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Abstract

This study presents a detailed exploration of the Revan family of topological indices

and their polynomial representations for diverse classes of quadrilateral snake graphs.

Originating from the concept introduced by V. R. Kulli, Revan indices integrate both

the minimum and maximum vertex degrees, which provide a refined measure of graph

connectivity and structure. The research systematically derives explicit analytical ex-

pressions for Revan indices and their corresponding polynomials for four principal graph

variants standard, alternate, double, and cyclic quadrilateral snake graphs highlighting

their distinctive structural characteristics and degree-based relationships. To comple-

ment the theoretical formulations, a Python-based computational framework was de-

veloped to automate the calculation and symbolic representation of these indices. This

implementation enables efficient validation of analytical results and facilitates the ex-

tension of Revan-based metrics to larger and more complex graph families. The findings

underscore the potential of Revan indices as powerful structural descriptors in math-

ematical chemistry and network theory, with promising applications in quantitative

modeling, cheminformatics, and the broader field of graph-based molecular design.
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1 Introduction

Graph theory is a fundamental branch of mathematics that provides valuable tools for

analyzing complex structures, particularly in network science and mathematical chemistry.

Among various graph-based metrics, Revan indices, introduced by V. R. Kulli, have emerged

as significant indicators of structural properties. These indices, along with their polynomial

representations, offer a systematic approach to studying the connectivity and characteristics

of different graph families [1]-[4].

The present study focuses on computing the Revan indices and their polynomial coun-

terparts for various forms of quadrilateral snake graphs, including standard, alternate, dou-

ble, and cycle variations. By deriving explicit mathematical formulations for each graph

type, we identify distinct structural patterns and relationships. The results enhance the

understanding of topological indices in graph theory, with potential applications in network

analysis, molecular modeling, and optimization problems.

A Python-based tool was developed to automate the calculation of Revan indices and

associated polynomials in support of this investigation. This implementation enables sym-

bolic manipulation, rapid index generation for any graph size, and efficient pattern recogni-

tion in large graph families. It ensures computational accuracy, significantly reduces manual

effort, and can be easily adapted to other topological index frameworks.

Furthermore, this study compares the Revan indices with several classical topological

indices such as the Wiener, Zagreb, Randic, and ABC indices, highlighting their differences

and advantages. The effectiveness of each index is evaluated in applications including

drug design, chemical stability prediction, and QSPR/QSAR modeling, emphasizing their

sensitivity to variations in vertex and edge degrees. By including this comparative analysis,

the Revan indices are positioned as a flexible and analytically robust alternative for both

theoretical and applied research.

In recent years, researchers have developed various types of indices that can be cate-

gorized as degree-based, eigenvalue-based, eccentricity-based, temperature-based, distance-

based, matching and mixed based topological indices. The Zagreb indices of square snake

graphs were analyzed by Mahalank et al. [5] to investigate structural features relevant to

mathematical chemistry. This approach was later extended by kulli et al. [6], who intro-

duced and computed the Revan indices and their polynomial forms for the same class of

graphs. Expanding upon these foundational works, the current study investigates a new

family of graphs, namely quadrilateral snake graphs, and examines their Revan indices in

standard, alternate, double, and cyclic forms. In addition to obtaining explicit expressions

for Revan indices and their polynomials, this work presents a Python-based implementation

to automate and validate the computations.
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2 Basic Notions and Revan Indices

Graph theory provides the mathematical language used to describe and analyze the struc-

ture of complex systems. A simple connected graph G = (V,E) is composed of a finite

non-empty set of vertices V (G) and a set of edges E(G). For a vertex x ∈ V (G), the degree

dG(x) is the number of edges incident to x. The minimum and maximum vertex degrees

of G are denoted by δ(G) and ∆(G), respectively. All graphs considered in this study are

finite, undirected and connected. The Revan vertex degree for each vertex x ∈ V (G) is

defined as

rG(x) = ∆(G) + δ(G)− dG(x). (1)

The edge xy denotes the Revan edge connecting the Revan vertices x and y. Various Revan

indices, including first, second and third-order indices and their polynomials are computed

to assess the quadrilateral snake graph. Two topological indices based on degrees were

presented and examined in 1972 [1].

