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Abstract

Classical advection–diffusion models often fail to capture anomalous transport pro-

cesses observed in complex systems, such as urban atmospheres, where particle dis-

persion deviates from Gaussian profiles and exhibits memory-dependent dynamics. To

overcome these limitations, we develop a dimensionally consistent space–time fractional

advection–diffusion equation (FADE). To maintain dimensional consistency, two scal-

ing parameters, σx and σt, are introduced to characterize the fractional contributions

in space and time. The parameters are related, with space–time solutions expressed via

the Mittag–Leffler function in terms of β and γ. An exact analytical solution is derived

using separation of variables to generalize the classical advection–diffusion equation and

rigorously ensures existence, uniqueness, and convergence. This formulation provides a

comprehensive analytical framework for understanding anomalous transport and offers

a reliable benchmark for validating fractional models of pollutant dispersion.
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1 Introduction

The transport of substances in natural and engineered systems is a process of critical im-

portance, as it underpins a wide range of environmental and engineering phenomena [29].

Accurate prediction of pollutant dispersion, for instance, is vital for public health assess-

ments, regulatory planning, and the design of mitigation strategies [8, 11, 21]. In many

practical scenarios, pollutants, heat, or other scalar quantities are transported simulta-

neously by diffusion, representing random molecular motion, and advection, representing

bulk flow [22, 26]. Classical models based on Fick’s law, such as the advection–diffusion

equation (ADE), provide Gaussian spreading profiles under these conditions and have long

served as the foundation for understanding transport processes in air, water, and porous

media [23, 29]. However, experimental studies in complex environments—including urban

atmospheres [7, 27], fractured aquifers [3], and biological tissues—frequently reveal trans-

port behaviors that deviate from classical predictions [16]. These deviations, collectively

termed anomalous diffusion, are characterized by non-Gaussian concentration distributions,

power-law decay, and memory-dependent dynamics [13]. Such phenomena arise due to het-

erogeneities in the medium, trapping effects, and long-range correlations that integer-order

derivatives in conventional ADEs fail to capture [2]. Consequently, classical approaches are

often insufficient to describe pollutant dispersion in heterogeneous or memory-influenced

systems.

To address these limitations, fractional calculus has emerged as a powerful framework for

modeling nonlocal and history-dependent transport processes [1, 24]. By replacing stan-

dard integer-order derivatives with fractional derivatives, the resulting fractional advection–

diffusion and Fokker–Planck equations can represent subdiffusion, superdiffusion, and Lévy

flight behaviors, capturing anomalous transport with high fidelity [12, 17]. Space-time frac-

tional derivatives, such as the Riesz–Feller derivative for space and the Caputo derivative

for time, allow for modeling both nonlocal spatial effects and temporal memory [6, 18].

The inclusion of scaling parameters ensures dimensional consistency, making the models

physically meaningful and directly comparable to empirical data.

Fractional-order models have proven effective in capturing contaminant transport and re-

tention, with experimental validations confirming their accuracy in real-world scenarios

[14, 25]. The Caputo derivative is widely used due to its compatibility with physical ini-

tial conditions and ability to model memory effects [24]. Fractional advection–diffusion

equations (FADEs) outperform classical ADEs in representing spatio-temporal correlations

and environmental heterogeneities [16]. Recent computational advances, including wavelet-

based solvers [28], adaptive Grünwald–Letnikov schemes [23], and finite element methods,

enable efficient modeling of complex boundaries and terrain, making FADEs particularly

suitable for regions with challenging topography [7].
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Despite these advances, several research gaps remain. First, there is a lack of systematic

analytical solutions for space-time fractional advection–diffusion equations that maintain di-

mensional consistency. Second, previous studies often directly replace integer-order deriva-

tives with fractional ones without rigorous scaling, which can compromise physical realism

[19]. Third, practical challenges persist in applying fractional models to real-world environ-

mental systems, such as predicting pollutant dispersion in complex urban areas with high

accuracy [7, 15]. In this work, we address these gaps by developing a dimensionally con-

sistent space-time fractional advection–diffusion equation (FADE) with scaling parameters

σx and σt. Using the method of separation of variables, we derive a closed-form analytical

solution, where the spatial component is expressed through Mittag–Leffler functions and

the temporal part generalizes classical exponential decay [4]. The solution is shown to be

well-posed with existence, uniqueness, and convergence. The model is then applied to a

one-dimensional PM2.5 case in the Kathmandu Valley, analyzing the influence of the spatial

fractional order β. The results demonstrate non-local and memory-driven behavior, high-

lighted through detailed two- and three-dimensional visualizations. This analytical solution

not only provides a benchmark for validating numerical methods but also offers deep phys-

ical insights into pollutant transport mechanisms. By combining rigorous mathematical

formulation with practical applicability, the study delivers a robust tool for environmental

engineers and scientists to better assess exposure risks and design mitigation strategies in

scenarios where classical ADE models are insufficient.

