
  Vol.12, No. 1, September 2024, ISSN 2505-0613 34 

Prāgyik PrabāhaVol. 12, No. 1: 34-41, August, 2024 Tribhuvan University Teachers’ Association,  
Tribhuvan Multiple Campus, Tribhuvan University, Nepal 
 

Applications of the Banach-Stone Theorem on Algebra 

Prem Prakash Kaphle 
pkaphle36@gmail.com 

Lecturer, Tribhuvan Multiple Campus, Tribhuvan University, Nepal 
 Biseswar Prasad Bhatt, 

Teaching Assistant, Saraswati Multiple Campus, Tribhuvan University, Nepal  

Article History: Received 15  March 2024; Reviewed 27 June 2024; Revised 15 July 2024; Accepted 

25 August 2024 

Abstract 
For two compact Hausdorff spaces X and Y, C(X) and C(Y) are isomorphic if and only if X and 
Y are homeomorphic. This class result was given by Banach in 1932 and generalized by Stone 
in 1937. This opened the new way of research towards algebra isomerphisms. The algebraic 
version of Banach-Stone theorem asserts that C(X) and C(Y) are algebraic isomorphism if and 
only if X and Y are homeomerphic. In this paper we study the structure on the group of 
isometric isomorphism from C(X) to itself as an application of Banach-Stone theorem. 

Keywords: Linear Isomorphism, Semi direct product, Normal Subgroup, Homeomorphism, 
Automorphism. 

Introduction 
In 1932 Banach [1] introduced the problem of how  the topological properties of the 

metric spaces X and Y are characterized from the linear structure of C(X) and C(Y). To this 
problem he gave the classical result which had further generalized by Stone [8] in 1937, 
combinely called the Banach- Stone Theorem. According to this classical result for any two 
compact topological spaces X and Y, C(X) and C(Y) are linear isometric if and only if X and Y 
are homeomorphic. This theorem includes the algebraic isomorphism and Riesz isomerphism 
too [2]. 

The isometry between two normed spaces X and Y is a bijection ϕ : X → Y such that  ||x ‖ϕ(x) 	− 	ϕ(y)‖ = 	‖ϕ(x)	‖ − ‖ϕ(y)	‖ for all x, y ∈ X.  If ϕ is linear we call it linear isometry. 
From the result of Mazur and Ulam 1932, ϕ is linear isometry if ϕ(0) = 0.  

The algebraic version of Banach-Stone theorem was first introduced by Gelfand and 
Kolmogorov [5] in 1939.  

This states that let X and Y be a compact spaces. Then C(X) and C(X) are isomerphic as 
algebras if and only if X and Y are homeomerphic.  
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To connect the algebraic properties of C(X) with the topology of X, various algebraic 
structures have been taken on C(X) like lattice structure. The first result in this field was due to 
Kaplansky [6]. It characterized the topology on compact space X by the lattice structure of 
C(X). 

 In second section we review the Banach-Stone theorem and its converse result. Then in 
this section we study the semi direct product on C(X) as the application of the Banach-Stone 
theorem. Finally we conclude the article by proving the result Isom(C(X)) ≅  Um(X) ⋊ఙ 
Homeo(X). 

Theorem 1. [4] (Banach-Stone Theorem) Let X and Y be compact Hausdorff spaces and 
let T be a surjective isometry C(X) → C(Y ). Then there exists a homeomerphism   τ : Y → X 
and a function h ∈ ∈ C(Y ) such that |h(y)| = 1 for all y  Y and  

                              T(f)(y) = ∀ ∈ ∈h(y)f(τ (y)),  f  C(X) and y  Y 

The converse part is also true. Let h and τ as stated, and define the map T : C(X) → C(Y ) 

By   ∀f ∈ C(X) and f ∈ Y,        T(f)(y) = h(y)f(τ (y)). 

Since τ is homeomerphism and the assumption |h(y)| = 1 for all y ∈ Y we have that  

||T(f)|| =Supy∈Y |T(f)(y)| 

 =Supy∈Y |h(y)f((y))| 

 =Supy∈Y |h(y)|f((y))| 

 	=  ∥௬∈|f(x)| = ∥fݑܵ

Thus T is isometric. It is also subjective. For any g ∈ C(Y) we define  

f =
ଵ∘ఛషభ (݃ ∘ ߬ିଵ) 

Since h, ߬ିଵ and g are continuous, f is also continuous being the product of continuous 
maps.  