V. R. Kulli[7],[8] introduced first, second and third revan indices as:

R1(G) =
∑

xy∈E(G)

[rG(x) + rG(y)] (2)

R2(G) =
∑

xy∈E(G)

rG(x)rG(y) (3)

R3(G) =
∑

xy∈E(G)

|rG(x)− rG(y)| (4)

In 2018, V. R. Kulli[7],[8] introduced first Revan polynomial, second Revan polynomial and

third Revan polynomial of a simple connected graph G as:

R1(G,X) =
∑

xy∈E(G)

X [rG(x)+rG(y)] (5)

R2(G,X) =
∑

xy∈E(G)

X [rG(x).rG(y)] (6)

R3(G,X) =
∑

xy∈E(G)

X |rG(x)−rG(y)| (7)

where X is a variable, x and y are vertices.

The Revan vertex index and polynomial [7],[8] of a graph G is defined as

R01(G) =
∑

x∈V (G)

rG(x)2 (8)

R01(G,X) =
∑

x∈V (G)

XrG(x)2 (9)
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3 Results and Discussion

3.1 Quadrilateral Snake Graph

A Quadrilateral snake graph (QSn) is derived from a path v1, v2, v3, v4, ......, vn by connecting

new vertices ui and wi to vi and vi+1 respectively, and then connecting ui and wi see Chitra

Ramaprakash [9]. let n denote the number of quadrilateral units in the graph. Hence, the

Quadrilateral Snake Graph (QSn) has |V | = 3n+ 1 vertices and |E| = 4n edges.

Figure 1: Quadrilateral Snake Graph

Table 1: Vertex partition of QSn

dG(x) |V |
2 2n + 2

4 n - 1

Table 2: Edge partition of QSn

(dG(x), dG(y)) |E|
(2,2) n + 2

(2,4) 2n

(4,4) n - 2

Theorem 3.1. Let G be the Quadrilateral snake graph (QSn). Then

R01(G) = 36n+ 28

R01(G,X) = (2n+ 2)X16 + (n− 1)X4.

Proof. Let G be the quadrilateral snake graph (QSn) and |V (G)| = 3n+ 1. Thus, we have

∆(G) = 4, δ(G) = 2. The vertex set can be partitioned as,

V1 = {x ∈ V (G)|dG(x) = 2} , |V1| = 2n+ 2,

V2 = {x ∈ V (G)|dG(x) = 4} , |V2| = n− 1,
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Clearly, we find ∆(G) + δ(G) = 6. Thus, rG(x) = 6− dG(x). There are two types of Revan

vertices are found in the quadrilateral snake graph (QSn):

RV1 = {x ∈ V (G)|rG(x) = 4} , |RV1| = 2n+ 2,

RV2 = {x ∈ V (G)|rG(x) = 2} , |RV2| = n− 1,

To find R01(G) and R01(G,X),

R01(G) =
∑

x∈V (G)

rG(x)2

= (2n+ 2)42 + (n− 1)22

R01(G) = 36n+ 28.

R01(G,X) =
∑

x∈V (G)

XrG(x)2

= (2n+ 2)X42 + (n− 1)X22

R01(G,X) = (2n+ 2)X16 + (n− 1)X4.

Theorem 3.2. Let G be the Quadrilateral snake graph (QSn). Then

R1(G) = 24n+ 8

R2(G) = 36n+ 24

R3(G) = 4n

R1(G,X) = (n+ 2)X8 + (2n)X6 + (n− 2)X4

R2(G,X) = (n+ 2)X16 + (2n)X8 + (n− 2)X4

R3(G,X) = 2n(1 +X2).

