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Abstract 
In this work, we study the mathematical models of flows for some biofluids.  In biomechanics, 
peristaltic flow plays an important role in which the motion generated in the fluid contained in a 
distensible tube when a progressive wave of area contraction and expansion travels along the wall 
of the tube.  We consider theeffectof elasticity of the tube wall in the flow through the progressive 
wave travelling along its length without its direct calculation.  Since the no – slip condition has used 
on a moving undulating wall surface, it determines the sinusoidalboundary conditions on the upper 
andlower wall of the tube.The wide occurrence of peristaltic motion gives its result physiologically 
from neuro-muscular properties of any tubular smooth muscle. 

Key Words:  Biofluids, Progressive wave, Undulating wall surface, Peristaltic motion. 

Introduction 
Peristaltic flow is the motion generated in the fluid contains in a distensible tube when a 
progressive wave of area contraction and expansion travels along the wall of the tube [1]. 
The elasticity of the tube wall does not directly enter into our calculations, but it affects the 
flow through the progressive wave travelling along its length. This wave determines the 
boundary conditions since the no-slip condition has to be used now on a moving undulating 
wall surface. Peristaltic motion is involved in expansion and contractions (or vasomotion) 
of small blood vessels, Celia transport through the ducts efferentes of the male reproductive 
organs, transport of spermatozoa in cervical canal, transport of chime in small intestines, 
function of ureter, and transport of bile etc. [1] [2]. The wide occurrence of peristaltic 
motion gives the result physiologically from neuro-muscular properties of any tubular 
smooth muscle. Physiological fluids in humans or animals are, in general, propelled by the 
continuous periodic muscularcontraction or expansion (or both) of the ducts through which 
the fluid passes. In particular, peristaltic mechanismsmay be involved in the swallowing of 
food through the esophagus, vasomotion of small blood vessels,spermatic flows in the 
ductus efferentes of the male reproductive tract, embryo transport in the uterus, andtransport 
of urine through the ureter, among others [3][4][5]. Although physiological fluid flows are 
similar with respect to peristalsis, their main differences lie in thefluid being transported, 
the geometry of the vessel or cavity, and the wave form [6]. Newtonian and non-Newtonian 
fluids have been considered in ureteral, esophageal, and vasomotion peristalsis, e.g., 
Newtonianfor urine, a power-law for the food bolus, and a Casson fluid for blood. Mostly, 
two-dimensional and axisymmetricgeometries are studied, and a sinusoidal wave form is 
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generally employed [7] [8] [9]. The main motivationfor any mathematical analysis of 
physiological fluid flows is to ultimately have a better understanding of theparticular flow 
being modeled. There are some differences between peristalsis in different physiological 
systems. Thus we have chosen to concentrate on the mathematical models that describe the 
peristaltic motion in tube and channel with long-wavelength. The model is solved by 
expanding the stream function, which determines the flows. In the flow phenomena, there 
is a prescribed pressure gradient along the tube or channel and a progressive wave passes 
through the walls [10]. 
In this paper, we consider peristaltic motion in channels or tubes. The fluid involved may 
be non-Newtonian e.g. power-law, viscoelastic, or micropolar fluid or Newtonian, and the 
flows may take place in two layers a core layer and a peripheral layer. The equations of 
motion in their complete generality do not admit of simple solutions and we have to look 
for reasonable approximations. 

1. Peristaltic Motion in a Channel. 

Let u(x, y, t), v(x, y, t), and p(x, y, t) denote respectively the two velocity components 
and pressure at the point (x, y) at time t in a fluid with constant density ρ and viscosity 
coefficient µ. Then the equation of continuity, which expresses the fact that the amount 
of fluid entering a unit volume per unit time is the same as the amount of the fluid 
leaving it per unit time, is given by[1] 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                                                                                (1) 

𝜌𝜌 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = −𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜇𝜇 �𝜕𝜕

2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

�,                           (2)      

𝜌𝜌 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = −𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜇𝜇 �𝜕𝜕

2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

�.                           (3)    
 
