
Brute Force algorithm and its implementation in Python Programming Language
Section IV Results and discussion gives the summary of implementation of the
algorithm and with its advantages and limitations, Section V Conclusion
summarizes and concludes the project with the future implications.

Literature Review

The traveling salesman problem (TSP), a central subject in combinatorial
optimization, has been the subject of extensive scientific research for decades. The
purpose of this literature review is to capture key moments, methods, and
transformative contributions that have shaped our understanding of TSP.

2.1 Historical Context

Although informal references to the TSP-like problems can be found as early as the
19th century, it wasn't until the 1930s that Menger began formal academic
discussions and analyses on the subject [4]. In 1934, Whitney introduced the
concept of a "graph," a mathematical structure used to model pairwise relations
between objects. This laid the groundwork for a more systematic approach to many
combinatorial problems, including the TSP. Specifically, he explored the properties
of what we now call "Hamiltonian cycles" in a graph [5].

2.2 Exact Solution Approaches

While in early analysis of TSP, emphasis was made on exact solutions techniques.
The goal set was to work toward a deterministic response that provided for
maximum fitness. The 1960s is the starting year of the dynamic programming
approach talked about by Bellman. It provided a clear, methodical framework of
how the path to the TSP could be drawn, which not only was valuable for this
particular problem but also served as a general framework for future research in
combinatorial optimization. The principles of dynamic programming put forward
by Bellman have since then been applied in a plethora of domains way beyond TSP,
which is a perfect testament to the far-reaching importance of his work [6].
Cessenak and Galan 318 Parallel, linear and integer programming methods

received an opposition, following the introduction of “Simplex method” by Dantzig,
an efficient technique in linear programming. The basic concept of linear
programming is to find values for one or more variables to make an algebraic
expression known as the linear objective function either a maximum or minimum
value subject to constraints that are also linear. Although Dantzig's early aim was
not to solve the TSP problem directly, he provided a way of doing so in different
ways [7].

2.3 Approximation Techniques and Heuristics

As researchers struggle with the intricacies of TSP for larger datasets,
approximation and heuristic methods gained momentum. Christofides' algorithm,
introduced in the 1970s, provides an efficient approximation solution to the TSP. It
builds on a combination of techniques: constructing a Minimum Spanning Tree,
identifying odd-degree vertices, finding a Minimum Weight Perfect Matching,
creating an Eulerian circuit, and converting it to a Hamiltonian circuit. Notably, its
solution is guaranteed to be within 1.5 times the optimal length for metric TSP
instances, making it a benchmark in approximation algorithms for the problem [8].
Heuristic approaches, rooted in intuitive principles, gained traction for solving the
TSP. Key strategies like

The nearest neighbor and diverse insertion methods emerged, providing solutions
that were both efficient and computationally lighter compared to exact methods
[9].

2.4 Advanced Metaheuristics and Modern Approaches

Towards the latter part of the 20th century and into the 21st, metaheuristic
methodologies began to emerge as powerful contenders for solving TSP. Notable
among these are Genetic Algorithms, Simulated Annealing, and Ant Colony
Optimization. These techniques, inspired by natural processes, showcased
significant promise, especially for complex TSP scenarios [10]. Furthermore, the
literature reveals a growing interest in hybrid methodologies, which combines
features from multiple algorithms to push the boundaries of TSP solution quality
and efficiency [11].

3. METHODOLOGY

In addressing the Travelling Salesman Problem (TSP), a brute-force approach is
adopted to carefully examine every possible route, ensuring an exact solution.
While this method guarantees precision, it's computationally demanding,
especially with an increase in dataset size. For the purpose of our implementation,
we have selected a dataset comprising 15 major cities of Nepal, namely Kathmandu,
Pokhara, Lalitpur, Bhaktapur, Biratnagar, and so on. The north and east

90

coordinates of these cities are utilized to determine the distances, thereby assisting
in identifying the optimal path.

The following outlines the methodology and the key components used in the
provided Python code:

3.1Data Collection

City data is collected interactively from the internet. The code captures names of
the cities and their corresponding x, y coordinates. The cities and their coordinates
are stored in a dictionary named cities.

Table 1
North and South Coordinates of Major Cities of Nepal

City Name North Coordinates East Coordinates
Kathmandu 27.7172 85.324
Pokhara 28.2096 83.9856
Butwal 27.673 83.4822
Bhaktapur 27.671 85.4298
Biratnagar 26.4394 87.2861
Birgunj 27.0123 84.8777
Dharan 26.8124 87.2861
Janakpur 26.7288 85.9266
Hetauda 27.4167 85.0335

3.2 Distance Calculation

The pairwise Euclidean distance between every pair of cities is calculated. The
Euclidean distance between two points’ 𝑝𝑝 and 𝑞𝑞 in Euclidean 𝑛𝑛 space is calculated
using the formula:

𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑 𝑑𝑑 𝑑�∑ (𝑞𝑞� − 𝑝𝑝�)��𝑑
��� ------------- (i)

Where,

• p and q are two points in Euclidean n-space.
• pi and qi are the coordinates of points p and q in the n-space.
• n is the dimension of the space.