Proof. Let G be the quadrilateral snake graph QSn and |E(G)| = 4n. Then, we have the

following results,

E1 = {xy ∈ E(G)|dG(x) = dG(y) = 2} , |E1| = n+ 2

E2 = {xy ∈ E(G)|dG(x) = 2, dG(y) = 4} , |E2| = 2n

E3 = {xy ∈ E(G)|dG(x) = dG(y) = 4} , |E3| = n− 2

we have rG(x) = ∆(G) + δ(G) − dG(x), where ∆(G) = 4 and δ(G) = 2. Then rG(x) =

6− dG(x)

RE1 = {xy ∈ E(G)|rG(x) = rG(y) = 4} , |RE1| = n+ 2

RE2 = {xy ∈ E(G)|rG(x) = 4, rG(y) = 2} , |RE2| = 2n

RE3 = {xy ∈ E(G)|rG(x) = rG(y) = 2} , |RE3| = n− 2
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Using the revan edge partition of graph QSn and indices formula, we get

R1(G) =
∑

xy∈E(G)

[rG(x) + rG(y)]

= (n+ 2)(4 + 4) + 2n(4 + 2) + (n− 2)(2 + 2)

R1(G) = 24n+ 8.

R2(G) =
∑

xy∈E(G)

rG(x)rG(y)

= (n+ 2)16 + 2n(8) + (n− 2)(4)

R2(G) = 36n+ 24.

R3(G) =
∑

xy∈E(G)

|rG(x)− rG(y)|

= (n+ 2)(0) + 2n(2) + (n− 2)(0)

R3(G) = 4n.

R1(G,X) =
∑

xy∈E(G)

X [rG(x)+rG(y)]

= (n+ 2)X(4+4) + (2n)X(4+2) + (n− 2)X(2+2)

R1(G,X) = (n+ 2)X8 + (2n)X6 + (n− 2)X4.

R2(G,X) =
∑

xy∈E(G)

X [rG(x).rG(y)]

= (n+ 2)X(4×4) + (2n)X(4×2) + (n− 2)X(2×2)

R2(G,X) = (n+ 2)X16 + (2n)X8 + (n− 2)X4.

R3(G,X) =
∑

xy∈E(G)

X |rG(x)−rG(y)|

= (n+ 2)X0 + 2n(X2) + (n− 2)X0

R3(G,X) = 2n(1 +X2).

Example: For n = 2 in the Quadrilateral Snake Graph (QSn), we have |V | = 7

vertices and |E| = 8 edges. Substituting n = 2 in Theorems 3.1 and 3.2.

Figure 2: Quadrilateral snake graph (QS2)

The Revan indices for the snake graph are computed in detail in Theorem 3.1 and
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Theorem 3.2. For all other graphs, only their Revan vertex and edge partitions and corre-

sponding diagrams are provided, as the derivations follow in a similar manner.

3.2 Alternating Quadrilateral Snake Graph

An Alternate Quadrilateral snake graph is derived from a path v1, v2, v3, v4, ......, vn by con-

necting new vertices ui and wi to vi and vi+1(alternatively) respectively, and then connecting

ui and wi. It is denoted by AQSn see Chitra Ramaprakash [9]. let n denote the number

of alternating quadrilateral units in the graph. Hence, the Alternating Quadrilateral Snake

Graph (AQSn) has |V | = 4n+ 4 vertices and |E| = 5n+ 4 edges.

Figure 3: Alternating Quadrilateral Snake Graph

Table 3: Vertex partition of AQSn

dG(x) |V |
2 2n + 4

3 2n

Table 4: Edge partition of AQSn

(dG(x), dG(y)) |E|
(2,2) n + 3

(2,3) 2n + 2

(3,3) 2n - 1

Theorem 3.3. Let G be the alternating quadrilateral snake graph (AQSn). Then

R01(G) = 26n+ 36

R01(G,X) = (2n+ 4)X9 + (2n)X4.

