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ABSTRACT 
In this study, the SIR compartmental mathematical model has been proposed to predict 

the transmission dynamics of COVID-19 in Nepal. The model is analysed by deriving 

some important expressions such as the basic reproduction ratio and possible maximum 
number of infectives in the future. This study examines the applicability of the SIR model 

for the study of the COVID-19 pandemic and other similar infectious diseases. The prime 

objective of the study is to analyse and forecast the COVID-19 pandemic in Nepal for the 

upcoming time. The estimation of the parameters of the model is based upon data from 
January 20, 2020 to July 14, 2020. The model presented in the paper fitted to the time-

series data well for the whole Nepal and its neighbouring countries such as India and 

China. The findings suggest that there is a potential for this model to contribute to better 
public health policy in combating COVID-19.  

  

KEYWORDS: Basic reproduction number, compartmental model, mathematical 
modelling of COVID-19, numerical simulations, pandemic 

 

 

INTRODUCTION 
Mathematical modelling has become a powerful tool that can be used to 

understand the dynamics of infectious disease and to support the development of control 

strategies. One of the primary reasons for studying infectious disease is to improve 
control disease and ultimately to eradicate the infection from the population. Models can 

be a power tool in this approach, allowing us to optimize the use of limited resources to 

target control measures more efficiently. A considerable number of recent studies have 

contended to estimate the scale the severity of COVID-19, and several mathematical 
models and predicting approaches have attempted to explain the transmission of COVID-

19. The majority of the studies have estimated the basic reproductive number, a key 

parameter to evaluate the potential for COVID-19 transmission. However, different 
models often yield different conclusions in terms of differences in model structure and 

input parameters. It is imperative and crucial to improve the early predictive and warning 

capabilities of potential models for the pandemic. 
 In this study, I discuss the stability analysis of a general Susceptible-Infected-

Recovered (SIR) epidemic model of infectious disease (Siettos & Russo, 2013). The 

local dynamics of a general SIR is determined by the value of the basic reproductive 
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number  which depends on the parameter values. For less than or equal to 1 the 

disease-free equilibrium is locally asymptotically stable while for  greater than 1 the 

endemic equilibrium exists. 
Since December 2019, many unexplained cases of pneumonia with cough, 

dyspnea, fatigue, and fever as the main symptoms have occurred in Wuhan, China in a 

short period of time (Shen , Peng, & Xiao, 2020). China’s health authorities and CDC 
quickly identified the pathogen of such cases as a type of coronavirus, which the World 

Health Organization (WHO) named COVID-19 on January 10, 2020 (WHO, 2020). On 

January 22, 2020, the Information Office of the State Council of the People’s Republic 
of China held a press conference, introducing the relevant situation of pneumonia and 

control of new coronavirus infection. On the same day, the People’s Republic of China’s 

CDC released a plan for the prevention and control of pneumonitis of new coronavirus 

infection, including the COVID-19 epidemic Research, specimen collection and testing, 
tracking and management of close contacts, and propaganda, education and 

communication to the public (National Health Commission of China, 2020). 

An outbreak of severe acute respiratory syndrome coronavirus2 (SARS-CoV-2), 
named as COVID-19, a zoonotic coronavirus seems to be similar to the serve acute 

respiratory syndrome coronavirus (SARS-CoV) and MERS-COV those with rather high 

lethality rate (Zhang Y, 2020). A mathematical model for simulating the phase-based 
transmissibility of novel coronavirus has showed the transmissibility of SARS-COV-2 

was higher than the Middle East respiratory syndrome in the Middle East countries, 

similar to severe acute respiratory syndrome, but lower than MERS in the Republic of 

Korea (Chen et al., 2020). Recently, a mathematical model has been developed including 
individual behavioural response, governmental actions, zoonotic transmission, and 

emigration of a large proportion of the population in a short time period (Qianying, 

2020). As of July 14, 2020, the cumulative number of confirmed cases has reached 
16801 in Nepal and 12964809 globally. Also 570288 deaths have been declared by 

WHO worldwide till now (World Health Organization, 2020).  

The prime objective of the study is to analyse and forecast the COVID-19 

pandemic situation in Nepal for the upcoming time such that the findings of the study 
will contribute to build better health policy in combating COVID-19 for the upcoming 

days in Nepal.  