We consider the flow of a homogeneous Newtonian Fluid through a channel of width 2a. 
Travelling sinusoidal waves are superposed on the elastic walls of the channel. Taking the 
x -axis along the center line of the channel and the y-axis normal to it. The equations of the 
walls are given by [1] [2] 
 

𝑌𝑌 = ɳ(𝑋𝑋,𝑇𝑇) = ±𝑎𝑎 �1 + 𝝐𝝐𝝐𝝐𝝐𝝐𝝐𝝐 �� 2π
λ
� (𝑿𝑿 − 𝝐𝝐𝒄𝒄)��                   (𝟒𝟒) 
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Where  ∈ is the amplitude ratio, 𝜆𝜆 the wave length, and c the phase velocity of the 
waves.Now equation (1) can be satisfied by introducing the stream function 𝜑𝜑(𝑥𝑥,𝑦𝑦) which 
is such that  

4 2 2 2
T Y X X Yν∇ Ψ = ∇ Ψ + Ψ ∇ Ψ − Ψ ∇ Ψ  

Or  

 2 2 2 2. .
T Y X X Y

ν ∂ ∂Ψ ∂ ∂Ψ ∂∇ Ψ = ∇ Ψ + ∇ Ψ − ∇ Ψ
∂ ∂ ∂ ∂ ∂

                      (5) 

Where the velocity components are given by  

 ,Y Xu v
Y X

∂Ψ ∂Ψ= Ψ = = −Ψ = −
∂ ∂

                       (6) 

Assuming that the walls have transverse displacements at all times, we get the boundary 
conditions as 

 2 20, sin{ ( )} ( , )acu v X cT atY X Tπ π η
λ λ

∈= = ± − = ±              (7) 

Where  

 

2[1 cos{ ( )}]

2 2sin{ ( )}. .

2 2sin{ ( )}

dY dv a X cT
dT dT

a X cT c

ac X cT

π
λ

π π
λ λ

π π
λ λ

 = = ± + ∈ −  

= ± ∈ − −

∈= ± −
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We now introduce the dimensionless variables and parameters 
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So that equation (5) becomes, for this  
We have  
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This implies that 
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a c
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= ∇
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And 
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 ∂ ∂∇ Ψ = + ∂ ∂ 
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Now equation  
 2 2 2 2 .T Y X X Yν∇ Ψ = ∇ Ψ + Ψ ∇ Ψ − Ψ ∇ Ψ Reduces to 
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c c
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2

22 2 2 2 2 2 2 2 2 2
2 2 2 2

2 2 2 2 2 2 2 2 2

1. .
Re t y x x y

c c
a x y x y x y x ya

δ ψ δ δ ψ ψ δ ψ ψ δ ψ
        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ = + + + − +        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        
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The boundary   conditions become 
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0[ 0],
2 sin( )...............(11)

1 2 2. sin{ ( )}

2 sin{2 ( )}.

y

x

U
x

X acac x t
x X x ac

x t

ψ
ψ π

ψ π π λ λ λ
λ λ

π π

= =

= ∈ −∈
Ψ∂∂ ∂ ∈= × = − ×

∂ ∂ ∂
= ∈ −





 
Thus the basic partial differential equations and the boundary condition together involve 
three dimensionless parameters: 

i) The Reynolds  number  Re determined  by the phase velocity, half  the  mean 
distance between the plates, and the kinematic viscosity.(This number is small 
if the distance between the walls is small or the phase velocity small or the 
kinematic viscosity is large.) 

ii) The wave number δ which is small if the wave length is large as compared to the 
distance between the walls. 

iii) The amplitude ratio   which is small if the amplitude of the wave is small as 
compared to the distance between the walls. 

In obtaining the equations for the stream function, the pressure gradient was eliminated. 
Hence there may arise a fourth dimensionless parameters, depending on the pressure 
gradient. Non-Newtonian fluids give rise to additional dimensionless parameters, depending 
on the parameters occurring in the constitutive equations of the fluids. 
It is not possible to solve equation 2 for arbitrary values of δ, Re and, Therefore, this 
equation is solved under ,among others, the following alternatives sets of assumptions: 

i) 𝛜𝛜<<1, and stokes’ assumption of slow motion so that inertial terms can be 
neglected. 

ii) 𝛜𝛜 <<1,δ<<1. 
iii) δ<< 1,Re<<1, but 𝛜𝛜 is arbitrary. 
iv) 𝛜𝛜<< 1,Re<<1,but δ is arbitrary. 

