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ABSTRACT 

A new Poisson Inverted Exponential distribution is developed from the Poisson family of 
distribution, which has two parameters. The characteristic of the intended model is 

unimodal, positive skewed and platykurtic, while the characteristic of the hazard 

function is the inverted bathtub and the decreasing order. Explicit expression of quantile 

function, moments (including incomplete and conditional moments), moment generating 
function, residual life function, R`enyi and q-entropies, probability weighted moment and 

order statistics of the intended model. The value of unknown parameters is estimated by 

the maximum likelihood estimate with the confidence interval. Similarly, purposed model 
compared with well-known other five distributions through different criteria like as 

goodness of fit, P-P plot, Q-Q plots and K-S test. Likewise, we fitted the PDF and CDF 

of purposed model with other models, it is clear that intended model is great flexibility 
and satisfactory fit than those models. Therefore purposed model is more useful in real 

data and life time data analysis and modelling.  

  

KEYWORDS: Inverted Exponential-Poisson, maximum likelihood estimation, order 
statistics 

 

 

INTRODUCTION 

Over the last decade, several probability distributions have been commonly used 

in real data modelling and forecasts in applied science, engineering, actuarial science, 
economics, telecommunications, life testing, and others many areas  (Abouelmagd et al., 

2017; Garrido et al., 2016; Soliman, et al. 2017). In literature, some familiar distribution 

has been derived, which are used in real data analysis in different areas are: Generalized 

Exponential-Poisson by Barreto-Souza & Cribari-Neto (2009), Gemotric exponential 
Poission G  by Nadarajah et al. (2013), Exponentiated exponential Poisson G family by 

Ristić & Nadarajah (2014), Kumaraswamy Poisson-G Family by Ramos et al. (2015), 

Exponentiated generalized-G Poisson family by Aryal et al. (2017), Poission exponential 
–G family by Rayad et al. (2020), and others. 

In the last few decades, the new probability distribution has been derived 

continuously. The new distribution having more parameter and flexibility than existing 

one; thus, these distributions are more robust and consistent. Therefore, new distributions 
are better fitted with complex data, which is the prime objective of introducing the new 
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probability distribution. For this reason, a new two parameters Poisson Inverted 

Exponential (PIE) distribution has been derived. 
 

METHODS AND MATERIALS 

Poisson Inverted Exponential distribution 

The exponential distribution has been extended in numerous ways to get new 
probabilistic models for life testing problems. Let, Y follows an exponential distribution, 

the distribution,
1

X
Y

  would be an inverted exponential distribution. It is used as a 

prospective life distribution analysis. Therefore, Cumulative Density Function (CDF) of 
Inverted Exponential (IE) distribution is given by, 
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In literature, not only probability distribution, but also family of distribution has been 

derived. Chakraborty et al. (2020), defined Poisson-G family of distributions which CDF 

is given as 
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The CDF of IE having parameter   in the equation (2.1) which is used in the equation 

(2.2), then CDF of new Poisson Inverted Exponential (PIE) distribution having 2 
parameters becomes;  
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The PDF of purposed model becomes, 
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The survival function is  
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The hazard rate function is 
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It is noted that this model is quite flexible for modeling either real data or life-time data, 

which may be positive and skewed in nature (Fig 1, left panel). The hazard rate function 
of this model is inverted bathtub and decreasing order, which follow the good statistical 

behavior of modeling in real data analysis (Fig 1, right panel). 

 

Figure 1 
Plot of Probability Density Function (left panel) and Hazard Rate Function 

 
Note: Plot of Probability density function (left panel) and hazard rate function (right 

panel) of some parameters value of ( , )   

 

Statistical Properties 
In this section major properties of PIE distribution have been derived. 

 

Useful expansions 

For n, a positive real non integer and 1z  , we have the generalized binomial 

series, 
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The power series of exponential function is  
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Using the exponential power series (3.2) in equation (2.4), the PDF of new PIE 

distribution becomes, 
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Similarly,  
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Likewise, binomial expansion (3.1) and exponential power series expansion (3.2) is used 

in the expansion of  
s

F x   , then it becomes, 
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Quantile function 

Quantile functions are used for theoretical aspects of probability. The quantile 

function is defined of any distribution is
1( ) ( )Q u F u . Therefore, the corresponding 

quantile function for the purposed model is, 
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    (3.6) 

Where u ~ U (0, 1) distribution.  
 