 

METHODS 

The study area of the research is Nepal and its neighbouring countries. The study 

is based on the secondary data, which is publicly available on the website of the WHO. 
The data were collected on the epidemic situation of COVID-19 in Nepal and its 

neighbouring countries like India and China and compared the results with those of the 

SIR model with different parameters setting the scenarios. The number of positive novel 

coronavirus (COVID-19) cases in Nepal, India, and China from 20 January 2020 to 14
th
 

July 2020 were recorded. The data source was based on the daily reports of WHO 

situation analysis of COVID-19. These three countries were selected because of their 

significance difference in the disease spread patterns. These data were used to estimate 
the values of the parameters such as effective contact rate, recovery rate of the infected 

people, basic reproduction ratio, etc. for the SIR model. The model and the visualizations 

were done using the software package named COVID-19.analytic version 1.1.1 package 
developed with the R-program 3.6.1 version. In addition, the time series plotting and 

Histogram diagram were done for Nepal and its neighbouring countries using R 

program. The epidemic has not saturated in Nepal yet, it seems to be in its first half in 
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most locations. Those datasets cannot be used to derive some reliability criteria for the 

found parameters; some additional investigations with the inclusion of the datasets of 
upcoming duration are necessary. 

 

THE MATHEMATICAL MODEL 

The SIR Model 
I have used the compartmental model to describe the dynamics of the population 

in which the entire population is divided into three classes: (a) the group of susceptible 

individual (S), (b) the group of infected individuals (I), and (c) the group of recovered 
(R) individuals. The susceptible individuals are those who are healthy and can contract 

disease under appropriate conditions. Infected individuals are those who have contracted 

the disease and are now infected with the COVID-19. These individuals are capable 
transferring the disease to the susceptible individuals via contacts. As time progress, 

infected individuals lose infectivity and move to the recovered compartment. These 

recovered individuals are immune to infectious microbes and thus do not acquire the 

disease again.  
Some simplifying assumptions of the model are as follows:  

(i)  The population is considered to be closed. The model is implemented for short 

period so the change in populations due to migration and natural death and 
birth are neglected. 

(ii) The population spatial is homogeneity. 

(iii) The disease transmission occurs only by the contract of susceptible and 
coronavirus infected individuals. 

(iv) All the infected beings have an equal chance to be recovered. 

(v) Secondary waves of infections and any other outbreak of the infection are not 

considered in these models. 
(vi) The real time data of the officially reported positive cases are used for the model. 

The model consists of a system of three nonlinear ODEs as: 

 

 

( )
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( )
( ) ( ) ( )......................3.2
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( ).........................................3.3
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S (t), I (t) and R (t) are the number of susceptible, invectives, and recovered people 

respectively at time t. The initial conditions are 

     0 0 00 , 0 , 0 0S t S I t I R t R       . 

 

 : Disease transmission rate by the contact between the susceptible and infected 

individuals. 

 

γ: The mean recovery rate . 

1

D
  : The average rate of recovery in infected population,  

D: the duration of infection or average infection period. 
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 : The product of the population exposed to the infected population (𝜅) and the 

probability of transmission (b). The model is developed for the short period of time so 

the total population is assumed to be constant N. So we have  

 

0

S I R N

dS dI dR dN

dt dt dt dt

dS dI dR

dt dt dt

  

   

   

 

 

Writing s (t), i (t) and r (t) for the fractions of the population in the respective classes we 
have 

( ) ( ) ( ) 1

, ( ) 1 ( ) ( )

s t i t r t

or r t s t i t

  

  
 

 

Hence, the equations of the SIR model reduce as follows: 

...........................................................3.4
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With initial conditions,  
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Qualitative Analysis of the Model 

Existence of the long term limits: Since , 0   we must have 

0
dS

SI
dt

    and 0
dR

R
dt

   

 

Also,    0 0S t S N    and    0 0R R t N   . These inequalities implies that 

the limits 
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 All values exist.  

The Disease always dies out: We have the initial conditions, 

     0 00 , 0 , 0 0S S I I R      
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It is easy to show that the disease always die out i.e. I (0) = 0 for all initial conditions. 

 

0 0 0

0t

dI
I S I

dt
 



 
  

 
 

0 0( )I S    

Clearly, 0 0 0( ) 0
dI

S I S
dt


 


      

And   0 0 0( ) 0
dI

S I S
dt


 


      

By equation (3.1)  

00
dS

IS S S
dt

      for any time t ≥ 0. 

 
There are two possible cases. 