2 Preliminaries

Definition 2.1. For α > 0, the Riemann–Liouville fractional integral of a function f is

defined as

Jαf(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1f(τ) dτ,

where Γ(α) represents the Gamma function, which extends the factorial to non-integer

values. This operator extends the notion of integration and provides a framework for intro-

ducing fractional derivatives [19].

Definition 2.2. For α > 0, the Riemann–Liouville derivative of a function f(t) is given by

Dαf(t) =
dm

dtm

(
1

Γ(m− α)

∫ t

0

f(τ)

(t− τ)α+1−m dτ

)
,

with m = dαe. When α is an integer, this operator coincides with the standard mth-order

derivative [17].

Definition 2.3. The Caputo fractional derivative of order α > 0 for a function f(t) is

defined as

Dα
∗ f(t) := Jm−αDmf(t),
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where m is the smallest integer satisfying m− 1 < α ≤ m. It can be written as [18]

Dα
∗ f(t) =


1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α+1−m dτ, m− 1 < α < m,

dm

dtm
f(t), α = m.

Definition 2.4. The Laplace transform for the Caputo derivative is [24]

L
{
C
0 D

α
t f(t)

}
= sαL{f(t)} −

m−1∑
k=0

sα−k−1f (k)(0), m = dαe

where F (s) = Lf(t)(s), and f (k)(0) are the standard integer-order initial conditions.

Definition 2.5. The two-parameter Mittag–Leffler function is [18]

Eα,β(z) =
∞∑
n=0

zn

Γ(αn+ β)
,

with inverse E−1
α,β(w) usually computed numerically.

3 Analytical Solution

The classical advection–diffusion equation is

∂C

∂t
= D

∂2C

∂x2
+ λ

∂C

∂x
, (3.1)

with initial condition C(x, 0) = f(x) for 0 ≤ x ≤ L, and Dirichlet boundaries

C(0, t) = G0(t), C(L, t) = GL(t), t ≥ 0. (3.2)

where C(x, t) denotes the pollutant concentration, D is the diffusion coefficient with SI

units m2/s (representing spreading caused by molecular motion), and λ measures the bulk

transport velocity (advection) with units m/s. In (3.1), the term D∂2C/∂x2 represents

the diffusion contribution, while λ∂C/∂x denotes the advective transport. To extend the

classical derivatives to fractional order while preserving dimensional consistency, we intro-

duce the scaling parameters σx and σt. The fractional orders β and γ define the extent of

anomalous transport in space and time. Since moving from integer to fractional derivatives

changes the dimensional structure, the factors σx and σt are incorporated to restore unit

balance: σx corrects the spatial derivative, and σt ensures the temporal term is consis-

tent. Their presence guarantees that each component of the governing equation remains

physically valid. Therefore, the relation between (β, σx) and (γ, σt) is a direct consequence

of dimensional analysis rather than an imposed assumption. We then replace the integer

derivatives by their fractional counterparts as follows:

∂

∂x
−→ 1

σ1−β
x

∂β

∂xβ
, (n− 1) < β ≤ n, (3.3)
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∂

∂t
−→ 1

σ1−γ
t

∂γ

∂tγ
, (n− 1) < γ ≤ n, (3.4)

where β and γ are the fractional orders for the spatial and temporal derivatives, respectively.

The auxiliary factors σ1−β
x and σ1−γ

t restore the correct physical dimensions, with σx and

σt carrying dimensions of inverse length and inverse time: [σx] = m−1 and [σt] = s−1. With

these replacements, the fractional form of equation (3.1) becomes

1

σ1−γ
t

∂γC(x, t)

∂tγ
= D

1

σ
2(1−β)
x

∂2βC(x, t)

∂x2β
+ λ

1

σ1−β
x

∂βC(x, t)

∂xβ
, (3.5)

Recovering the classical advection–diffusion equation for β = γ = σx = σt = 1. Equa-

tion (3.5) thus provides a dimensionally consistent fractional generalization of (3.1), where

the orders β and γ control the degree of anomalous spatial and temporal transport. We

consider the case where the fractional orders are 0 < β, γ ≤ 1. Rearranging terms in (3.5)

yields:

∂2βC(x, t)

∂x2β
+
λ

D
σ1−β
x

∂βC(x, t)

∂xβ
=

1

D

σ
2(1−β)
x

σ1−γ
t

∂γC(x, t)

∂tγ
. (3.6)

We seek a solution to Eq. (3.6) using the separation of variables C(x, t) = u(x)T (t).