Now, equation (3.6) is used to generate 100 random samples and it describe the 

characteristic of distribution,  like  mean, median, mode, skewness, and kurtosis. It is 
observed that the distribution is unimodal, positively skewed, and platykurtic in nature. 

As a result, any data set follows such a feature, the intended model is particularly 

suitable in modeling of real and life time data (Table 1, Fig 1).  

 

Table 1 
The mean, Median, Skewness and Kurtosis for Different Values of the Parameters 

Parameters Mean Median Mode Skewness Kurtosis 

         

0.01 5.0 0.437214 0.361934 0.957946 0.364908 1.631523 

0.02 4.5 0.459600 0.384203 1.02188 0.332095 1.562768 

0.03 4.0 0.481015 0.396426 1.079046 0.296169 1.491212 

0.04 3.5 0.500193 0.408688 1.123853 0.257066 1.422893 

0.05 3.0 0.516207 0.436164 1.152273 0.218044 1.366162 
0.06 2.5 0.565164 0.551858 1.934498 0.183327 1.326639 

0.07 2.0 0.536839 0.460977 1.152919 0.156606 1.306093 

0.08 1.5 0.541283 0.491424 1.125854 0.140277 1.303092 
0.09 1.0 0.542079 0.517447 1.083159 0.135295 1.314182 

0.10 0.5 0.539607 0.490153 1.027781 0.141264 1.335081 
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Moments 

Since, ( , )X PIE   ,
 the r

th
 raw moment of random variable  is given by 
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Where, PDF is used from the equation (3.3) then moments of PIE distribution is  
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Similarly, lower incomplete moments, say, ( )s t   is given by 
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Using 
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Again, conditional moment is 
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Moment Generating Function (MGF) 

The moment generating function is 
0
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After using the finding of (3.7) in equation (3.10), the MGF is  
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Residual life function 

The n
th
 moment of the residual life of X is given by 

~ 
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Apply the binomial expansion of 
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R`enyi and q-entropies 
The entropy of a random variable is a measure of variation of uncertainty or 

randomness of a system. The theory of entropy has been used in many fields such as 

physics, engineering, economics, and other subjects (Song, 2001). It is used in statistics 
for testing hypothesis in parametric models and lifetime distribution (Al-saiary et al., 

2019). The R`enyi entropy is defined as 
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By applying the relation (3.4) in equation (3.13) and integration of (3.13), then finding of 

R`enyi entropy is obtained as, 
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Similarly, the q-entropy is defined by 
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Therefore, q- entropy of PIE distribution is obtained by substituting the result of (3.13) in 

to (3.14) only when replacing  by q, we get 
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The Probability Weighted Moments (PWM) 

The probability weighted moments can be obtained from the following relation 
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By substituting equations (3.3) and (3.5) in equation (3.15) and integrating the equation 
(3.15), then finding of PWM is; 
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Order statistics 

Order statistics have been extensively applied in many fields of statistics, such as 

reliability and life testing. Let, ϰ (1)< ϰ (2)< … <ϰ (n) denotes the order statistic of a 

random sample X1, X2 … Xn from the PIE distribution with CDF F(x) and PDF f(x).  
According to H. A. David (as cited in Al-saiary et al., 2019), the PDF of X(r) can be 

written as  
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By using PDF in equation (3.3) and expansion of (2.3) by using exponential power series 

expansion, then equation (3.16) becomes,  
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The PDF of smallest order statistics (1)X  is; 
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Maximum Likelihood Estimation 
The maximum likelihood estimates (MLEs) of the unknown’s parameters of the 

distribution based on  1, , nx x x 


observed sample with the set of 

parameters ( , | )x 


. The log likelihood function of the parameter ( , )  is given 

by 
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Maximum likelihood estimators of the parameters have obtained by partial 
differentiating w.r.t.to parameters and equating to zero, we have  
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The unknown parameters  and     are estimated by solving non-linear equation (4.2) 

and (4.3). Clearly, it is difficult to solve them analytically; therefore, applying Newton-

Raphson’s iterative technique by using optim () function in R software (Braun et al., 

2016), R core team (2019). 