168



K. M. Saranya, S. Manimekalai Revan Topological Indices of Quadrilateral Snake Graphs

Theorem 3.4. Let G be the alternating quadrilateral snake graph (AQSn). Then

R1(G) = 24(n+ 1)

R2(G) = 29n+ 35

R3(G) = 2n+ 2

R1(G,X) = (n+ 3)X6 + (2n+ 2)X5 + (2n− 1)X4

R2(G,X) = (n+ 3)X9 + (2n+ 2)X6 + (2n− 1)X4

R3(G,X) = 3n+ 2 + (2n+ 2)X.

Example: For n = 1 in the Alternating Quadrilateral Snake Graph (AQSn), we have

|V | = 8 vertices and |E| = 9 edges. Substituting n = 1 in Theorems 3.3 and 3.4.

Figure 4: Alternate Quadrilateral snake graph (AQS1)

3.3 Double Quadrilateral Snake Graph

A Double Quadrilateral snake graph consists of two quadrilateral snakes that have a common

path and is denoted by DQSn see Chitra Ramaprakash [9]. let n denote the number of

double quadrilateral units in the graph. Hence, the Double Quadrilateral Snake Graph

(DQSn) has |V | = 5n+ 1 vertices and |E| = 7n edges.

Figure 5: Double Quadrilateral Snake Graph

Theorem 3.5. Let G be the double quadrilateral snake graph (DQSn). Then

R01(G) = 148n+ 46

R01(G,X) = (4n)X36 + 2X25 + (n− 1)X4.
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Table 5: Vertex partition of DQSn

dG(x) |V |
2 4n

3 2

6 n - 1

Table 6: Edge partition of DQSn

(dG(x), dG(y)) |E|
(2,2) 2n

(2,3) 4

(2,6) 4n - 4

(3,6) 2

(6,6) n - 2

Theorem 3.6. Let G be the double quadrilateral snake graph (DQSn). Then

R1(G) = 60n+ 18

R2(G) = 124n+ 84

R3(G) = 16n− 6

R1(G,X) = (2n)X12 + 4X11 + (4n− 4)X8 + 2X7 + (n− 2)X4

R2(G,X) = (2n)X36 + 4X30 + (4n− 4)X12 + 2X10 + (n− 2)X4

R3(G,X) = 3n+ 4X + (4n− 4)X4 + 2X3 − 2.

Example: For n = 3 in the Double Quadrilateral Snake Graph (DQSn), we have

|V | = 16 vertices and |E| = 21 edges. Substituting n = 3 in Theorems 3.5 and 3.6.

Figure 6: Double Quadrilateral snake graph (DQS3)

3.4 Alternating Double Quadrilateral Snake Graph

An Alternate Double Quadrilateral snake graph consists of two alternate quadrilateral

snakes that have a common path and is denoted by ADQSn see Chitra Ramaprakash [9].
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let n denote the number of alternating double quadrilateral units in the graph. Hence, the

Alternating Double Quadrilateral Snake Graph (ADQSn) has |V | = 6n + 6 vertices and

|E| = 8n+ 7 edges.

Figure 7: Alternating Double Quadrilateral Snake Graph

Table 7: Vertex partition of ADQSn

dG(x) |V |
2 4n + 4

3 2

4 2n

Table 8: Edge partition of ADQSn

(dG(x), dG(y)) |E|
(2,2) 2n + 2

(2,3) 4

(2,4) 4n

(3,4) 2

(4,4) 2n - 1

Theorem 3.7. Let G be the alternating double quadrilateral snake graph (ADQSn). Then

R01(G) = 72n+ 82

R01(G,X) = (4n+ 4)X16 + 2X9 + 2nX4.
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Theorem 3.8. Let G be the alternating double quadrilateral snake graph (ADQSn). Then

R1(G) = 48n+ 50

R2(G) = 72n+ 88

R3(G) = 8n+ 6

R1(G,X) = (2n+ 2)X8 + 4X7 + (4n)X6 + 2X5 + (2n− 1)X4

R2(G,X) = (2n+ 2)X16 + 4X12 + (4n)X8 + 2X6 + (2n− 1)X4

R3(G,X) = 4n+ 1 + 6X + (4n)X2.