Since h(y)≠ 0, for all y ∈ Y. Let y ∈ Y , then we have  

          T(f)(y) = h(y)(
ଵ∘ఛషభ). (݃ ∘ ߬ିଵ)(߬(ݕ))) 

  = h(y)(
ଵ∘ఛషభ)(߬(ݕ). (݃ ∘ ߬ିଵ)(߬(ݕ))) 

 = 
(௬)(௬) .  (ݕ)݃

 = g(y). 
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Here we study the special application of Banach-Stone theorem in the group theory. We 
use the converse of the Banach-Stone theorem also. For this all we need the followings from the 
group theory.  

Direct Product      
Let G be a group under the operation ∗ and H be a group under the operation ◦. Define an 

operation on G × H by 

(g, h) · (g ′ , h′ ) = (g ∗ g ′ , h ◦ h ′ ). 

Then G×H is a group. If ݁ଵ is the identity element of G and ݁ଶ is that of H then (݁ଵ, ݁ଶ) is 
the identity element of G× H and (݃ିଵ, ℎିଵ) is the inverse element of (g, h). Such obtained 
group is called the direct product of G and H. The following theorem is the characterization of 
the direct product of the groups.  

Theorem 2. [9] If G is a group containing normal subgroups H and K with H ∩ K = {1} and 
HK = G, then 

 G ≅ H × K.  

Proof.   We first show that for arbitrary g ∈ G, g = hk, where h ∈ H and k ∈ K is unique. Let ℎଵ݇ଵ = ℎଶ݇ଶthen ℎଶℎଵି ଵ =݇ଵ݇ଶି ଵ. Clearly,ℎଶℎଵି ଵ ∈ H and ݇ଵ݇ଶି ଵ∈ K. Since H ∩ K = {1},  ℎଶℎଵି ଵ = ݇ଵ݇ଶି ଵ= 1 ⟹ ℎଵ = 	ℎଶ		and  ݇ଵ = 	݇ଶ.  

We may now define a function φ : G → H × K by φ(g) = (h, k), where g = hk, h ∈ H and k ∈ 
K. We see whether φ is homomorphism, let g ′ = h ′k ′ , so that gg′ = hkh′k ′ .  

Since K is a normal subgroup of G, for k ∈ ∈ K, h  H(ℎ݇ℎିଵ)݇ିଵ∈ K.  

Similarly, since H is a normal subgroup of G, for k ∈ ∈ K, h  Hh(kℎିଵ݇ିଵ) ∈ H.  

 But H ∩ K = {1} so that hkℎିଵ݇ିଵ= 1 and hk = kh.  

So can write  

φ(hkh′ k ′ ) = φ(hh′ kk′ )  

                   = (hh′, kk′) 

                   = φ(g)φ(g ′ ). 

Finally, we show that φ is bijective. If (h, k) ∈ H×K, then the element defined by g = hk 
satisfies φ(g) = (h, k), hence φ is surjective.  

If φ(g) = (1, 1), then g = 1, so that ker φ = 1 and is injective.  
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Therefore, φ is isomorphism.  

Semi direct product 
If we suppose H a normal subgroup and K need not be normal with the conditions:  

(1) H ∩ K = {1};  

(2) HK = G,                           

Then the obtained product group is called the semi direct product. 

Example 1.  

Suppose H ≅ ℤ/3 and K≅ ℤ /2. There is the possibility of G as,           

(1)  If K is a normal in G then we already know G ≅ H × K.                  

(2)  If K is not normal in G for example G might be the symmetric group ܵଷ, with 

H = {(1),(123),(132)} and K = {(1),(12)}. 

This example shows that there may be more than one semi direct product for a given H 
and K. Thus H and K are not the enough to recover the structure of the new group G. For this we 
need a homomorphism from K to the group of automorphisms of H;  ߮ : K → Auto(H). 

For k ∈ K we define the automorphism ߮on H given by conjugation: ߮(h) = kh݇ିଵ . 