Case I: If 0S



 , then   0

dI
I S

dt
     for all 0t  . In such case,  0 0I I t   

as t    

 

So the infection dies out i.e. no epidemic can occur. 

Case II: If 0S



  , then   0

dI
I S

dt
     for all t ≥ 0. In such case I (t) initially 

increase and we will have an epidemic. 
This is a famous result due to Kermack and McKendrick (1927) and referred as 

the threshold phenomenon. The initial population of susceptible must exceed this critical 

threshold for an infection to invade. Alternatively, we can interpret this result as 

acquiring



 the relative removable rate, to be small enough to permit the disease 

spread. The inverse (reciprocal) of the relative removable rate is called the basic 

reproductive ratio. It is universally represented by the symbol  and it is one of the 

most important quantities in epidemiology. The basic reproductive ratio represents the 
average number of secondary cases arising from an average primary case in an entirely 

susceptible population and essentially measures the maximum reproduction potential for 

an infection (Diekman & Heesterbeek, 2000). An infection can only invade if 0 1R  . 

This seems very realistic in simple interpretation as pandemic occurs only when one host 

transmits more than one new host on the average. 

The Basic Reproduction Number: Hethcote (2000) defined the contact number 

(σ) as the multiplication of the contact rate    per unit time by the average infection 

period 1


. So it is interpreted as the average number of adequate contacts of a typical 

infective during infectious period. In general, 0R R  . Here, R denotes the 

reproduction number at some time other than the outset of the epidemic. 

We estimated the early transmission 0R  for Nepal using available reported data 

by WHO coronavorus situation in Nepal. The epidemic growth potential is control by the 
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parameter
0R  We used the next generation matrix to derive a formula for the

0R  

(Diekmann , Heesterbeek, & Roberts, 2010). When we use the model of fractions of 

infected individuals in a closed population (i.e. 
I

I
N

 instead of I)  

0R 


   

.

1

b

D


  

But when we use the model with the infected population I as the whole, then 

0

N
R




  

In terms of related studies for the COVID-19 infection assumption, we set D=14 

to estimate the
0R . Mathematically, the value of 

0R  can be calculated by multiplying the 

rate at which new cases are produced by an infectious individual i.e. transmission 

rate    (when the entire population is susceptible) and the average infection 

period  1


 . 

 

Epidemic Burn Out: The long term or asymptotic state can be also interpreted 

from the model. Taking equations  
 

dS
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dt
   and 
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dt
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


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


   

0

dS
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Integrating with respect to R, we get 

0

0

( )
( ) (0) ...............................3.7

R t R

dS SR dR

S t S e


 



 
 

Assuming R (0) = 0 
 

The equation (3.7) shows that as the epidemics develops, the number of susceptible 

declines and, with a delay to take the infectious period into account, the number of 

recovered increases. Since 0RR
e


 is always positive S (t) always remains above zero for 
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any value of t. Therefore, there will always be some susceptible in the population who 

escape any infection. 

 

The Possible Maximum number of Infected Individuals:  

dI

dI dt
dSdS

dt

  

IS I

IS
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1dI dS
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

 
  
 

 

Integrating we get  

1dI dS
S


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 
  

 
   

1
I ds dS

S




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logI S S C



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Here, C is the constant of integration. Using initial condition 

 

I (0) ≈ 0, S (0) ≈ N, we get 

0 log N N C



    

logC N N



    

Hence, log log ................................3.8I S S N N
 

 
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From this equation, we can compute the instantaneous maximum number of 

infective. For maximum value of I, 0
dI

dS
   
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At S
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dt








 
 
 
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 0



     

So the maximum number of infective population (I) occurs at S



  . Using the 

equation (3.8), the maximum number of infective is given by 
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This is the instantaneous maximum number of infective. The equation (3.8) can be used 

to determine the value of S for which the number of infective vanish i.e. I=0. 

 

log logI S S N N
 

 
     
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Since the logarithm is defined only for some positive value, the above expression shows 

that value of S=N for the number of infective vanish i.e. I=0. Therefore, the epidemic 
terminates before all susceptible have become infected and some individuals escape the 

disease entirely.  