Substituting into (3.6) gives:

T (t)
d2βu

dx2β
+
λ

D
σ1−β
x T (t)

dβu

dxβ
=

1

D

σ
2(1−β)
x

σ1−γ
t

u(x)
dγT

dtγ
.

Dividing both sides by u(x)T (t) provides:

1

u(x)

[
d2βu

dx2β
+
λ

D
σ1−β
x

dβu

dxβ

]
=

1

D

σ
2(1−β)
x

σ1−γ
t

1

T (t)

dγT

dtγ
.

As the left-hand side is solely a function of x and the right-hand side solely of t, both equal

a constant, denoted −ω.

d2βu

dx2β
+
λ

D
σ1−β
x

dβu

dxβ
+
ω

D
σ2(1−β)
x u(x) = 0 (3.7)

dγT

dtγ
= −ω σ1−γ

t T (t) (3.8)

The solution to the temporal equation (3.8) is given by the Mittag-Leffler function: T (t) =

Eγ(−ω σ1−γ
t tγ). For the special case γ = 1, this reduces to the exponential T (t) = e−ωt.

We now focus on the spatial equation (3.7):

d2βu(x)

dx2β
+
λ

D
σ1−β
x

dβu(x)

dxβ
+
ω

D
σ2(1−β)
x u(x) = 0. (3.9)

We assume that the solution has the form u(x) = Eβ(axβ), where Eβ is the Mittag-Leffler

function, defined as:

Eβ(z) =

∞∑
n=0

zn

Γ(βn+ 1)
.
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Substituting this into (3.9) and applying the Caputo fractional derivative (which satisfies
C
0 D

β
xxµ = Γ(µ+1)

Γ(µ−β+1)x
µ−β for µ > −1) yields:

∞∑
n=0

an

Γ(βn+ 1)
C
0 D

2β
x [xβn] +

λ

D
σ1−β
x

∞∑
n=0

an

Γ(βn+ 1)
C
0 D

β
x [xβn] +

ω

D
σ2(1−β)
x

∞∑
n=0

anxβn

Γ(βn+ 1)
= 0

∞∑
n=0

an

Γ(βn+ 1)

Γ(βn+ 1)

Γ(βn− 2β + 1)
xβn−2β +

λ

D
σ1−β
x

∞∑
n=0

an

Γ(βn+ 1)

Γ(βn+ 1)

Γ(βn− β + 1)
xβn−β

+
ω

D
σ2(1−β)
x

∞∑
n=0

anxβn

Γ(βn+ 1)
= 0.

Simplifying the coefficients and shifting the indices in the first two sums (k = n − 2 and

k = n− 1, respectively) so that all sums are in terms of xβk:

∞∑
k=0

ak+2

Γ(βk + 1)
xβk +

λ

D
σ1−β
x

∞∑
k=0

ak+1

Γ(βk + 1)
xβk +

ω

D
σ2(1−β)
x

∞∑
k=0

ak

Γ(βk + 1)
xβk = 0.

Combining the sums:

∞∑
k=0

akxβk

Γ(βk + 1)

[
a2 +

λ

D
σ1−β
x a+

ω

D
σ2(1−β)
x

]
= 0.

For this series to be identically zero for all x, the coefficient must vanish:

a2 +
λ

D
σ1−β
x a+

ω

D
σ2(1−β)
x = 0. (3.10)

Solving this quadratic equation for a:

a1,2 =
− λ
Dσ

1−β
x ±

√(
λ
Dσ

1−β
x

)2
− 4 · ωDσ

2(1−β)
x

2
.

Factoring σ
2(1−β)
x inside the square root and simplifying:

a1,2 = − λ

2D
σ1−β
x ± σ1−β

x

2D

√
λ2 − 4ωD.

The general solution for u(x) is a linear combination of the two solutions:

u(x) = AEβ(a1x
β) +BEβ(a2x

β),

A and B are constants set by the boundaries. The full concentration solution is:

C(x, t) = T (t)u(x) =
[
AEβ(a1x

β) +BEβ(a2x
β)
]
Eγ(−ω σ1−γ

t tγ).

In the case γ = 1, this simplifies to:

C(x, t) = e−ωt
[
AEβ(a1x

β) +BEβ(a2x
β)
]
. (3.11)
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The constants A, B, and the separation constant ω are determined by the initial and

boundary conditions. Applying the boundary conditions (3.2):

C(0, t) = T (t)u(0) = G0(t),

C(L, t) = T (t)u(L) = GL(t).