The following theorem shows that the ߮is homomorphism. 

Theorem 3. [7] Let K and H be groups then the map  : K → Auto(H) a homomorphism.  

Proof.    Here we show that 				߮భమ= ߮భ߮మfor any ݇ଵ, ݇ଶ 	∈  .ܭ	
 ߮భ߮మ(ℎ) = 	߮భ(݇ଶℎ݇ଶି ଵ) = ݇ଵ݇ଶℎ݇ଶି ଵ݇ଵି ଵfor any ℎଵ, ݇ଵ∈ K. 

 For any h ∈ H,  ߮మ(h) = ߮భ(݇ଶℎ݇ଶି ଵ)= ݇ଵ݇ଶℎ݇ଶି ଵ݇ଵି ଵ. 
 Again, ߮భమ(h) = ݇ଵ݇ଶℎ(݇ଵ݇ଶ)ିଵ= ݇ଵ݇ଶℎ݇ଶି ଵ݇ଵି ଵ 

 This shows that,			߮భమ= ߮భ߮మ . 

 Which completes the proof.  
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Theorem 4. [7] Given groups H and K and a homomorphism K → Auto(H) there is a semi 
direct product group G based on this information. We can construct it as follows:  

The underlying set of G is the set of pairs (h, k) with h ∈ ∈ H and k  K. The multiplication on 
this set is given by the rule  

(h, k)(h ′ , k′ ) = (h߮ (h’), kk′ ),  

  the identity element is (1, 1) and inverse is given by  (ℎ, ݇)ିଵ = (߮షభ൫షభ൯, ݇ିଵ).  
Proof.  Here we show that the multiplication is associative, existence of identity and inverse law hold.  

For associativity,  

((h, k)(h ′ , k′ ))(h ′′, k′′) = (h ߮ (h ′), kk′)(h ′′, k′′)  

= (h߮ (h ′ )߮ᇱ (h ′′), kk′ k ′′)  

= (h߮ (h ′)߮ (߮ᇱ (h ′′), kk′ k ′′)  

= (h߮ (h ′߮ᇱ(h ′′)), kk′ k ′′)  

= (h, k)(h ′߮ᇱ (h ′′), k′ k ′′) 

 = (h, k)((h ′ , k′ )(h ′′, k′′)). 

For identity:    

(h, k)(1, 1) = (h߮ (1), k) = (h, k),  

(1, 1)(h, k) = (1߮ଵ (h), k) = (h, k).  

For inverse:         

(h, k)(߮షభ (݇ିଵ), ݇ିଵ = (h߮ (߮షభ  (ℎିଵ )), k݇ିଵ )  

                                          = (hℎିଵ , k݇ିଵ )  

                                          = (1, 1).  

Thus this operation forms a group.  

Now it remains to show that it is the desired semi direct product of H and K. We have the 
injective maps H → G given by h↦ (h, 1) and K → G given by k↦ (1, k). These both maps are 
homomorphism since  

(h, 1)(h ′ , 1) = (h߮ଵ(h ′ ), 1) = (hh′ , 1)  

and  

(1, k)(1, k′) = (1߮ (1), kk′) = (1, kk′).  
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From this homomorphism we can say that H and K are the subgroup of G. Then  

H ∩ G = {(1, 1)} and HK = G  

since  

(h, 1)(1, k) = (h, k).  

Finally we show that H is normal in G and that the action of K on H by conjugation in G 
is given by the original homomorphism ߮. Both follow from the calculation,  

(1, k)(h, 1)(1, ݇)ିଵ = (1, k)(h, 1)(1, ݇ିଵ)  

= (߮(h), k)(1, ݇ିଵ )  

= (߮(h), 1).  

The semi product of H and K is denoted by G = H⋊K. 

 Now we turn our attention to the group structure on C(X). Let X be a compact Hausdorff 
Space. The following sets  

Isom(C(X)) = {T : C(X) → C(X) : T is isomerphic isomerphism}, 

Homeo(X) = {τ : X → X : τ is homeomerphism},  

And                                                   

Um(X) = {h ∈ ∀ ∈ (X) : |h(X)| = 1  x  X}  

are groups with respect to the operation of composite map and the point wise 
multiplication. That is (Isom((X)), ◦), (Homeo(X), ◦) and (Um(X), ◦) are groups.  

