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Abstract

Sequence spaces are mathematical structures that play a pivotal role in studying func-

tional analysis, topology, and sequence theory. These spaces consist of sequences of

elements from a given set, typically the set of real or complex numbers, equipped with

specific topological or algebraic properties. It explores sequence spaces defined by the

statistical convergence of fuzzy numbers, focusing on the development and analysis

of new sequence spaces that extend classical sequence spaces in the context of fuzzy

set theory. Employing a difference operator, furthermore provides a sequence space

of fuzzy numbers, F(c)I(S) and F(c)I(S)0 determined via I-statistical convergence. Re-

search investigates the basic algebraic and topological features of these spaces, offering a

thorough examination of their structural features. Additionally, it explores crucial links

related to these spaces, including symmetry, solidity, and convergence-free features, and

it establishes several significant inclusion outcomes. The research advances knowledge

of I-statistical convergence in fuzzy number sequence space by expanding on traditional

ideas and providing guidance on using them in fuzzy set theory and uncertainty-related

fields.

Keywords: Sequence Spaces, Statistical Convergence, Fuzzy Numbers, I-statistical Con-

vergence .

AMS(MOS) Subject Classification: 46A45, 03B50, 03B52.

1 Introduction

Classical and fuzzy evaluations need that almost every series component satisfies the conver-

gence requirement, such as for classical convergence, it must fall within a small neighborhood
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of the limit [13]. Statistical convergence aims to reduce the requirement for convergence

condition accuracy for the majority of items, focusing on large numbers and the majority

as a stand-in for all components. Statistical analysis uses finite populations and examples,

while mathematical theory focuses on infinite sets [9]. Statistical convergence has been

addressed in many regions, such as Banach spaces, Fourier estimates, trigonometric series

theory, summation of matrices, and series theory, which remains the focus of investigations

[10]. Additionally, it demonstrated the I-statistical convergence of the function definition

sequences and the I-density of a subset of real numbers. [4]. In general, a fuzzy number was

used to indicate the uncertainty of the information and data used in a particular mathemat-

ical procedure. The statistical convergence for a series of fuzzy integers was demonstrated

using the concept of characterization theorems [6]. The definitions demonstrated that sta-

tistical convergence sequence will be obtained by summarizing the normal convergence for a

series and a sequence of fuzzy numbers with low natural densities [14]. Statistically bounded

sequences are subject to fuzzy approximations of the superior and inferior limit qualities

for real numbers using the statistical limits notion. A positively consistent summability

matrix to determine the convergence of a set of fuzzy numbers numerically establishes the

magnitude of continuous procedures with fuzzy numerical values [1]. Considering the fuzzy

modulus of consistency, it calculated the likelihood of statistical fuzzy convergence accord-

ing to a positive frequently summable matrix of operation and presented the estimation

theorem for fuzzy positively linear amplifiers. Investigation has been conducted using fuzzy

random factors as a generalization and complement to traditional possibility concept, such

as apprehension and incorporation, because of measurement errors or the generally ac-

knowledged uncertainty of the information itself [20]. Following the initial introduction of

fuzzy sets and their operations, several individuals have addressed various aspects of fuzzy

set theory and applications [23]. Bounded and convergent fuzzy number sequences were

examined a few of their characteristics and demonstrated that each of the sequences were

bounded. The real, complex, and fuzzy number sequences and difference sequences have

a wide range of applications. For instance, numerical sequences have amazing and useful

applications in a variety of fields, including acoustical [24]. In this paper we will see that

the sequence spaces formed by statistical convergence of fuzzy numbers are examined, with

an emphasis on generating and analyzing novel sequence spaces that expand on classical

sequence spaces within the conceptual framework of fuzzy set theory. It uses a difference

operator to build a sequence space of fuzzy numbers, FcI(S) and FcI(S)0, which can be

explained by I-statistical convergence. The paper is separated into 7 phases, such as Phase

II describes general definitions and preliminaries, Phase III explains fuzzy sequences spaces

algebraic properties, Phase IV represents topological properties, Phase V provides results,

Phase VI presents the discussion, and finally, the statistical convergence of fuzzy numbers,

which is defined by sequences spaces are concluded in Phase VII.
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2 Preliminaries and definition:

Sequence Spaces: Any vector space with infinite real or complex numbers or a function

space with operations from natural numbers to the domain of real or complex numbers is

called a sequence space. Symbols identifiers like C0 and `p are typically used to define it.