The initial flow may be taken as the Hagen – poiseuille flow [1]. 
2. Long- Wavelength Approximation to peristaltic Flow in a Tube 

Let the equation of the tube surface be given by [1][2] [5] 

   ℎ(𝑍𝑍, 𝑡𝑡) = 𝑎𝑎 �1 + 𝝐𝝐𝝐𝝐𝝐𝝐𝝐𝝐 �� 2π
λ
� (𝒁𝒁 − 𝝐𝝐𝒄𝒄)��                                                                      

(12) 
Where  a is the undisturbed radius of the tube, 𝝐𝝐  the amplitude ratio, a  (1+𝝐𝝐) and (1 )a −∈
are the maximum and minimum disturbed radii and   𝜆𝜆 is the wave length, and c the phase 
velocity. 
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                                        Fig. 1 Tube geometry. 
Under the assumptions𝑎𝑎

𝜆𝜆
<< 1. And  𝑎𝑎𝑎𝑎

𝜈𝜈
<< 1, we can conduct an order of magnitude study of 

the various terms in the equation of continuity and equations of motion in cylindrical polar 
coordinates to find  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

<< 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                (13) 
So that P is only weakly dependent on R and we can take  
                                  𝑃𝑃 = 𝑃𝑃(𝑍𝑍, 𝑡𝑡)                        (14) 
Now it is convenient to use the moving coordinate system (r, Z) travelling with the wave so 
that  
𝑟𝑟 = 𝑅𝑅, 𝑧𝑧 = 𝑍𝑍 − 𝑐𝑐𝑡𝑡                           (15) 
In this system, P is a function of Z only. The equations of continuity and motion reduce 
respectively to  

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑟𝑟𝑢𝑢) + 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑟𝑟𝑟𝑟) = 0                        (16) 

𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

= 𝜇𝜇 �𝜕𝜕
2𝑤𝑤
𝜕𝜕𝜕𝜕2

+ 1
𝜕𝜕
𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕
� =  𝜇𝜇

𝜕𝜕
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟 𝜕𝜕𝑤𝑤

𝜕𝜕𝜕𝜕
�,                 (17) 

Where u and w are the velocity components for the motion of the fluids in relation to the 
moving coordinate system  

The boundary conditions for solving (16) and (17) are 

𝑢𝑢 = 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

,        𝑟𝑟 = −𝑐𝑐   𝑎𝑎𝑡𝑡 𝑟𝑟 = ℎ                    (18) 
Integrating (17) at the constant z we obtain 
i.e.           𝑑𝑑𝜕𝜕

𝑑𝑑𝜕𝜕
= 𝜇𝜇

𝜕𝜕
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟 𝜕𝜕𝑤𝑤

𝜕𝜕𝜕𝜕
� 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

𝑟𝑟 = 𝜇𝜇
𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟
𝜕𝜕𝑟𝑟
𝜕𝜕𝑟𝑟
� 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

�𝑟𝑟𝑑𝑑𝑟𝑟 = 𝜇𝜇�𝜕𝜕 �𝑟𝑟
𝜕𝜕𝑟𝑟
𝜕𝜕𝑟𝑟
� 

𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

𝜕𝜕2

2
= 𝜇𝜇 𝑟𝑟 𝜕𝜕𝑤𝑤

𝜕𝜕𝜕𝜕
+ 𝑘𝑘                                       (*) 

at the boundary condition, 𝑟𝑟 = ℎ,   𝑟𝑟 = −𝑐𝑐  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

ℎ2

2
=  𝜇𝜇 ℎ 

𝑑𝑑(−𝑐𝑐)
𝑑𝑑ℎ

+ 𝑘𝑘 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

ℎ2

2
= 𝑘𝑘 

Then (*) becomes 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

𝑟𝑟2

2
= 𝜇𝜇 𝑟𝑟 

𝜕𝜕𝑟𝑟
𝜕𝜕𝑟𝑟

+
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

ℎ2

2
 

−  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

ℎ2

2
+  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

𝑟𝑟2

2
=  𝜇𝜇 𝑟𝑟 

𝜕𝜕𝑟𝑟
𝜕𝜕𝑟𝑟

 

