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Abstract

Efficient operating room scheduling (ORS) is a cornerstone of modern healthcare de-

livery, directly impacting patient outcomes, resource utilization and hospital finances.

In Kathmandu’s government hospitals, patients face surgical delays ranging from six

months to two years due to manual scheduling processes that are time-consuming and

inflexible. Drawing inspiration from a case study at Aichi Medical University in Japan,

this work reviews their ORS model which uses regression analysis and mixed-integer pro-

gramming (MIP). Preliminary simulations demonstrate the system’s ability to schedule

5 operations across 3 rooms with 5 surgeons within a 180-minute window, achieving sig-

nificant efficiency gains in just one second. This review explores the methodology, results

and transformative potential of this approach, with implications for global healthcare

improvement.

Keywords: Operating room scheduling, Surgical delays, Mixed-integer programming, Re-

gression analysis, Health care optimization, Automatic scheduling.

AMS(MOS) Subject Classification: Subject classification here.

1 Introduction

Large-scale government hospitals such as Teaching Hospital, Kanti Bal Hospital, Bir Hos-

pital, Patan Hospital, Nepal Police Hospital, Civil Hospital are facing hardness to provide

sufficiently satisfactory service to patients visiting them. People often wait between six
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months to two years for a surgical appointment. Manual scheduling of surgeons’ time which

takes about two to three hours, is inefficient and sudden schedule changes pose further

problems for both patients and hospital management[12].

Inspired by a case study at Aichi Medical University Hospital in Japan by Ito et al. [12],

this research overviews their scheduling system over small sample size and generates efficient

schedules in seconds for smaller size with optimal solution using multiple regression analysis

and MIP. The primary aim of this study is to understand the modernization of healthcare

infrastructure and systems.

2 Literature Review

Efficient operating room scheduling is critical, as operating rooms account for significant

hospital revenue and expenditure [13, 17]. Cardoen et al. [4] emphasize that aging popula-

tions worsen waiting list issues, necessitating optimized scheduling. Dexter et al. [7] note

that delayed start times increase overtime costs. Denton et al. [6] proposed a two-stage

linear programming model to improve scheduling under uncertainty, while Blake et al. [3]

used integer programming at Mount Sinai Hospital, saving approximately $20,000 annually.

Stochastic optimization has been effective in operating room scheduling. Lamiri et

al. [15] combined Monte Carlo and MIP for cost-effective planning and Denton et al.

[5] improved surgery sequencing. Metaheuristic approaches, such as simulated annealing

[9] and Ant Colony Optimization [24], reduced wait times and costs. Baesler et al. [2]

demonstrated simulated annealing’s effectiveness in Chile while Razmi et al. [20] reduced

OR costs in Iran using a stochastic model.

Recent studies incorporate advanced techniques. Soh et al. [23] introduced a schedul-

ing metric improving room utilization. Kroer et al. [14] reduced overtime in Denmark

using MIP and Monte Carlo. Ibrahim et al. [11] improved prediction accuracy by 17%

by combining physician input with statistical models. Zhang et al. [25] used a two-level

optimization model for cost reduction and Hamid et al. [10] minimized cancellations using

MIP and simulation. Oliveira et al. [19] balanced urgency and fairness while Sauré et al.

[21] applied Markov decision processes for robust scheduling. Ahmed et al. [1] integrated

patient preferences and Maleki et al. [18] improved scheduling in Tehran using robust op-

timization. Gaon et al. [8] emphasized collaborative scheduling and Lopes et al. [16] used

AI-based heuristics in Portugal to minimize costs and wait times.

Nepal-specific research is limited. Shrestha [22] documented long surgical delays in

Kathmandu but offered no technological solutions. This study adapts global best practices

to Nepal’s context as well as others using regression analysis and MIP.
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3 Methodology

Mixed Integer Linear Programming (MILP) is a powerful mathematical optimization frame-

work where the objective function and constraints are linear and decision variables are a

mix of integer (discrete) and continuous types. Integer variables are restricted to whole

numbers or binary values (0 or 1) while continuous variables can take any real number

within specified bounds. This duality enables MILP to address problems involving discrete

decisions such as selecting facilities or scheduling tasks along with continuous decisions such

as determining resource quantities. MILP problems involve:

• Continuous Variables: Represent measurable quantities such as production levels

or flow rates.

• Integer Variables: Represent discrete choices such as the number of machines or

facilities.

• Binary Variables: Represent logical decisions such as whether to undertake a

project.