Numerical Simulations: Numerical simulations are performed to investigate the 

dynamics of the system and to support the findings of the theoretical findings. To carry 
out the numerical simulations on the epidemic SIR model we need to make a specific 

choice of the values of the parameters and the initial conditions. We use the package 

deSolve of R library for the numerical solution of the model. We take particular values of 
the parameter β=1.4 and γ=0.14 and observe the graphical presentation of number of 

susceptible, infected, and recovered against the time (day) for the solution of the SIR 

model are as shown in the figure 1.  

 

Figure 1 

SIR System Simulating the Infectious Disease 

 
Note: The graph contains solutions of the SIR system simulating the infectious disease. 

Numerical Simulation of the SIR model presenting the number of susceptible(S), 

infective (I), and recovered (R) against time for initial situation S(0)=1, I(0)=0 and 
R(0)=0 and taking β=1.4 and γ=0.14. 

 

COVID-19 IN NEPAL 
Nepal recorded its first case of COVID-19 on 25 January 2020. The infected cases 

increased to 2 on 24 March 2020 (WHO, 2020). Both the infected are the imported cases. 

Moreover, at the initial stage of the outbreak the data followed closely the exponential 

growth trend with a very low growth rate. Till date, Nepal is one of the countries that 
have faced grievous consequences of COVID-19. Till 14

th
 July 2020, Nepal has 16,166 

recorded cases through polymersase chain reaction (RT-PCR) and 35 deaths have been 

reported associated with COVID-19 PCR positive status. The male to female ratio of 
death is 6:1. Although over all case fatality ratio (CFR) across all age is less than 1%, the 

CFR progressively increases above 1% beyond 55 years of age. All 7 provinces and 77 

districts of Nepal are now affected and in five out of seven provinces where 71% of the 

population reside, there are cluster of cases. Around 84% cases are reported from 
province 2, province 5, Farwestern and Karnali province combined. The age sex 

distribution is highly skewed towards young males, who constitute 86% (13,944/16,166) 

of the confirmed cases. Of the males, 92% (12,893/13,944) are in 15-54 year age group 
(WHO, coronavirus situation in Nepal, 2020).  
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The effective contact rate is the per capita rate of infection given contact and it 

depends on the two factors: (i) the transmissibility of the virus (pathogen) (τ) and (ii) the 
frequency of the contact (ƒ) .We assumed removable rate (γ) as a constant factor. So the 

expected time to removal (D) will be
1


. We have  

0R 


  
.

1

b

D


   

             
0 .........................4.1R fD   

 

Hence,  is simply the product of the transmissibility (τ), mean contact rate (ƒ) and the 

duration of the infection (D).The current estimates of the incubation period of the virus 

ranges from 2 -10 days, and these estimates will be refined as more data become 

available. This is a very important result because it tells us how to control epidemics. 
The transmissibility should be reduced to control the epidemics. The best method to 

reduce the transmissibility (τ) is to develop vaccines for the coronavirus, which is under 

continuous effort by the scientists of the almost all countries. At the time period of the 

study, the use of sanitizers and frequently hand washing with soap is under the practices 
to decrease the transmission. Also, second effective way is to reduce the contact rate (ƒ). 

The mean contact rate is decreased effectively the quarantine the COVID-19 positive 

people and keeping them in isolation. Additionally, the health education programme 
should be conducted in national and international media about the social distancing and 

awareness about the disease. 

 

Figure 2  

The total number of cumulative confirmed cases, death cases and recovered cases of 

Nepal 
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Note: The data is plotted for every 7 days records. 

 

Figure 3 

The Histogram of the Number of Coronavirus Cases in Nepal  

 
Note: The Histogram of the number of coronavirus cases found in Nepal from the day of 

first case found to 20
th

 July 2020. The bar diagram indicates the positive exponential 

growth with low growth rate. 
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(a) Variation of number of infected population in Nepal for 26 days of the first 

reported case found. Estimated values of the parameter, = 1.18751159 and the 

fatality rate= 0.02, are obtained using the data of initial 26 days. 