−  
1

2𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

(ℎ2 − 𝑟𝑟2)
𝑟𝑟

=  
𝜕𝜕𝑟𝑟
𝜕𝜕𝑟𝑟

 

−  
1

2𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

(ℎ2 − 𝑟𝑟2)
𝑟𝑟

𝜕𝜕𝑟𝑟 =  𝜕𝜕𝑟𝑟 

Again integrating, 
−  1

2𝜇𝜇
𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕
�ℎ2 log 𝑟𝑟 −  𝜕𝜕

2

2
� = 𝑟𝑟 + 𝑘𝑘1                      (*,*) 

Again for the given boundary condition  

−  
1

2𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

�ℎ2 logℎ −  
ℎ2

2
� = −𝑐𝑐 + 𝑘𝑘1 

Then (*,*) becomes 

−  
1

2𝜇𝜇
𝑑𝑑𝑑𝑑
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�ℎ2 log 𝑟𝑟 −  
𝑟𝑟2

2
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1
2𝜇𝜇

𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

�ℎ2 logℎ −  
ℎ2

2
� 

−  
1

2𝜇𝜇
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�ℎ2 log 𝑟𝑟 −  
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2
� +

1
2𝜇𝜇

𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

�ℎ2 logℎ −  
ℎ2

2
� = 𝑟𝑟 + 𝑐𝑐 

−  
1

2𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

�ℎ2 log 𝑟𝑟 −  
𝑟𝑟2

2
−ℎ2 logℎ +  

ℎ2

2
� = 𝑟𝑟 + 𝑐𝑐 

−
1

2𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

1
2

(ℎ2 − 𝑟𝑟2) = 𝑟𝑟 + 𝑐𝑐 

𝑟𝑟 = −𝑐𝑐 − 1
4𝜇𝜇

𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

(ℎ2 − 𝑟𝑟2)              (19) 
To an observer moving with velocity c in the axial direction, the pressure and flow appear 
stationary. Hence the flow rate q measured in the moving coordinate system is a constant, 
independent of position and time [1] [5]. 
Now, 
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𝑞𝑞 = 2𝜋𝜋 ∫ 𝑟𝑟 𝑟𝑟 𝑑𝑑𝑟𝑟ℎ
0                        (20) 

using (19) we have 

𝑞𝑞 = 2𝜋𝜋� 𝑟𝑟 �−𝑐𝑐 −
1

4𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

(ℎ2 − 𝑟𝑟2)� 𝑑𝑑𝑟𝑟
ℎ

0
 

𝑞𝑞 = 2𝜋𝜋� �−𝑟𝑟𝑐𝑐 −
1

4𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

(ℎ2𝑟𝑟 − 𝑟𝑟3)� 𝑑𝑑𝑟𝑟
ℎ

0
 

𝑞𝑞 = 2𝜋𝜋 �−𝑐𝑐� 𝑟𝑟𝑑𝑑𝑟𝑟 −
1

4𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

�� ℎ2𝑟𝑟𝑑𝑑𝑟𝑟 −
ℎ

0
� 𝑟𝑟3𝑑𝑑𝑟𝑟
ℎ

0
�

ℎ

0
� 

𝑞𝑞 = 2𝜋𝜋 �−𝑐𝑐
ℎ2

2
−

1
4𝜇𝜇

𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

�
ℎ4

2
−
ℎ4

4
�� 

𝑞𝑞 = −𝜋𝜋𝑐𝑐ℎ2 − 𝜋𝜋ℎ4

8𝜇𝜇
𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

                      (21) 