The objective typically focuses on minimizing costs, maximizing profits, or optimizing re-

source allocation. Constraints enforce operational, logical or resource-based limits expressed

as linear equations or inequalities. MILP problems are computationally challenging (NP-

hard) due to the discrete nature of integer variables. Key solution techniques include:

• Branch-and-Bound: Solves the linear programming (LP) relaxation (ignoring in-

teger constraints) then branches on fractional variables to explore integer solutions

iteratively refining bounds to find the optimal solution.

• Cutting Planes: Introduces additional constraints to eliminate fractional solutions

while preserving valid integer solutions.

• Branch-and-Cut: Combines branch-and-bound with cutting planes for enhanced

efficiency.

• Heuristics: Employs methods like diving or metaheuristics to quickly identify good

though not always optimal solutions.

Commercial optimization solvers such as Gurobi, CPLEX, Xpress and open-source

tools like CBC, SCIP, GLPK and HiGHS implement these techniques with advanced meth-

ods. These solvers efficiently handle problems with thousands of variables and constraints,

enabling practical applications in large-scale scenarios. MILP is a cornerstone of optimiza-

tion due to its ability to model and solve complex real-world problems. Its key advantages

include:

151



The Nepali Math. Sc. Report Year: 2025, Volume: 42, No: 2

• Versatility: Applicable across domains like logistics, energy, manufacturing, schedul-

ing and finance.

• Exact Solutions: Guarantees globally optimal solutions, critical for high-stakes

decision-making.

• Discrete Decision Modeling: Integer and binary variables allow precise modeling

of logical conditions (e.g., fixed costs, mutual exclusivity) and discrete choices (e.g.,

facility location).

• Scalability: Advances in algorithms (e.g., branch-and-cut) and parallel computing

enable efficient handling of large-scale problems.

• Integration: Seamlessly interfaces with simulation tools (e.g., Aspen Plus) and data-

driven models broadening its applicability.

MILP faces the following challenges:

• Computational Complexity: Solution times can increase exponentially with prob-

lem size due to the combinatorial nature of integer variables.

• Linearity Requirement: Nonlinear relationships must be linearized potentially in-

creasing model complexity and computational effort.

The proposed system by Ito et al. [12], employs a mathematical model to optimize operating

room scheduling by minimizing overtime and ensuring efficient resource utilization.

Index Set

• O: Operations

• R: Operating rooms

• T : Time periods

• D: Departments

• S: Surgeons

• G,A ⊂ O: Operations requiring general/local anesthesia

• H,C ⊂ R: operating rooms for general/local anesthesia (H ∩ C = ∅)

• B ⊂ O: Operations with fixed start times
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Parameters

• M : Time to prepare operating room instruments

• L: operating room closing time

• Fdr: Time department d can use operating room r

• do, σo: Expected duration and standard deviation of operation o

• a: Penalty limit for unsuitable operating room assignments

• δ: Overestimation factor for operation durations

• bo: Fixed start time for operation o ∈ B

• Pdr: Penalty for department d using operating room r

• Sd: Earliest start time for department d

• Wod: 1 if operation o belongs to department d, else 0

• Vos: 1 if surgeon s performs operation o, else 0

Variables

• xort: 1 if operation o starts in operating room r at time t, else 0

• Eo: Overtime for operation o

• Zdr: Excess time department d uses operating room r

• Ur: Variability bound for consecutive operations in operating room r

Mathematical Model

The mathematical formulation of the ORS problem proposed by [12] is

minimize α
∑
o∈O

Eo + β
∑
r∈R

∑
d∈D

Zdr + γ
∑
r∈R

Ur (3.1)

subjected to the constraints∑
t∈T

(t+ do + δσo)xort − L ≤ Eo, o ∈ O, r ∈ R (3.2)

∑
t∈T

∑
o∈O

doWodxort ≤ Fdr + Zdr, d ∈ D, r ∈ R (3.3)
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t+do∑
t′=t

σoxort′ −
∑
o′∈O

t+do+do′∑
t”=t+do

σo′xo′rt” ≤ Ur, o ∈ O, r ∈ R, t ∈ T (3.4)

∑
o∈O

∑
r∈R

t∑
t′=t−do

Vosxort′ ≤ 1, t ∈ T , s ∈ S (3.5)

∑
t∈T

∑
o∈O

PdrWodxort ≤ a, d ∈ D, r ∈ R (3.6)

∑
t∈T

∑
r∈H

xort = 1, o ∈ G (3.7)