To create topological vector spaces with a linear topology, sequence spaces must be closed

under scalar multiplication and coordinate-wise additions. In the context of coordinate-wise

multiplication, as well sequence algebras that are also closed.

Fuzzy Numbers: It is a particular type of real numbers used to model uncertainty and

to represent a range of potential values. It is characterized by a membership function µ(x),

which assigns a value between 0 and 1 to each element of R. The α-cut of a fuzzy number,

corresponding to a given level of membership α, forms a convex set. The membership

function µ(x) is typically normalized such that the maximum value at the center x0 is 1.

The function µ(x) is upper semi-continuous if, for every ε > 0, there exists a δ > 0 such

that for all x within δ –distance from x0, the difference |µ(x) − µ(x0)| < ε. Finally, the

support of the fuzzy number defied as{x ∈ R : µ(x) > 0}, is compact, meaning it is closed

and bounded.

I-statistical Convergence of fuzzy numbers: A set L = {n1 < n2 < n3 . . . . < nl < · · · } ⊂
N needs to exists for a sequence x = (xn) ∈ L(S) to be I-statistically convergent with re-

spect to yo and for each ε > 0 , have limn→∞
1
m |{nl < m : c̄ (Ynl, Y0) < ε} ∈ F (I)| = 1. The

operator I∗ − st− limn→∞ Ym = Y0 represents y0, the I-statistical limitation of ym.

Example 1. The sequence Y = (Ym), which is defined as follows in equation 2.1.

y = (ym) =


0 for m = l2 where l ∈ N

1
m otherwise

(2.1)

Where in I-statistical convergence is zero. Let L = {n1 < n2 < n3 . . . . < nl < · · · } ⊂ N,

where the nonperfect squares values are where the non-perfect squares values are n1, n2, n3, . . . . . . . . . nl, . . ..

Next, for every value ε > 0. Then, limn→∞
1
m |{nl < m : c̄ (Ynl, 0) < ε} ∈ L| = 1. It is easy

to demonstrate that I is an optimum if it is assortment of divisions of Y =
{
m ∈ N : m = l2

}
.

It suggests that L ∈ F (I) consequently, limn→∞
1
m |{nl < m : c̄ (Ynl, 0) < ε} ∈ F (I)| = 1.

3 Algebraic properties of fuzzy sequence spaces:

Definition 3.1. Let ỹ, x̃ ∈ F . Let ỹ is equivalent to x̃ and write ỹ ∼ x̃ if there occur

symmetric fuzzy numbers t̃1, t̃2 ∈ S such that displayed in equation 3.1.
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ỹ + t̃1 = x̃+ t̃2 (3.1)

Example 2: Consider two fuzzy integers along with level sets, ỹ and x̃. [ỹ]α = [ỹK(α), ỹR(α)] =[
α+1

2 , 5−3α
2

]
and [x̃]α = [x̃K(α), x̃R(α)] = [α, 3−2α], using level sets, two symmetrical fuzzy

numbers: t̃1 and t̃2 for each α ∈ [0, 1], correspondingly, were generated.

[
t̃1
]α

=

[
3(α− 1)

2
,
3(1− α)

2

]
And

[
t̃2
]α

= [α − 1, 1 − α], for every α ∈ [0, 1], respectively, then get that [ỹ]α +
[
t̃1
]α

=

[x̃]α +
[
t̃2
]α

= [2α− 1, 4− 3α], which implies ỹ + t̃1 = x̃+ t̃2. Hence we get ỹ ∼ x̃.

Theorem 3.2. As previously stated, the equivalency connection is transitive, symmetric,

and reflexive.

Let F/S represent the collection of equivalence classes and let 〈ỹ〉 represent the equivalence

class that contains the element ỹ. The following lemmas can be readily proved using level

establish predictions for fuzzy numbers.

Lemma 3.3. For any ỹ ∈ F , ỹ − ỹ ∈ S.

Lemma 3.4. t̃ ∈ S If and only if ∀α ∈ [0, 1], Crisp symmetric sets are those in the α-level

set [t̃]α i. e. t̃K(α) = −t̃R(α).

Remark 1: In relation to the axis y = 0, the fuzzy numerical category S membership

function is symmetrical.

4 Topological Properties of Sequence Spaces Defined by Fuzzy

Numbers

Theorem 4.1. All of F/S ’s elements are closed sets of (F , c∞).