−
𝜋𝜋ℎ4

8𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

= 𝑞𝑞 + 𝜋𝜋𝑐𝑐ℎ2 
𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

= −8𝜇𝜇𝜇𝜇
𝜋𝜋ℎ4

−  8𝜇𝜇𝑎𝑎
ℎ2

                         (22) 
Substituting in (19) we get, 

𝑟𝑟 = −𝑐𝑐 −
1

4𝜇𝜇
�−

8𝜇𝜇𝑞𝑞
𝜋𝜋ℎ4

−  
8𝜇𝜇𝑐𝑐
ℎ2

� (ℎ2 − 𝑟𝑟2) 

𝑟𝑟 = −𝑐𝑐 −
8𝜇𝜇
4𝜇𝜇

�
𝑞𝑞
𝜋𝜋ℎ4

+  
𝑐𝑐
ℎ2
� (ℎ2 − 𝑟𝑟2) 

𝑟𝑟 = −𝑐𝑐 − 2 � 𝜇𝜇
𝜋𝜋ℎ4

+  𝑎𝑎
ℎ2
� (ℎ2 − 𝑟𝑟2)                          (23) 

To find the transverse velocity component u, we integrate the continuity equation (16) at 
the constant z. remembering that u = 0 at r = 0. We obtain 

𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑟𝑟𝑢𝑢) +
𝜕𝜕
𝜕𝜕𝑧𝑧

(𝑟𝑟𝑟𝑟) = 0 

𝜕𝜕(𝑟𝑟𝑢𝑢) = −
𝜕𝜕
𝜕𝜕𝑧𝑧

(𝑟𝑟𝑟𝑟)𝑑𝑑𝑟𝑟 
Integrating from 0 to r  

� (𝑟𝑟𝑢𝑢)
𝜕𝜕

0
= −�

𝜕𝜕
𝜕𝜕𝑧𝑧

(𝑟𝑟𝑟𝑟)𝑑𝑑𝑟𝑟
𝜕𝜕

0
 

𝑟𝑟𝑢𝑢 = −� 𝑟𝑟
𝜕𝜕𝑟𝑟
𝜕𝜕𝑧𝑧

𝑑𝑑𝑟𝑟
𝜕𝜕

0
 

𝑢𝑢 = −
1
𝑟𝑟
� 𝑟𝑟

𝜕𝜕𝑟𝑟
𝜕𝜕𝑧𝑧

𝑑𝑑𝑟𝑟
𝜕𝜕

0
 

𝑢𝑢 = −
1
𝑟𝑟
� 𝑟𝑟

𝜕𝜕𝑟𝑟
𝜕𝜕ℎ

𝜕𝜕ℎ
𝜕𝜕𝑧𝑧

𝑑𝑑𝑟𝑟
𝜕𝜕

0
 

From (23),  𝑟𝑟 = −𝑐𝑐 − 2 � 𝜇𝜇
𝜋𝜋ℎ4

+  𝑎𝑎
ℎ2
� (ℎ2 − 𝑟𝑟2) 
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𝜕𝜕𝑟𝑟
𝜕𝜕ℎ