∑
t∈T

∑
r∈C

xort = 1, o ∈ A (3.8)

bo =
∑
t∈T

∑
r∈R

txort, o ∈ B (3.9)

Sd ≤
∑
r∈R

∑
t∈T

Wodtxort, o ∈ O, d ∈ D (3.10)

∑
o∈O

∑
t′=t−(M+do+δσo)

xort′ ≤ 1, r ∈ R, t ∈ T (3.11)

Eo ≥ 0, o ∈ O (3.12)

Ur ≥ 0, r ∈ R (3.13)

Zdr ≥ 0, d ∈ D, r ∈ R (3.14)

xort = 0, 1, o ∈ O, r ∈ R, t ∈ T (3.15)

The objective function 3.1 is formulated as a weighted sum of three terms, each addressing

a distinct aspect of scheduling efficiency in a hospital’s operating room management.The

first term α
∑

o∈O Eo represents overtime for operation o, defined as the amount of time

the operation’s completion exceeds the operating room closing time L. It is calculated in

Constraint 3.2 where t+ do + δσo is the completion time of operation o if it starts at time

t in operating room r, with do as the expected duration and δσo as an overestimation for

uncertainty. Eo captures any excess beyond L, and Eo ≥ 0. The term
∑

o∈O Eo sums the

overtime across all operations, weighted by α.It is important for resource utilization, cost
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control and patient-staff well-being.

The second term β
∑

r∈R
∑

d∈D Zdr is responsible for department operating room overuse

with variable Zdr that represents the extra time department d uses operating room r beyond

the allocated time Fdr. It is defined in Constraint 3.3 in which left-hand side calculates the

total time department d uses operating room r. If this exceeds Fdr, Zdr captures the excess,

and Zdr ≥ 0. The term
∑

r∈R
∑

d∈D Zdr sums the overuse, weighted by β.It is important for

fair resource allocation, operational efficiency , inter-departmental coordination and penalty

avoidance.

The third term represents the variability in consecutive operations with variable Ur is the

upper bound on the difference in standard deviations of durations between consecutive op-

erations in operating room r. It is defined in Constraint 3.4 where the first term represents

the standard deviation σo of operation o’s duration, and the second term represents σo′ of

the next operation. Ur bounds the difference |σo − σo′ |, and Ur ≥ 0. The term
∑

r∈R Ur

sums the variability bounds, weighted by γ. It is important for schedule robustness, risk

management and staff-resource planning.

Constraint 3.2 defines overtime Eo as the amount by which operation o exceeds the op-

erating room closing time L and ensures that late-running surgeries are penalized in the

objective function and encourages scheduling surgeries earlier in the day to avoid overtime.

Constraint 3.3 limits the total time department d uses operating room r to Fdr + Zdr and

Zdr captures excess time beyond allocated Fdr. It prevents one department from monop-

olizing operating room resources at the expense of others and encourages departments

to optimize their surgical schedules.

Constraint 3.4 controls the variability between consecutive surgeries in the same operating

room and Ur ensures that two back-to-back surgeries do not have wildly different du-

rations. It maintain smoothness of operations in operating rooms and reduces idle time

between surgeries and makes schedules more predictable for staff.

Constraint 3.5 ensures a surgeon is not assigned to two overlapping surgeries and

prevents double-booking surgeons, which would be physically impossible.

Constraint 3.6 limits the total penalty for assigning department d’s surgeries to non-preferred

operating rooms and encourages preferred operating room assignments (e.g., cardiac

surgeries in operating rooms with heart-lung machines).

Constraint 3.7 and 3.8 ensure surgeries requiring general anesthesia (o ∈ G) go to operat-

ing rooms equipped for it (r ∈ H) and local anesthesia surgeries (o ∈ A) go to operating

rooms in C.

Constraint 3.9 forces operations o ∈ B to start at a fixed time bo (e.g., scheduled by the

surgeon) and respects surgeon preferences and emergency cases needing priority.

Constraint 3.10 ensures department d’s surgeries do not start before Sd and allows department-

specific scheduling policies (e.g., pediatric surgeries in the morning).
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constraint 3.11 ensures each surgery is assigned to at most one operating room

at one time and constraints 3.12, 3.13 and 3.14 shows non-negativity of the terms.

Also,constraint 3.15 shows that it is binary variable.