Proof. For any sequence {ỹj}∞j=1 ⊆ 〈ỹ〉, assume that limj→∞ c∞ (ỹj , x̃) = 0 for some x̃ ∈ F .

Since, limj→∞ c∞(ỹ, x̃) = limj→∞ sup0≤α≤1 max {|ỹjK(α)− x̃K(α)| , |ỹjR(α)− x̃R(α)|} = 0.

The sequences {ỹjK}∞j=1 and {ỹjR}∞j=1 to converge uniformly to ỹK and ỹR, respectively.

Thus, for all α ∈ [0, 1], the value is computed in equation 4.1.

ỹN (α) =
limj→∞ ỹjK(α) + limj→∞ ỹjR(α)

2
=

limj→∞ ỹjK(α) + ỹjR(α)

2
= ỹN (α) (4.1)

which implies that x̃ ∈ 〈ỹ〉.
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Theorem 4.2. Every element of F/S is a convex set of (F , c∞).

Proof. Let x̃, w̃ ∈ 〈ỹ〉 and λ ∈ (0, 1). Where calculating it from Equations 4.2 4.3 4.4 4.5

4.6

[λx̃+ (1− λ)w̃]α = λ[x̃]α + (1− λ)[w̃]α (4.2)

= λỹK(α) + (1− λ)w̃K(α), λx̃R(α) + (1− λ)w̃R(α) (4.3)

which implies,

(λx̃+ (1− λ)w̃)N (α) =
λỹK(α) + (1− λ)w̃K(α), λx̃R(α) + (1− λ)w̃R(α)

2
(4.4)

= λx̃N (α) + (1− λ)w̃N (α) (4.5)

= ỹN (α) (4.6)

Hence λx̃+ (1− λ)w̃ ∈ 〈ỹ〉.

Theorem 4.3. Let the sequences {x̃j}∞j=1 and {w̃j}∞j=1 converge to x̃ and w̃, respectively,

If x̃j ∼ w̃j for all j ∈ N, then x̃ ∼ w̃.

Proof. Arguments equivalent to the proof in 4.1 can be used to determine that the sequences,

{ỹjK}∞j=1 , {ỹjR}
∞
j=1 , {w̃jK}

∞
j=1, and {w̃jR}∞j=1 converge uniformly to ỹK , ỹR, w̃K , and w̃R,

respectively. Thus, the sequences {ỹjN}∞j=1, and {w̃jN}∞j=1, converge uniformly to ỹN and

w̃N , respectively. Consequently, since x̃j ∼ w̃j , i.e., x̃jN = w̃jN , for all j ∈ N, get x̃N = w̃N .

5 Main Results

The subsequent unique sequences spaces of fuzzy will be presented throughout this part,

along with an analysis of some of their attributes.

Assume that I represent an appropriate ideal of N and Let W = (Wl) be a sequence of

fuzzy numbers. The next fuzzy-number sequence spaces are defined by following equations

5.1 - 5.5,

FC
I(S)

(∆) = {W = (Wl) : I − st lim ∆Wl = W0} (5.1)
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F c
I(s)
0 (∆) =

{
W = (Wl) : I − st lim ∆Wl = 0

}
(5.2)

F k∞(∆) =

{
W = (Wl) : sup

l
c̄
(
∆Wl, 0

)
<∞

}
(5.3)

Fm
I(S)

= FC
I(S)

(∆) ∩ F k∞(∆) (5.4)

F c
I(s)
0 (∆) = F c

I(s)
0 (∆) ∩ F k∞(∆) (5.5)

From the definition, it is obvious that F c
I(S)
0 (∆) ⊂ FCI(S)

(∆) ⊂ F k∞(∆).

Example 3: Assume that the fuzzy number sequence W = (Wl) is defined by equations

5.6 - 5.10:

Wl(s) =


(s− l) for s ∈ [l, l + 1]

(−s+ l + 2) for s ∈ [l + 1, l + 2]

0, otherwise

 , if l = 3m(m = 0, 1, 2, , . . .). (5.6)

Wl(s) =


(s+ 3) for s ∈ [−3,−2]

(−s− 1) for s ∈ [−2,−1]

0, otherwise

 , if l 6= 3m and l is odd. (5.7)


(s− 3) for s ∈ [6, 7]

(−s+ 8) for s ∈ [7, 8]

0, otherwise

 , if l 6= 3m and l is even. (5.8)

Then for α ∈ [0, 1], the α-level set of Wl and ∆Wl are respectively.