 

Figure 4 

SIR Model for the Total Population of Nepal as 280 90000 

 
Figure 5 

The Growth Rate of the COVID-19 Active Cases in Nepal 

 
 

Figure 2 displays the plots for confirmed cases in Nepal from 30 January 2020 to 

20 July 2020 staring from the first case in Nepal. The model has been fitted for the 

COVID-19 outbreak in Nepal for the recorded period. A slight deviation of residual from 
the straight line can be observed from the plot. Time series analysis presents the 

meaningful statistics for confirmed COVID-19 data. Figure 3 presents the time series 

graph of the active infected COVID-19 cases from 10 January to 20 July 2020. It is clear 
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from the plot that the time series is not stationary. An increasing trend is displayed by the 

time series suggesting a high rise in COVID-19 cases. 
Trends for a number of recovery and death cases with respect to time due to the 

COVID-19 infection in Nepal depicted in Figure 2. It is observed that the number of 

recoveries as well as deaths increase with time; however, the rate of recovery is higher 

than the rate of death. This indicates a low mortality rate is expected from the disease. 
We perform rigorous numerical simulations to an insight of the epidemic in 

Nepal. All the simulations are performed by R-program. The parameter values are 

established by using the offficially reported data of 26 days from the first cases on 
COVID-19 found in Nepal provided by the WHO coronavirus situation in Nepal (WHO, 

2020). We take the total population of the region (Nepal) as 28090000 for the simulation 

of the SIR model. The parameter values used for the simulation is in Table 1. 
 

Table 1 

Parameter Values Used for the Model 

Parameter Value Source 

Fatality Rate 0.02 Estimated from the record of 

reported data of Covid-19 for 26 days 

from the first case found in Nepal as it is 

mentioned in the section Methods 

0R  1.18751159 

β 0.5428596 

γ 0.4571404 

 

The expected maximum number of infected people is 31426 (0.11%) and the epidemic 

may hit its peaked at 90 (2020:07:16). In addition, the maximum number of casualities 
will be 629 assuming 2% fatality rate. The ploting of the simulated number of population 

is in the figure 4. 

 

Figure 6 

COVID-19 Cases in India 

 
(a) 
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(b) 

 
(c) 

Note: COVID-19 situation in India. (a), (b) Cumulative number of confirmed, recovered 
and death cases from the first case found in India, and (c) Bar diagram of the confirmed 

cases. Bar diagram shows the exponential growth with moderate positive rate. 
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Figure 7 

COVID-19 Situation in China 

 
(a) 

 
(b) 

Note: COVID-19 situation in China. (a) Cumulative number of confirmed cases, from 
the first case found in China, and (b) Bar diagram of the confirmed cases. Bar diagram 

shows early stable condition from 4
th
 March, 2020. 

 

Figure 8 

A Comparative Plot of Confirmed COVID-19 Infection Cases in Nepal 

 
Note: A comparative plot of confirmed COVID-19 infection cases for Nepal and its 

neighbour countries- India and China from 20 January 2020 to 20 July 2020. 
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Figure 8 shows the comparative study of confirmed COVID-19 infection cases 

of Nepal with respect to those of its neighbouring countries such as India and China. 
According to the plot, India is most infected while Nepal the least infected of the 

selected countries (Nepal, India, and China). It is obvious that Nepal is the last amongst 

these countries to get infected. However, the plot also reflects that China has been able to 

control the pandemic and is now presenting very new cases. Thus, it follows that if strict 
prevention measures such as quarantine and sanitization are continued for some days, the 

situation could be controlled in coming days. 

 

DISCUSSION AND CONCLUSIONS 

Analysing and curbing the COVOD-19 epidemic in Nepal is an essential part of 

fighting the pandemic globally. The COVID-19 outbreak in Nepal is analysed using the 
deterministic compartmental SIR mathematical model. Although the SIR model is one of 

the simplest epidemiological models, it is still one of the most useful tools to study viral 

infections like COVID-19. I have explored the SIR model to study the coronavirus 

epidemic disease. From the qualitative analysis of the model, it is found that the long 
term limits of the susceptible, recovered, and infected population exist; we also derive 

the condition for the no epidemic case or epidemic burn out. As this model involves 

various parameters, I have shown the sensitivity of these parameters via numerical 
simulations. It is also explained how the reproduction number can be minimized by 

reducing other parameters. The model can assist in the decision making by making 

projections regarding important issues such as intervention induced changes in the spread 
of disease. Till now, the world is in the middle or in the first half of the epidemic; the 

author is planning to continue the study on the topic with reanalysis of the updated 

dataset. However, the transmission model is based on the current understanding of the 

available data and natural as well as medical history of the infection, the study can alert 
us to the deficiencies in our current understanding of the COVID-19 pandemic and 

suggest crucial questions for investigation and information to be collected. Findings from 

this study provide timely data that can inform public health decision making and policies 
designed to end the epidemic. Therefore, when the model fails to predict, this failure can 

provide us with important clues for further research. The research can be extended in 

various ways. One can introduce new compartments so that the epidemic can be 

explained more precisely. Finally, it is suggested that new directions for further research 
to compare our results with other models in the near future. 