Hence, from the asymptotic normality of MLE’s, approximate 100 (1 )  % 

confidence interval for   and    can be constructed as 

/2
ˆ ˆvar( )z  and /2

ˆ ˆvar( )z   

Where, /2Z  is the upper percentile of standard normal variate. 

 
RESULTS AND DISCUSSION 

In this section, the analysis of one real data set for illustration of purposed model 

is presented. In this paper, the author considers a data set purposed by Hinkley (1977) 
which are given as:  

0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 

1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05. 

 

Parameter Estimation 

The value of parameters are estimated by maximizing the log-likelihood function 

(4.1) directly by using optim() function in R software. Also, author estimate 100 (1 )  

% confidence interval of purposed model (Table 2). 

 

Table 2 

Estimated Value, SE and 95% Confidence Interval of Parameters 

Parameters MLE SE 95% CI 

̂  2.507471 0.4537 (1.61821,3.39672) 

̂  4.605174 1.5881 (1.49249,7.71785) 

 

Model Comparisons 
We have considered five alternative models named Flexible Weibull (FW) by 

Bebbington et al. (2007), Expononented Inverted Weibull (EIW) by Flaih et al. (2012), 

Generalized Inverted Exponential (GIE) by Krishna and Kumar (2013), Weighted 



www.pncampus.edu.np 

A New Poisson Inverted Exponential Distribution 

                      144 | P a g e  
 

Inverted Exponential (WIE) by Hussein, (2013) and Type II half logistic exponential by 

Elgarhy et al. (2019) compare with the purposed model. These models are compared 
with our model by different goodness of fit criteria’s like as (i) Akaike’s information 

criterion (AIC), (ii) Bayesian information criterion (BIC), (iii) Corrected Akaike’s 

information criterion (CAIC) and (iv) Hannan-Quinn Information Criterion (HQIC) 

(Table 3). 
 

Table 3 

Comparison of Purposed Model with Known Distribution by Goodness of fit Criteria 

Models AIC BIC CAIC HQIC 

PIE 65.41938 68.22177 65.86328 66.31589 

WIE 86.10524 88.90763 86.54968 87.00175 

EWI 87.83402 90.63642 88.27847 88.73053 
FW 80.13606 82.93845 80.58050 81.03257 

GIF 83.31921 86.12160 83.76365 84.21572 

 

The value of AIC, BIC, CIAC, and HQIC is the least of purposed model. Hence, 
purposed model is a better fit for positively skewed data. Similarly, goodness of fit is 

also verified by P-P plot and Q-Q plot. Likewise, the KS test was 0.12733 (p-

value=0.378) of purposed model, indicating that it is good fit, (Kumar and Ligges, 2011) 
(Figure 2). 

 

Figure 2 
P-P plot (left panel) and Q-Q plot (right panel) of Purposed Model 

 
Note: P-P plot (left panel) and Q-Q plot (right panel) of purposed model, used by 
estimated MLE 

 

Likewise, author compare the purposed model with other known distribution by 

fitting PDF and CDF from estimated MLEs. In Figure 3, it is clear that the intended 
model is better fitted than other known distributions. Hence, purposed model is an 

alternative, greater flexible model for real data and life time data modeling. 

 

 

 

 

 

 



www.pncampus.edu.np 

A New Poisson Inverted Exponential Distribution 

                      145 | P a g e  
 

Figure 3 

Estimated Fitted Densities, Estimated CDFs and Empirical CDF  

 
Note: Estimated Fitted Densities (left panel), Estimated CDFs and Empirical CDF (right 

panel) 

 

CONCLUSION 

In this study, a new Poisson Inverted Exponential distribution with two 

parameters has been discussed. Some of the important properties of the distribution 

name, quintile, moments, moment generating function, residual life function, R`enyi and 
q entropy, probability weighted moments and order statistic are investigated of intended 

model. The values of parameters are estimated from maximum likelihood methods with 

confidence interval. From the data analysis, it is observed that PIE distribution is a better 
than others some well-known distribution. Hence, purposed model is a satisfactory 

model in both aspects i.e. the theoretical and applied in real data and life time data 

modeling. 
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