=
𝜕𝜕(−𝑐𝑐)
𝜕𝜕ℎ

+ 2 �
𝑞𝑞
𝜋𝜋ℎ4

+  
𝑐𝑐
ℎ2
� 2ℎ + 2 (ℎ2 −  𝑟𝑟2) �−

4𝑞𝑞
𝜋𝜋ℎ5

−  
2𝑐𝑐
ℎ3
� 

𝜕𝜕𝑟𝑟
𝜕𝜕ℎ

=
4𝑞𝑞
𝜋𝜋ℎ3

+
4𝑐𝑐
ℎ
− 2 (ℎ2 −  𝑟𝑟2) �

4𝑞𝑞
𝜋𝜋ℎ5

+  
2𝑐𝑐
ℎ3
� 

𝜕𝜕𝑟𝑟
𝜕𝜕ℎ

=
4𝑞𝑞
𝜋𝜋ℎ3

+
4𝑐𝑐
ℎ
−

8ℎ2𝑞𝑞
𝜋𝜋ℎ5

−
4ℎ2𝑐𝑐
ℎ3

−
8𝑟𝑟2𝑞𝑞
𝜋𝜋ℎ5

+
4𝑟𝑟2𝑐𝑐
ℎ3

 
𝜕𝜕𝑟𝑟
𝜕𝜕ℎ

=
4𝑞𝑞
𝜋𝜋ℎ3

+
4𝑐𝑐
ℎ
−

8𝑞𝑞
𝜋𝜋ℎ3

+
8𝑟𝑟2𝑞𝑞
𝜋𝜋ℎ5

+
4𝑟𝑟2𝑐𝑐
ℎ3

−
4𝑐𝑐
ℎ

 
𝜕𝜕𝑟𝑟
𝜕𝜕ℎ

= −
4𝑞𝑞
𝜋𝜋ℎ3

+
8𝑟𝑟2𝑞𝑞
𝜋𝜋ℎ5

+
4𝑟𝑟2𝑐𝑐
ℎ3

 
Now, 

𝑢𝑢 = −
1
𝑟𝑟
𝑑𝑑ℎ
𝑑𝑑𝑧𝑧

� 𝑟𝑟 �−
4𝑞𝑞
𝜋𝜋ℎ3

+
8𝑟𝑟2𝑞𝑞
𝜋𝜋ℎ5

+
4𝑟𝑟2𝑐𝑐
ℎ3

�𝑑𝑑𝑟𝑟
𝜕𝜕

0
 

𝑢𝑢 = −
1
𝑟𝑟
𝑑𝑑ℎ
𝑑𝑑𝑧𝑧

�� �−
4𝑟𝑟𝑞𝑞
𝜋𝜋ℎ3

+
8𝑟𝑟3𝑞𝑞
𝜋𝜋ℎ5

+
4𝑟𝑟3𝑐𝑐
ℎ3

� 𝑑𝑑𝑟𝑟
𝜕𝜕

0
� 

𝑢𝑢 = −
1
𝑟𝑟
𝑑𝑑ℎ
𝑑𝑑𝑧𝑧

�−
4𝑞𝑞𝑟𝑟2

2𝜋𝜋ℎ3
+

8𝑟𝑟4𝑞𝑞
4𝜋𝜋ℎ5

+
4𝑟𝑟4𝑐𝑐
4ℎ3

� 

𝑢𝑢 = −𝑑𝑑ℎ
𝑑𝑑𝜕𝜕
�𝑎𝑎𝜕𝜕

3

ℎ3
− 2𝜇𝜇𝜕𝜕

𝜋𝜋ℎ3
+ 2𝜇𝜇𝜕𝜕3

𝜋𝜋ℎ5
�                          (24) 

We now revert to the stationary coordinate system with the coordinates R, Z, the velocity 
components U, W and the flow rate Q, so that 
   W = w + c,    U = u                                   (25) 

𝑄𝑄 = 2𝜋𝜋� 𝑊𝑊𝑅𝑅 𝑑𝑑𝑅𝑅
ℎ

0
 

𝑄𝑄 = 2𝜋𝜋� (𝑟𝑟 + 𝑐𝑐)𝑅𝑅 𝑑𝑑𝑅𝑅
ℎ

0
 

𝑄𝑄 = 2𝜋𝜋(𝑟𝑟 + 𝑐𝑐)� 𝑅𝑅 𝑑𝑑𝑅𝑅
ℎ

0
 

𝑄𝑄 = 2𝜋𝜋(𝑟𝑟 + 𝑐𝑐) �
𝑅𝑅2

2
�
0

ℎ

 

𝑄𝑄 = 2𝜋𝜋(𝑟𝑟 + 𝑐𝑐)
ℎ2

2
 

𝑄𝑄 = 𝜋𝜋𝑟𝑟ℎ2 + 𝜋𝜋𝑐𝑐ℎ2 
Using (20), since w is independent of r 

𝑄𝑄 = 𝑞𝑞 + 𝜋𝜋𝑐𝑐ℎ2 
Let 𝑄𝑄� denote the time average of Q over a complete time period T for h, so that 
𝑇𝑇 = 𝜆𝜆

𝑎𝑎
            (26) 

𝑄𝑄� =
1
𝑇𝑇
� 𝑄𝑄 𝑑𝑑𝑡𝑡
𝑇𝑇

0
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𝑄𝑄� =
1
𝑇𝑇

(𝑞𝑞 + 𝜋𝜋𝑐𝑐ℎ2)𝑇𝑇 
𝑄𝑄� = (𝑞𝑞 + 𝜋𝜋𝑐𝑐ℎ2) 