Example: For n = 1 in the Alternating Double Quadrilateral Snake Graph (ADQSn),

we have |V | = 12 vertices and |E| = 15 edges. Substituting n = 1 in Theorems 3.7 and 3.8.

Figure 8: Alternate Double Quadrilateral snake graph (ADQS1)

3.5 Cycle Quadrilateral Snake Graph

A Cycle Quadrilateral snake graph is derived from a cycle v1, v2, v3, v4, ......, vn by connecting

new vertices ui and wi to vi and vi+1 respectively and then connecting ui and wi. It is

denoted by CQSn. let n denote the number of cycle quadrilateral units in the graph.

Hence, the Cycle Quadrilateral Snake Graph (CQSn) has |V | = 3n vertices and |E| = 4n

edges.

Table 9: Vertex partition of CQSn

dG(x) |V |
2 2n

4 n

Theorem 3.9. Let G be the cycle quadrilateral snake graph (CQSn). Then

R01(G) = 36n

R01(G,X) = (2n)X16 + nX4.
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Figure 9: Cycle Quadrilateral Snake Graph

Table 10: Edge partition of CQSn

(dG(x), dG(y)) |E|
(2,2) n

(2,4) 2n

(4,4) n
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Theorem 3.10. Let G be the cycle quadrilateral snake graph (CQSn). Then

R1(G) = 24n

R2(G) = 36n

R3(G) = 4n

R1(G,X) = nX8 + (2n)X6 + nX4

R2(G,X) = nX16 + (2n)X8 + nX4

R3(G,X) = 2n(1 +X2).

4 Python-Based Implementation

Graph theory and mathematical chemistry have rapidly advanced in recent years, and the

integration of computational techniques has become essential for analyzing large and com-

plex molecular structures. In this study, a Python-based implementation was developed to

automate the computation of Revan indices and their corresponding polynomial expressions

for different families of quadrilateral snake graphs. Using this implementation, users can

automatically generate standard, alternate, double, and cycle quadrilateral snake graphs

and compute the first, second, and third Revan indices along with their associated poly-

nomial forms.The script is modular, scalable, and capable of efficiently processing graphs

with a high level of structural complexity. To evaluate its computational performance,

the program records the runtime for each graph size and compares the computed results

with analytical formulas derived in the theoretical sections. The runtime results show an

almost linear increase with respect to the number of quadrilateral units n, demonstrat-

ing that the algorithm is computationally efficient and well optimized. The analytical and

computed values show complete agreement, confirming the accuracy and reliability of the

developed implementation.The output data, including vertex and edge counts, computed

Revan indices, polynomial coefficients, analytical comparisons, and runtime information,

are automatically saved in an Excel file, which has been provided as supplementary ma-

terial for reference and verification. This computational automation significantly reduces

manual effort, eliminates calculation errors, and improves reproducibility and precision of

graph-theoretical research.

5 Application of Revan Topological Indices and Quadrilat-

eral Snake Graphs

Topological indices are effective numerical descriptors that convert a compound’s molecular

structure into a measurable mathematical form. These indices are widely used in Quanti-
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tative Structure–Property Relationship (QSPR) and Quantitative Structure–Activity Rela-

tionship (QSAR) studies to establish relationships between molecular structure and exper-

imentally observed physicochemical or biological properties. They play an essential role in

the early stages of virtual screening and compound prioritization in modern drug design.