[Wl]
α =


l + α, l + 2− α, for l = 3m

−3 + α,−1− α, for l 6= 3m and l is odd

6 + α, 8− α, for l 6= 3m and l is even

(5.9)

[∆Wl]
α =


l − 8 + 2α, l − 4− 2α, for l = 3m

−l + 3 + 2α,−l + 7− 2α, for l + 1 = 3m

−11 + 2α,−7− 2α for l 6= 3m, l + 1 6= 3m and l is odd

7 + 2α, 11− 2α, for l 6= 3m, l + 1 6= 3m and l is even

(5.10)

An example of a series that is ∆-statistically bounded yet not ∆-statistically convergent is

(W`), which is I∆-statistically convergent if assume I = Iδ.

Remark: If I = If then the sequence spaces FC
I(S)
0 (∆) and FC

I(S)
(∆) coincide with the

sequence spaces FC0(∆) and FC(∆).
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Theorem 5.1. The spaces FC
I(S)
0 (∆) and FC

I(S)
(∆) are linear spaces

Proof. Firstly we show that FC
I(S)
0 (∆) is linear space.

Let W = (Wl) , Z = (Zl) be any two elements of FC
I(S)
0 (∆), and α, β be any scalar. Then

below equations (5.11-5.13).

B(ε) =

{
m ∈ N :

1

m

∣∣∣{l ≤ m : c̄
(
∆Wl, 0

)
≥ ε

2

}∣∣∣ ≥ δ} ∈ J (5.11)

A(ε) =

{
m ∈ N :

1

m

∣∣∣{l ≤ m : c̄
(
∆Zl, 0

)
≥ ε

2

}∣∣∣ ≥ δ} ∈ J (5.12)

Now,

D(ε) =

{
m ∈ N :

1

m

∣∣∣{l ≤ m : c̄
(
∆ (αWl ⊕ βZl) , 0

)
≥ ε

2

}∣∣∣ ≥ δ} ∈ J ⊆ {m ∈ N :
1

m

∣∣∣∣ {l ≤
(5.13)

m : |α|c̄
(
∆Wl, 0

)
≥ ε

2

}
|≥ δ

}
∪
{
m ∈ N :

1

m

∣∣∣{l ≤ m : |β|c̄
(
∆Zl, 0

)
≥ ε

2

}∣∣∣ ≥ δ}
i.e., D(ε) ⊆ B

(
2

2|α|

)
∪A

(
2

2|β|

)
i.e., D(ε) ∈ J.

Therefore, the space F c
I(s)
0 (∆) is linear. In the same approach, we can show that FC

I(s)
(∆)

is a linear space.

Theorem 5.2. : The following spaces, which is FC
I(S)
0 (∆) and FC

I(S)
(∆), are normal and

monotone.

Proof. Let W = (Wl) be any elements of F c
I(S)
0 (∆) and Z = (Zl) be any sequence such that

c̄
(
∆Wl, 0

)
≥ c̄

(
∆Zl, 0

)
.∀l ∈ N . Then ∀ > 0,{

m ∈ N : 1
m

∣∣{l ≤ m : c̄
(
∆Wl, 0

)
≥ ε

2

}∣∣ ≥ δ} ⊇ {m ∈ N : 1
m

∣∣{l ≤ m : c̄
(
∆Zl, 0

)
≥ ε

2

}∣∣ ≥ δ} ∈ I
Hence Z = (Zl) ∈, FC

I(s)
0 (∆). Consequently, the spaces F c

I(s)
0 (∆) and,Fm

I(s)
0 (∆), are normal

and monotone.

Theorem 5.3. In cases that I does not represent the maximal ideal, the space FC
I(S)

(∆)

is neither monotonic nor normal.

Example 4: Consider a sequence of fuzzy numbers.

Wl(s) =


1+s

2 for s ∈ [−1, 1]
3−s

2 for s ∈ [1, 3]

0 otherwise

(5.14)
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Then (Wl) ∈ F c
I(S)

(∆). According to lemma 3.4 , it has a subset L of N such that L /∈ I
and N−L /∈ I. Since I is or maximum. The sequence Z = (Zl) can be defined by equations

5.14 and 5.16.

Zl =

{
Wl, l ∈ L
0, otherwise

(5.15)

It implies that (Zl) is a classical pre-image of the l-step spaces of FC
I(S)

(∆), but (Zl) /∈
FC

I(S)
(∆). For this reason, F c

I(S)
(∆) cannot be monotonic. Lemma 3.3 consequently states

that F c
I(S)

(∆) fails to be normal.