 

LIMITATIONS 
The paper will inevitably make some assumptions when building the model. 

When we build a dynamic model for a certain period of time for COVID-19, we ignore 

the impact of factors like population birth rate, and natural mortality. For simple 
calculations, it is also assumed that the latent population of COVID-19 and the infected 

but not yet isolated population have the same range of activities and capabilities.  

 

ETHICS APPROVAL 
In the study, the need for ethical approval or individual consent was not 

applicable because no individual patient’s data was collected. All the data and materials 

used in the study are publicly available.  

 

ACKNOWLEDGEMENTS 

The author would like to thank Professor Dr. Vijai Shanker Verma, Head of Department 
of Mathematics and Statistics of Deen Dayal Upadhyaya Gorakhpur University, India, 



www.pncampus.edu.np 

Mathematical Modelling of Transmission Dynamics of COVID-19 

                      35 | P a g e  
 

for his critical reviews and suggestions that improved the quality and presentation of the 

paper. I would also like to express my appreciation for everybody fighting against the 
COVID-19 pandemic. 

 

REFERENCES 

Cao, J., Jiang, X., & Zhao, B. (2020). Mathematical modeling and epidemic prediction of 
COVID-19 and its significance to epidemic prevention and control measures. 

Journal of Biomedical Research & Innovation, 1(1), 1-19.  

Chen, T. M., Rui, J., Wang, Q. P., Zhao, Z. Y., Cui, J. A., & Yin, L. (2020). A 
mathematical model for simulating the phase-based transmissibility of a novel 

coronavirus. Infectious Diseases of Poverty, 9(1), 1-8. 

 Dickmann O., Heesterbeek J., & Roberts, M.G. (2010). The construction of next 
generation matrices for compartmental epidemic models. Journal of the Royal 

Society Interface, 7 (47), 873-885. 

 Government of India. (2020, July). COVID-19 State wise Status from 20 January 2020 

to 21 July 2020. Ministry of Health and Family Welfare. 
https://www.mohfw.gov.in/ 

 Hethcote, H.W. (2000). The mathematics of infectious diseases. SIAM review, 42(4), 

599-653. 
 Kermack, W.O. & McKendrick, A.G. (1927). A contribution to the mathematical theory 

of epidemics. Proceeding of Royal Society of London, 115,700-721. 

Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., ... & Xing, X. (2020). Early 
transmission dynamics in Wuhan, China, of novel coronavirus–infected 

pneumonia. New England Journal of Medicine. 382, 1199-1207. 

 Nadjafikhah, M., & Shagholi, S. (2017). Mathematical modeling of optimized SIRS 

epidemic model and some dynamical behavior of the solution. International 
Journal of Nonlinear Analysis and Applications, 8(2), 125-134. 

 National Health Commission of the People’s Republic of China. (2020, July). Daily 

Briefing on novel coronavirus cases in China. China Daily. http://en.nhc.gov.cn/ 
Qianying, L. (2020). A conceptual model for the coronavirus disease 2019 (COVID-19) 

outbreak in Wuhan. China with individual reaction and governmental action Int J 

Infect Dis, 93, 211-216. 

 Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J. M., Yan, P., & 
Chowell, G. (2020). Real-time forecasts of the COVID-19 epidemic in China from 

February 5th to February 24th, 2020. Infectious Disease Modelling, 5, 256–263. 

https://doi.org/10.1016/j.idm.2020.02.002. 
 Shen, M., Peng, Z.& Xiao, Y. (2020). Modeling the epidemic trend of the 2019 novel 

coronavirus outbreak in China. bioRxiv. https://doi.org/10.1101/ 

2020.01.23.916726. 
 Siettos, C. I., & Russo, L. (2013). Mathematical modeling of infectious disease 

dynamics. Virulence, 4(4), 295-306. https://doi.org/10.1056/NEJMoa2001316. 