𝑄𝑄� = 𝑞𝑞 + 𝜋𝜋𝑐𝑐𝑎𝑎2 �1 + 1
2
𝜖𝜖2�            (27) 

Again, 
From (12) and (15) 

ℎ(𝑍𝑍, 𝑡𝑡) = 𝑎𝑎 �1 + 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 �� 2π
λ
� (𝑍𝑍 − 𝑐𝑐𝑇𝑇)��and r= R, 𝑧𝑧 = 𝑍𝑍 − 𝑐𝑐𝑡𝑡 

ℎ(𝑍𝑍, 𝑡𝑡) = 𝑎𝑎 �1 + 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 �� 2π
λ
� (𝑍𝑍 − 𝑐𝑐𝑇𝑇)�� = 𝑎𝑎 �1 + 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 �2𝜋𝜋

𝜆𝜆
𝑧𝑧��                          (28) 

ℎ(𝑍𝑍) = 𝑎𝑎 �1 + 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 �
2𝜋𝜋
𝜆𝜆
𝑧𝑧�� 

𝑑𝑑ℎ
𝑑𝑑𝑧𝑧

= 𝑎𝑎𝑎𝑎
2𝜋𝜋
𝜆𝜆

cos �
2𝜋𝜋
𝜆𝜆
𝑧𝑧� 

𝑑𝑑ℎ
𝑑𝑑𝜕𝜕

= 2𝑎𝑎𝜋𝜋𝑎𝑎
𝜆𝜆

cos �2𝜋𝜋
𝜆𝜆

(𝑍𝑍 − 𝑐𝑐𝑡𝑡)�                  (29) 
From (4), (12), (14) and U = u 
𝑈𝑈 = −𝑑𝑑ℎ

𝑑𝑑𝜕𝜕
�𝑎𝑎𝜕𝜕

3

ℎ3
− 2𝜇𝜇𝜕𝜕

𝜋𝜋ℎ3
+ 2𝜇𝜇𝜕𝜕3

𝜋𝜋ℎ5
�               (30) 

From (15) and (29), equation (30) becomes 
𝑈𝑈 = −2𝑎𝑎𝜋𝜋𝑎𝑎

𝜆𝜆
 𝑐𝑐𝑐𝑐𝜖𝜖 �2𝜋𝜋

𝜆𝜆
(𝑍𝑍 − 𝑐𝑐𝑡𝑡)� �𝑎𝑎𝜕𝜕

3

ℎ3
− 2𝜇𝜇𝜕𝜕

𝜋𝜋ℎ3
+ 2𝜇𝜇𝜕𝜕3

𝜋𝜋ℎ5
�                             (31) 

  We have 
         r = R ,𝑧𝑧 = 𝑍𝑍 − 𝑐𝑐𝑡𝑡, W =  w + c  and   U = u 

𝑊𝑊 = 𝑟𝑟 + 𝑐𝑐 = −𝑐𝑐 + 2 �
𝑞𝑞
𝜋𝜋ℎ4

+  
𝑐𝑐
ℎ2
� (ℎ2 − 𝑅𝑅2) + 𝑐𝑐 

𝑊𝑊 = 2 � 𝜇𝜇
𝜋𝜋ℎ4

+  𝑎𝑎
ℎ2
� (ℎ2 − 𝑅𝑅2)                            (32) 

Here, h is determined as a function of Z and t from (28), and q is known from (27) after 𝑄𝑄� 
is determined experimentally. 

Conclusion 
We obtained the long-wavelength approximations to peristaltic flow in a tube in this paper. 
The expression for the solution can be used to develop the model for the swallowing of food 
through the esophagus, vasomotion of small blood vessels, spermatic flows in the ductus 
efferentes of the male reproductive tract, embryo transport in the uterus, andtransport of 
urine through the ureter, among others. Such techniques are necessary for the 
approximations of models of flows in biofluids. Also we can apply the long-wave length 
approximation to peristaltic flow in a channel. 
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