For geographic coordinates (latitude and longitude), the Euclidean distance
between two cities A and B with coordinates (p1,p2) and (q1,q2) respectively is:

d (A,B) = �(𝑞𝑞� − 𝑝𝑝�)� − (𝑞𝑞� − 𝑝𝑝�)� -------------(ii)
Where,

• p1 and p2 are the coordinates of city A
• q1 and q2 are the coordinates of city B

Traveling Salesman Problem: A Comprehensive Review and Computational Implementation in Python

91Scientific Researches In Academia Vol. 2, Issue 2, July, 2024 ISSN: 3021-9108

coordinates of these cities are utilized to determine the distances, thereby assisting
in identifying the optimal path.

The following outlines the methodology and the key components used in the
provided Python code:

3.1Data Collection

City data is collected interactively from the internet. The code captures names of
the cities and their corresponding x, y coordinates. The cities and their coordinates
are stored in a dictionary named cities.

Table 1
North and South Coordinates of Major Cities of Nepal

City Name North Coordinates East Coordinates
Kathmandu 27.7172 85.324
Pokhara 28.2096 83.9856
Butwal 27.673 83.4822
Bhaktapur 27.671 85.4298
Biratnagar 26.4394 87.2861
Birgunj 27.0123 84.8777
Dharan 26.8124 87.2861
Janakpur 26.7288 85.9266
Hetauda 27.4167 85.0335

3.2 Distance Calculation

The pairwise Euclidean distance between every pair of cities is calculated. The
Euclidean distance between two points’ 𝑝𝑝 and 𝑞𝑞 in Euclidean 𝑛𝑛 space is calculated
using the formula:

𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑 𝑑𝑑 𝑑�∑ (𝑞𝑞� − 𝑝𝑝�)��𝑑
��� ------------- (i)

Where,

• p and q are two points in Euclidean n-space.
• pi and qi are the coordinates of points p and q in the n-space.
• n is the dimension of the space.

For geographic coordinates (latitude and longitude), the Euclidean distance
between two cities A and B with coordinates (p1,p2) and (q1,q2) respectively is:

d (A,B) = �(𝑞𝑞� − 𝑝𝑝�)� − (𝑞𝑞� − 𝑝𝑝�)� -------------(ii)
Where,

• p1 and p2 are the coordinates of city A
• q1 and q2 are the coordinates of city B

3.3 Brute-Force Solution

Brute Force Algorithm is a straightforward way of addressing problems that
involves methodically attempting each potential solution in order to identify the
right one. It is frequently employed when there is enough computing power to fully
examine every possibility and the problem has a narrow search space. A brute-force
algorithm's primary concept is to produce and test every potential answer until the
right one is identified. A brute-force approach, as used in computer science and
algorithms, thoroughly searches the solution space, assessing each potential
solution to see if it meets the requirements of the problem. Although brute-force
methods are straightforward conceptually and straight forward to apply, they may
not be feasible for problems with significant solution spaces since the number of
possible solutions increases exponentially with the size of the input.

3.3.1 Mathematical Foundations of Brute Force Algorithm

3.3.1.1 Permutations and Solution Space:

The brute force algorithm involves evaluating all possible permutations of the
problem's elements. For a problem with 𝑛𝑛 elements, the total number of
permutations is:

n!=n×(n−1)×(n−2)×⋯×2×1 ------------------ (iii)

3.3.1.2 Time Complexity:

 The time complexity of a brute force algorithm is typically (𝑛𝑛!). This exponential
time complexity makes brute force impractical for large 𝑛𝑛 because the number of
evaluations needed grows factorial with the number of elements.

3.3.1.3 Example in Route Optimization:

For a route optimization problem like the Traveling Salesman Problem (TSP),
where a salesman needs to visit 𝑛𝑛 cities, the brute force approach would involve
evaluating each of the 𝑛𝑛! possible routes. The total distance for each route is
computed, and the shortest one is selected as the optimal route.

 Given a permutation σ = (σ1,σ2,…, σn), the total distance D is:

D(σ) = d(σn, σi) + ∑ d(σi, σi + 1)���
��� ------------------ (iv)

Where d (i,j) represents the distance between city i and city j.

To illustrate the computational growth:
• For n = 5, there are 5! = 120 permutations.
• For n = 10, there are 10! = 3,628,800 permutations
• For n = 20, there are 20! = 2.43*1043 permutations [12]

92

3.3.2 Function: total_distance

This function calculates the total distance of a given order of cities using the
distances dictionary. It iterates through the given order, sums up the distances for
the entire route, and includes the distance from the last city back to the starting
city.

3.3.3 Function: tsp_bruteforce

The core of the brute-force approach, this function computes the distance for every
possible permutation of cities using Python’s itertools permutations. It maintains a
record of the shortest route found. When the function has checked all
permutations, it returns the optimal route.

4. Result and Discussion

3.4.1 Plotting the Route

Using python programming language libraries such as matplotlib. pyplot, the
optimal route is visualized on a 2D plane. The cities are represented as red dots,
and the optimal route is illustrated with blue lines connecting the cities in the
sequence of the best route.