World Health Organization. (2020, July). Coronavirus Disease (COVID-19) Situation 

Reports. WHO COVID-19 Dashboard. https://www.who.int/emergencies/diseases/ 
novel-coronavirus-2019/situation-reports 

World Health Organization. (2020, July). Coronavirus Disease 2019 / Situation Update 

from # 1 to # 183. WHO Nepal Situation Updates on COVID-19. 
https://www.who.int/nepal/news/detail/24-04-2020-who-nepal-situation-update 

 World Health Organization. (2020, July). Situation Reports on Coronavirus Disease 

(COVID-19) Pandemic . WHO COVID-19 Dashboard . https://www.who.int/ 
emergencies/diseases/novel-coronavirus-2019 

https://www.mohfw.gov.in/
http://en.nhc.gov.cn/
https://doi.org/10.1016/j.idm.2020.02.002
https://doi.org/10.1101/%202020.01.23.916726
https://doi.org/10.1101/%202020.01.23.916726
https://doi.org/10.1101/%202020.01.23.916726
https://doi.org/10.1056/NEJMoa2001316
https://www.who.int/emergencies/diseases/%20novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/%20novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/%20novel-coronavirus-2019/situation-reports
https://www.who.int/nepal/news/detail/24-04-2020-who-nepal-situation-update
https://www.who.int/%20emergencies/diseases/novel-coronavirus-2019
https://www.who.int/%20emergencies/diseases/novel-coronavirus-2019
https://www.who.int/%20emergencies/diseases/novel-coronavirus-2019


www.pncampus.edu.np 

Mathematical Modelling of Transmission Dynamics of COVID-19 

                      36 | P a g e  
 

 Zhang Y, Xu J, Li H, Cao B. (2020). A Novel Coronavirus (COVID-19) Outbreak: A 

Call for Action. Chest, 157(4), 99-101. https://doi.org/10.1016/ 
j.chest.2020.02.014  

 Zhao, S., & Chen, H. (2020). Modeling the epidemic dynamics and control of COVID-

19 outbreak in China. Quantitative Biology, 1-9.  

 

 

APPENDICES 

[1] R codes: Numerical Solution of the SIR model . 
Library<-(deSolve) 

 sir<-function(time,state,parameters){ 

 with(as.list(c(state,parameters)),{ 
 dS<--beta*S*I 

 dI<-beta*S*I-gamma*I 

 dR<-   gamma*I 

 return(list(c(dS,dI,dR))) })} 
init<-c(S=1-0.01,I=0.01,R=0) 

parameters<-c(beta=1.4247,gamma=0.14286) 

times<-seq(0,70,by=0.1) 
out<- ode(y=init,times=times,func = sir,parms=parameters) 

out<-as.data.frame(out) 

out$time<-NULL 
head(out,10) 

matplot(x=times,y=out,type = "l",xlab ="Time",ylab = "Number of Cases",main="SIR 

Model",lwd = 2,lty = 2,bty="l",col = 2:4) 

legend(40,0.7,c("Susceptible","Infected","Recovered"),pch=1,col=2:4,bty="n") 
 

[2] R Codes: COVID-19 cases in Nepal 

conf<-c(31,54,82,217,402,772,2036,4075,7173,10096,13562,16166,16945) 
death<-c(0,0,0,0,2,4,8,15,20,24,29,35,38) 

recov<-c(4,16,16,33,37,155,266,584,1158,2338) 

g_range<-range(0,conf,death,recov) 

plot(conf,type="o",col="black",ylim=g_range,axes=FALSE,ann=FALSE) 
axis(1,at=1:13,lab=c("20/4","29","6/5","13","20","27","3/6","10","17","24","1/7","7","14”) 

axis(2,las=1,at=10*0:g_range[2]) 
box() 

lines(death,type="o",pch=22,lty=2,col="blue") 

lines(recov,type="o",pch=22,lty=2,col="red") 
title(main="COVID-19 CASES IN NEPAL",col.main="black",font.main=4) 

title(xlab="Time",col.lab=rgb(0,0.5,0)) 

title(ylab="Number of Cases",col.lab=rgb(0,0.5,0)) 
legend(1,g_range[2],c("Conformed","Dead","Recovered"),cex=0.8,col=c("black","blue",

"red"),pch=21:22,lty=1:2) 

 

[3] R codes: SIR model simulation of Nepal 
Libyary<-(covid19.analytics) 

ag<-covid19.data(case='aggregated') 

tsc<-covid19.data(case='ts-confirmed') 
report.summary(geo.loc = 'Nepal',graphical.output = F) 