Implementation

Using Python a random dataset of 500 samples was generated with normally distributed

variables including predictors age, sex, surgeon experience, department, complexity and

body mass index (BMI) where the dependent variable, operation duration is derived from

a linear combination of these factors. Categorical variables like sex, department, and com-

plexity are discretized and encoded using one-hot encoding while binary variables like sex

are thresholded into 0s and 1s. The data is then cleaned and converted into numeric format

where necessary for regression compatibility. The data is then processed to handle miss-

ing values and ensure all features are numeric. Using statsmodels’ Ordinary Least Squares

(OLS) regression, the model is trained to understand how each variable affects operation

duration and is fitted to predict operation duration based on the specified predictors as

in table 1. The model’s statistical summary provides with R-squared > 0.5 insights into

feature significance and overall model fit. Then it was applied to 10 new test samples,

encoding categorical variables appropriately and generating predicted operation durations.

The model was implemented using Python’s PuLP library. The algorithm processes in-

put data (e.g., operation durations, surgeon availability) and generates an optimized sched-

ule visualized as a Gantt chart. The system handles dynamic changes such as emergency

cases, by reserving ORs and adjusting schedules in real time.

The model was tested using a simulated dataset of 5 operations across 3 operating

rooms within a 180 minute window. Regression analysis predicted operation durations,

while MIP optimized operating room allocation. The system’s scalability was demonstrated

by its ability to handle multiple constraints, such as anesthesia types and fixed start times.

The standard deviation column in Table 1 represents the variability in predicted operation

durations. Incorporating variability ensures the model accounts for uncertainties in real-

world scenarios, improving the robustness of the scheduling system.

This system serves as a model for other low-resource healthcare systems globally. Fu-

ture validation using real-world data will further strengthen its credibility. The regression

model used is:

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + ε

Where:

• Y : Dependent variable (predicted operation duration, do )
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• X1, X2, X3, X4, X5, X6: Independent variables (predictors: Age, Sex, Surgeon Expe-

rience, Department, Complexity, Body Mass Index respectively)

• β0: Intercept

• β1, β2, . . . , βk: Regression coefficients

• ε: Error term

Table 1: Prediction of Operation Duration

SN Age Sex
Surgeon

Experience
Cardiology Neurology Complexity BMI

Predicted

Duration

Std.

Dev.

1 45 0 8 1 0 2 22 48.08 19.76

2 60 1 12 0 1 3 30 90.91 32.72

3 55 0 10 0 0 1 26 31.55 19.68

4 70 1 15 1 0 2 24 57.32 26.85

5 40 0 5 0 1 3 28 84.32 28.80

6 50 1 9 0 0 1 25 40.63 19.61

7 65 0 11 1 0 2 27 55.34 25.61

8 35 1 7 0 1 3 23 84.11 27.95

9 58 0 13 0 0 1 29 28.47 20.38

10 48 1 8 1 0 2 26 62.51 23.73

4 Results and Discussion

First, operation durations (40–90 minutes) were predicted using regression analysis. Then,

in a simulation involving 5 operations, 3 operating rooms, and 5 surgeons, the above math-

ematical model scheduled surgeries within a 180-minute window, ensuring no overlaps and

reserving rooms for emergencies in less than one second.

Gantt Chart

Figure 1 presents the Gantt chart output, illustrating the optimized schedule. Each

bar represents an operation, with colors distinguishing different surgeons and departments.

The chart enhances coordination among hospital staff and provides a clear visualization of

operating room utilization. The role of standard deviation in the regression model ensures

variability is accounted for, enhancing the robustness of predictions.

The operational efficiency of the algorithm using CBC MILP Solver ,Version: 2.10.3

for single department is shown in table 2.
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Figure 1: Automated OR Schedule

Table 2 Operational Efficiency Data

Number of Operations Number of Rooms Number of Surgeons Average Time (Seconds) Result

2 2 2 0.23 Optimal

3 3 3 2.13 Optimal

4 4 4 5.77 Optimal

5 5 5 4.52 Optimal

6 6 6 146.17 Optimal

7 7 7 600 No Solution

Challenges and Considerations

Implementation requires investment in technology and training. Reliable data on surgery

durations and resources is essential, requiring robust data systems. Future enhancements

could integrate machine learning for improved predictions.

5 Conclusion

The system delivers efficient, adaptable schedules in less than 3 minutes for number less or

equal to 6 of operations, surgeons and operating rooms with single department.

Future work should focus on scaling the model, integrating real-time data, and evaluat-

ing long-term impacts on patient outcomes and hospital finances. By serving as a blueprint

for low-resource healthcare systems, this study contributes to global healthcare improve-

ment.
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