Figure 1: Graphical Representation of Route Optimization

3.4.2 Code Execution

The code starts by collecting city information. It then calculates pairwise distances,
solves the TSP using the brute-force method, and finally visualizes the optimal
route as below:

Traveling Salesman Problem: A Comprehensive Review and Computational Implementation in Python

93Scientific Researches In Academia Vol. 2, Issue 2, July, 2024 ISSN: 3021-9108

3.3.2 Function: total_distance

This function calculates the total distance of a given order of cities using the
distances dictionary. It iterates through the given order, sums up the distances for
the entire route, and includes the distance from the last city back to the starting
city.

3.3.3 Function: tsp_bruteforce

The core of the brute-force approach, this function computes the distance for every
possible permutation of cities using Python’s itertools permutations. It maintains a
record of the shortest route found. When the function has checked all
permutations, it returns the optimal route.

4. Result and Discussion

3.4.1 Plotting the Route

Using python programming language libraries such as matplotlib. pyplot, the
optimal route is visualized on a 2D plane. The cities are represented as red dots,
and the optimal route is illustrated with blue lines connecting the cities in the
sequence of the best route.

Figure 1: Graphical Representation of Route Optimization

3.4.2 Code Execution

The code starts by collecting city information. It then calculates pairwise distances,
solves the TSP using the brute-force method, and finally visualizes the optimal
route as below:

Optimal route: Butwal -> Birgunj -> Janakpur -> Biratnagar -> Dharan ->
Bhaktapur -> Kathmandu -> Lalitpur -> Hetauda -> Pokhara

3.6 Advantages and Limitations

The strength of this approach lies in its exactness – it guarantees the discovery of
the optimal route. However, its computational complexity grows factorial with the
number of cities. As we have seen in computational growth example for a larger
number of cities, it becomes infeasible due to excessive computational time.

In-corporating the methodology described above, researchers can understand the
logic behind the provided Python code for the TSP. This code serves as an example
of how brute-force

methodologies can be effectively employed for small datasets but may require
alternative optimization techniques as the data size increases.

5. Conclusion

The travelling salesman problem is fundamental to the study of combinatorial
optimization because of its historicity and complexities. This paper also
underscored the practical and theoretical relevance of TSP, which could be
evidenced by the brute force algorithm used in this paper. The brute force
approach, where all possible routes are considered until the best solution is found,
is efficient in this context because it will always identify the optimal solution, but
computationally very expensive that it cannot be used for large instances. This is
because the amount of computational capability that is needed to solve the
problem increases at a much faster rate with the number of cities as is seen in the
brute force method which lead to the discovery that there is need to develop more
scalable methods. As mentioned earlier, our research offered practical knowledge
about the brute force algorithm emphasizing its significance in terms of proposing
elementary techniques for use in optimization algorithms. Though the method
described here is quite straightforward, learning from this exercise helped in
reveling a few significant aspects of coding and computation. Further ahead,
growth in the application of algorithms and advancements in quantum computing
as well as machine learning offer prospects of improved solving of TSP and other
kinds of optimization problems that may prove to be challenging. Therefore, brute
force methods remain a useful starting point for developing efficient algorithms,
TSP is a more complex problem that will undoubtedly further evolve in the future as
researchers focus on creating new, improved algorithms with even higher
performance in terms of solution quality and computer time.

94

References

Applegate, D., Bixby, R., Chvátal, V., & Cook, W. (2007). The Traveling Salesman
Problem. Princeton University Press.

Bellman, R. (1962). Dynamic Programming Treatment of the Travelling Salesman
Problem. Journal of the ACM (JACM), 9(1), 61-63.

Christofides, N. (1976). Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical Report, Graduate School of Industrial
Administration, Carnegie Mellon University, Pittsburgh.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). "Introduction to
Algorithms" (3rd ed.). MIT Press.

Dantzig, G. B., Fulkerson, D. R., & Johnson, S. M. (1954). Solution of a large-scale
traveling-salesman problem. Journal of the operations research society of
America, 2(4), 393- 410.

Dorigo, M., & Gambardella, L.M. (1997). Ant colony system: a cooperative learning
approach to the traveling salesman problem. IEEE Transactions on
Evolutionary Computation, 1(1), 53-66.

Garey, M.R., & Johnson, D.S. (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman.

Helsgaun, K. (2000). An effective implementation of the Lin-Kernighan traveling
salesman heuristic. European Journal of Operational Research, 126(1), 106-
130.

Laporte, G. (1992). The traveling salesman problem: An overview of exact and
approximate algorithms. European Journal of Operational Research, 59(2),
231-247.

Menger, K. (1932). Das Botenproblem. Mathematische Zeitschrift, 37(1), 669-684.

Rosenkrantz, D.J., Stearns, R.E., & Lewis, P.M. (1977). An analysis of several
heuristics for the traveling salesman problem. SIAM Journal on Computing,
6(3), 563-581.

Whitney, H. (1934). On the Abstract Properties of Linear Dependence. American
Journal of Mathematics, 57(3), 509-533.

Traveling Salesman Problem: A Comprehensive Review and Computational Implementation in Python