When a drug molecule is represented as a molecular graph, with atoms as vertices and

bonds as edges, topological indices such as the Revan and Hyper-Revan indices capture key

structural characteristics including connectivity, branching, and atomic irregularity. These

structural features often correlate with important pharmacological properties such as solu-

bility, stability, bioavailability, and binding affinity. The process of building QSPR/QSAR

models typically begins with the computation of these topological indices for a dataset of

molecules, followed by regression or machine-learning analysis to identify statistical cor-

relations or predictive equations. In comparison with many classical indices, the Revan

family of indices provides a higher-resolution representation of molecular topology because

of its degree-dependent and polynomial formulations. This makes Revan indices particu-

larly suitable for QSPR/QSAR modeling, as they can sensitively reflect minor structural

variations that influence molecular behavior. Topological indices are generally applied after

the structural data of a molecule are known but before experimental synthesis or biolog-

ical testing, enabling researchers to computationally filter large compound libraries and

prioritize molecules with desirable predicted characteristics.

The present study extends this concept by deriving analytical expressions of revan indices

for quadrilateral snake graphs (QSn) and their variants. These graph structures effec-

tively model the chain-like and cyclic frameworks commonly found in organic and drug-like

molecules. The computed Revan indices and their polynomial forms from QSn graphs can

be directly used as molecular descriptors in QSPR/QSAR models to quantify structural

parameters such as connectivity, branching, and irregularity. Because the derived equa-

tions express index values as a function of graph size (n), they simulate the behavior of

molecules with varying chain lengths or repeating structural units, providing scalable de-

scriptors for complex molecular systems. In practical applications, these QSn-based Revan

indices can serve as input variables for regression and machine-learning models predicting

molecular properties such as solubility, lipophilicity (logP ), or binding affinity. The results

from these theoretical computations can also be integrated with Multi-Criteria Decision-

Making (MCDM) techniques such as TOPSIS or AHP to rank or prioritize compounds

according to multiple predicted properties. This combined strategy links the mathematical

findings of the present study with real-world computational drug design, thereby enhancing

the accuracy, interpretability, and efficiency of QSPR/QSAR-based decision-making pro-

cesses. Beyond pharmaceutical research, quadrilateral snake graphs also find applications

in nanotechnology, materials science, and communication network analysis. Their repeti-

tive, grid like topology serves as a useful model for nanostructures, polymeric backbones,
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and lattice-based carbon frameworks such as graphene derivatives. In computer and electri-

cal engineering, similar graph architectures are employed for routing optimization, circuit

design, and parallel processing interconnection networks, where the quadrilateral pattern

supports efficient data flow and fault tolerance. Consequently, the mathematical formu-

lations and revan index relations established in this work provide a versatile foundation

applicable not only to molecular modeling but also to broader fields involving complex

network structures and nanoscale materials.

6 Conclusion

This research comprehensively investigated the revan indices and their polynomial repre-

sentations across various types of quadrilateral snake graphs. The study systematically

analyzed the structural characteristics of the standard, alternate, double, and cycle forms,

deriving explicit mathematical formulations for their corresponding revan indices and poly-

nomials. The results demonstrate that these indices effectively capture subtle topological

variations within graph families, particularly in differentiating vertex degrees and edge in-

teractions. Through the derivation of analytical equations, the degree-based connectivity

and structural relationships of each graph type were clearly established. In addition, a

python-based computational framework was implemented for the automated calculation of

revan indices, enhancing the scalability, accuracy, and reproducibility of the analysis. Fur-

thermore, the study emphasizes the applicability of revan-based topological measures in

molecular property prediction and QSPR/QSAR modeling. By comparing these indices

with classical descriptors such as the Wiener and Zagreb indices, the work demonstrates

the superior structural sensitivity and descriptive power of the Revan family. The overall

findings highlight both the theoretical depth and the practical relevance of revan indices,

offering a robust foundation for their future application in cheminformatics, drug design,

and molecular modeling.
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