#Total per Location 

https://doi.org/10.1016/%20j.chest.2020.02.014
https://doi.org/10.1016/%20j.chest.2020.02.014
https://doi.org/10.1016/%20j.chest.2020.02.014
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tots.per.location(tsc,geo.loc='Nepal') 

tots.per.location(tsc,geo.loc='India') 
tots.per.location(tsc,geo.loc='China') 

#Growth Rate 

growth.rate(tsc,geo.loc='Nepal') 

growth.rate(tsc,geo.loc='India') 
growth.rate(tsc,geo.loc='China') 

#Total Plot 

totals.plt(tsc,geo.loc0='Nepal',one.plt.per.page=TRUE,log.plt=FALSE,fileName=TRUE) 
totals.plt(tsc,geo.loc0= 'india',one.plt.per.page =TRUE,log.plt=FALSE,fileName=TRUE) 

totals.plt(tsc,geo.loc0='China',one.plt.per.page=TRUE,log.plt=FALSE,fileName=TRUE) 

totals.plt(tsa,c('India')) 
totals.plt(tsa,c('Nepal')) 

totals.plt(tsa,c('China')) 

generate.SIR.model(tsc,'Nepal',tot.population=28090000) 

 

[4] R codes: COVID-19 Cases of India. 

conf<-c(1,3,3,3,44,84,360,909,3577,8447,16116,26917,62939,90927,131686, 

182142, 235657,308993,410461,508953,648315,849553) 
death<-c(0,0,0,0,0,2,7,19,83,273,519,826,2109,2872,3867,5164,6642,8884,13254, 

15685,22674) 

recov<-(0,0,0,3,3,3,3,80,274,765,2301,5913,19357,34109,54440,86983,119292,162378, 
227755,309712,409082,534629) 

g_range<-range(0,conf,death,recov) 

plot(conf,type="o",col="black",ylim=g_range,axes=FALSE,ann=FALSE) 

axis(1,at=1:22,lab=c("31/1","6/2 ","13","28","9/3","14","22","28","5 /4","12", "19","26", 
"10 /5","17","24","31","7 /6","14","21","28","5 /7","12")) 

axis(2,las=1,at=10*0:g_range[2]) 

box() 
lines(death,type="o",pch=22,lty=2,col="blue") 

lines(recov,type="o",pch=22,lty=2,col="red") 

title(main="COVID-19 CASES IN INDIA",col.main="black",font.main=4) 

title(xlab="Day/Month",col.lab=rgb(0,0.5,0)) 
title(ylab="Number of Cases",col.lab=rgb(0,0.5,0)) 

legend(1,g_range[2],c("Conformed","Dead","Recovered"),cex=0.8,col=c("black","blue",

"red"),pch=21:22,lty=1:2) 
 

[5] R codes: A comparative plot of confirmed COVID-19 infection cases for Nepal 

and its neighbour countries. 
chi<-c(278,2798,17238,40235,70635,77262,80174,80904,81077,81601,82447, 

83005,83597,84237,84341,84400,84450,84494,84530,84588, 84634,84778,85018, 

85204,85320,85568,86068) 

ind<-c(0,0,3,3,3,3,3,43,114,415,1071,4067,9152,17265,27892,42533,67152,96169, 
138845,190535,256611,332424,425282,548318,697413, 878254,1118043) 
nep<-c(0,0,1,1,1,1,1,1,1,1,5,9,12,31,51,75,120,304,673,1572,3448,5760,9026,12772,15784, 
16801,17658) 

g_range<-range(0,chi,ind,nep) 

plot(chi,type="o",col="black",ylim=g_range,axes=FALSE,ann=FALSE) 
axis(1,at=1:27,lab=c("20/1","27","3/2","10","17","24","2/3","9","16","23","30","6/4","13",  

  "20","27","4/5","11","18","25","1/6","8","15","22","29","6/7","13","20")) 
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axis(2,las=1,at=10*0:g_range[2]) 

box() 
lines(ind,type="o",pch=22,lty=2,col="blue") 

lines(nep,type="o",pch=22,lty=2,col="red") 

title(main="Time Series Plot for Confirmed COVID-19 Cases",col.main="black", 

font.main=4) 
title(xlab="Day/month",col.lab=rgb(0,0.5,0)) 

title(ylab="Number of Confirmed COVID-19 Cases",col.lab=rgb(0,0.5,0)) 

legend(1,g_range[2],c("China","India","Nepal"),cex=0.8,col=c("black","blue","red"),pch
=21:22,lty=1:2)  

 