Theorem 5.4. The spaces FC
I(S)

(∆), FC
I(S)
0 (∆), Fm

I(S)
(∆), and Fm

I(S)
0 (∆) are sequence

algebra.

Proof. Let (Wl) , (Zl) ∈ F c
I(S)
0 (∆) and 0 < ε < 1. The subsequent incorporation context

then yields the outcome that follows:{
m ∈ N : 1

m

∣∣{l ≤ m : c̄
(
∆ (αWl ⊕ βZl) , 0

)
≥ ε
}∣∣ ≥ δ} ⊃ {m ∈ N : 1

m

∣∣ {l ≤ m : c̄
(
∆Wl, 0

)
≥ ε
}
|≥ δ

}
⊇
{
m ∈ N : 1

m

∣∣{l ≤ m : c̄
(
∆Zl, 0

)
≥ ε
}∣∣ ≥ δ}.

Theorem 5.5. F c
I(S)

(∆), and F c
I(s)
0 (∆) are not convergence free domains.

Proof. Let’s consider a sequence of fuzzy numbers from equation 5.16.

Wl(s) =


2+s

4 ,−2 ≤ s ≤ 2
6−s

4 , 2 ≤ s ≤ 6

0, otherwise

(5.16)

Then Wl(s) ∈ FC
I(s)

(∆). Let Zl(s) = 1
l ∀l ∈ N . Then Zl(s) ∈ FC

I(s)
(∆). However, Xl = 0

is not implied by Yl = 0.FC
I(S)

(∆) and FC
I(S)
0 (∆) are therefore not convergence-free.

Theorem 5.6. : Fn
I(S)

(∆) and Fn
I(S)
o (∆) were entire metric spaces with respect to the

metric that has been identified as c̄(Y,X) = c̄ (Y1, X1)+Supl c̄ (∆Yl,∆Xl), where (Yl) , (Xl) ∈
Fn

I(S)
(∆).

6 Conclusion

Mathematical frameworks referred to as series spaces are critical to the analysis of spaces,

concept, topological construction, and features. This paper employed a difference opera-

tor to build a sequence space of fuzzy numbers, Fc I(S) and Fc I(S)0, which is described

by means of I-statistical convergence. It also offered a detailed evaluation of the struc-

tural factors of these areas at the same time as examining their essential algebraic and
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topological traits. It additionally established numerous critical inclusive outcomes and in-

vestigates crucial connections associated with these areas, such as symmetry, solidity, and

convergence-unfastened traits. By constructing on established ideas and imparting point-

ers for the utility in fuzzy set indication and uncertainty-associated domains, the research

contributes to the know-how of I-statistical convergence in fuzzy range sequences area. I-

statistical convergence of fuzzy numbers in sequences is the focus of the research, other

convergence approaches, which could provide numerous insights into the behavior of fuzzy

range sequences, were not endangered. Future studies endeavors might amplify those series

spaces to encompass additional types of convergence, investigate multidimensional fuzzy

range sequences, and utilize those ideas in an increasing number of difficult real-world sit-

uations incorporating fuzzy good judgment and uncertainty.
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[14] Özcan, A., Karabacak, G., Bulut, S. and Or, A., Statistical Convergence of Double

Sequences in Intuitionistic Fuzzy Metric Spaces, Journal of New Theory, (43), pp.1-10,

2023.

[15] Pahari, N. P., On normed space valued total paranormed Orlicz space of null sequences

and its topological structures, Int. Journal of Mathematics Trends and Technology, 6 ,

105-112, 2014.

[16] Parashar, S. D., and Choudhary, B., Sequence spaces defined by Orlicz functions, Indian

Journal of Pure and Applied Mathematics, 25(4), 419-419, 1994

[17] Paudel, G.P. and Pahari, N.P., On Fundamental Properties in Fuzzy Metric Space,

Academic Journal of Mathematics Education, 4(1), 20-25,2021.

[18] Paudel G. P., Pahari N. P., Kumar S., Generalized form of p-bounded variation of

sequences of fuzzy real numbers, Pure and Applied Mathematics Journal, 11 (3), 47-

50,2022.

[19] Sarma, B., Double sequence spaces of fuzzy real numbers of paranormed type under an

orlicz function, Mathematica Sciences a Springer Journal, 8(7),46- 50, 2016
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