Here our main aim is to study the semi product of Um(X) and Homeo(X). For this we need the 
following theorem to get a desired result.  

Theorem 5.   The map σ : Homeo(X) → Auto(Um(X))    τ ↦ τ* , is a homepmerphism 

 where τ* is defined as  

τ* : Um(X) → Um(X) , h ↦ h ◦ ߬ିଵ .  

Proof. 

        Let ߬ଵ, ߬ଶ∈ Homeo(X) and h ∈ Um(X). Then we have that  

σ(߬ଵ ◦ ߬ଶ)(h) = (߬ଵ ◦ ߬ଶ) * (h) = h ◦ (߬ଵ 	∗ 	߬ଶ)ିଵ 

 = (h ◦ ߬ଶିଵ) ◦ ߬ଵିଵ = ߬ଵ * (h ◦ ߬ଶିଵ )  

 = (߬ଵ∗◦	߬ଶ∗)(h) 

  .(h)((ଶ߬)ߪ ◦(ଵ߬)ߪ) = 

Thus ߪ(߬ଵ ∘ ߬ଶ= ߪ(߬ଵ)◦ ߪ(߬ଶ).  
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This shows that σ is homomorphism. 

From  Theorem 4Um(X) ⋊ఙ Homeo(X) is a group with the operation 

 (ℎଵ, ߬ଵ) (ℎଶ, ߬ଶ) = ((ℎଵ.   .((ଵ ◦ ߬ଶ߬) ,(ℎଶ)(ଵ߬)ߪ

Lastly we prove our main result using the Banach-Stone theorem and its converse.  

Theorem 6.The map 

ψ : Isom(C(X)) → Um(X) ⋊ఙHomeo(X)  

T↦ (h, ߬ିଵ ) is a group isomorphism 

 where  

    T : C(X) → C(X) defined as T(f) = h · (f ◦ τ ).   

Proof.    From the Banach-Stone theorem there exists unique function h ∈ Um(X) and ∈τ  
Homeo(X) for every T ∈ Isom(C(X)) such that  

∀ ∈ f  C(X) and x ∈ X;      T(f)(x) = h(x) f(τ (x)). 

So ψ is well defined and injective. Again from the converse of the Banach-Stone theorem 
ψ is onto. Now it remains to show that ψ is homomorphism.  

For this,   

let ଵܶ, ଶܶ ∈ Isom(C(X)). Assume that ψ( ଵܶ) = (ℎଵ, ߬ିଵ) and ψ( ଶܶ) = (ℎଶ, ߬ିଵ)  for certain 
maps ߬ଵ, ߬ଶ∈ Homeo(X) and ℎଵ, ℎଶ∈ Um(X). Now from the group operation on Um(X) * 

Homeo(X) 

We have,   

 ߰( ଵܶ)߰( ଵܶ) = (ℎଵ, ߬ିଵ )(ℎଶ, ߬ିଵ) = (ℎଵ. ,(ℎଶ)(ଵି߬)ߪ ߬ଵି ଵ ∘ 	߬ଶି ଵ) 
= (ℎଵ · ℎଶ◦߬ଵ,(߬ଶ ∗ ߬ଵ)	ିଵ ).  

On the other hand, we have for an arbitrary map f ∈ C(X) 

 ( ଵܶ ∘ ଶܶ)(݂) = ଵܶ( ଶܶ(	(݂)) 
 = ଵܶ(ℎଶ. ݂ ∘ ߬ଶ) = ℎଵ. (ℎଶ. ݂ ∘ ߬ଶ) ∘ ߬ଵ 

 = ℎଵ. ℎଶ ∘ ߬ଵ. ݂ ∘ ߬ଶ ∘ ߬ଵ 

Then we conclude that ߰	( ଵܶ ∘ ଶܶ) = (ℎଵ · ℎଶ◦߬ଶ,  (߬ଶ ∘ ߬ଵ)ିଵ).  
Therefore				((ܺ)ܥ)݉ݏܫ 	≅ 	ܷ݉(ܺ) 	⋊ఙ  .(ܺ)݁݉ܪ	
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