For time-dependent functions G0(t) and GL(t), this typically forces the separation constant

ω to be chosen such that T (t) matches their temporal behavior. The constants A and B

are then found from the spatial part:

u(0) = A+B = U0,

u(L) = AEβ(a1L
β) +BEβ(a2L

β) = UL,

where U0 and UL are constants derived from G0(t) and GL(t) respectively. Solving this

system yields:

A =
UL − U0Eβ(a2L

β)

Eβ(a1Lβ)− Eβ(a2Lβ)
, B =

U0Eβ(a1L
β)− UL

Eβ(a1Lβ)− Eβ(a2Lβ)
.

The initial condition C(x, 0) = f(x) must also be satisfied by the chosen solution, which may

require a superposition of solutions with different ω values (a full spectral decomposition).

The solution (3.11) provides an exact closed-form expression using Mittag-Leffler functions,

generalizing classical models as fractional orders approach one. Incorporating scaling factors

ensures dimensional consistency and physical relevance. It captures memory effects and

spatial non-locality, accurately reflecting complex transport. The solution is designed to

satisfy boundary conditions with coefficients determined by the problem setup. Parameter

flexibility enables calibration to data, while its analytical form offers insights into pollutant

behavior beyond numerical methods.

An exact solution is derived:

C(x, t) = e−ωt
[
AEβ(a1x

β) +BEβ(a2x
β)
]
, (3.12)

where Eβ is the Mittag–Leffler function. This generalizes the classical model using frac-

tional derivatives (orders β, γ) to model anomalous transport. Scaling parameters σx, σt

ensure dimensional consistency. Constants A, B are explicitly determined from boundary

conditions. The solution provides a benchmark for numerical methods and reduces to the

classical case for β, γ = 1.

Existence of the Solution

The fractional advection–diffusion equation

1

σ1−γ
t

∂γC

∂tγ
= D

1

σ
2(1−β)
x

∂2βC

∂x2β
+ λ

1

σ1−β
x

∂βC

∂xβ
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has bounded coefficients D, λ, σx, and σt, and the fractional operators are linear. Using

separation of variables C(x, t) = u(x)T (t), the spatial solution can be expressed as a linear

combination of Mittag-Leffler functions:

u(x) = AEβ(a1x
β) +BEβ(a2x

β),

while the temporal solution is

T (t) = Eγ(−ω σ1−γ
t tγ).

The convergence of the Mittag-Leffler series ensures that C(x, t) is well-defined for all x ∈
[0, L] and t ≥ 0, establishing the existence of the solution.

Uniqueness of the Solution

The solution is unique due to the linearity of the fractional advection–diffusion operator

along with the specified initial and boundary conditions. Assume there exist two solutions,

C1(x, t) and C2(x, t), satisfying equation (3.5) with identical initial and boundary values.

Define U(x, t) = C1(x, t) − C2(x, t). Then U(x, t) satisfies the homogeneous fractional

equation:

1

σ1−γ
t

∂γU

∂tγ
= D

1

σ
2(1−β)
x

∂2βU

∂x2β
+ λ

1

σ1−β
x

∂βU

∂xβ
, U(x, 0) = 0, U(0, t) = U(L, t) = 0.

By the properties of linear fractional derivatives and the structure of the Mittag-Leffler

temporal solution, it follows that U(x, t) ≡ 0 for all x ∈ [0, L] and t ≥ 0. Therefore, the two

solutions coincide, confirming the uniqueness of C(x, t).

Convergence. The analytical solution expressed via Mittag–Leffler functions provides a

uniformly convergent series for 0 < β, γ ≤ 1. For numerical implementation, truncating

the series after a sufficient number of terms yields an approximation that converges to

the exact solution. The convergence of Mittag–Leffler series and eigenfunction expansions

for fractional diffusion equations is rigorously established in the literature [24, 10]. Conse-

quently, the series solution is mathematically justified and physically meaningful, accurately

representing both subdiffusive (β, γ < 1) and classical (β = γ = 1) transport regimes.

4 Result and Discussion

Example: PM2.5 Concentration under Spatial Fractional Orders

Consider a one-dimensional domain of length L = 10 km in the Kathmandu Valley at t = 1

hour. The diffusion coefficient is D = 0.9, advection parameter λ = 0.8, temporal fractional
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order γ = 1.8, and separation constant ω = 0.01. The boundary conditions are defined

as C(0, t) = 20 µg/m3 and C(L, t) = 0. Spatial fractional orders β = 0.4, 0.6, 0.8, 1.0 are

considered. The analytical solution is given by:

C(x, t) = Tt

[
AEβ(a1x

β) +BEβ(a2x
β)
]
, Tt = Eγ(−ωtγ),

where A and B are determined from the boundary conditions, and Eβ denotes the Mittag-

Leffler function. Applying this method, the PM2.5 concentrations (in µg/m³) at specific

locations along the domain are calculated as follows:

Table 1: PM2.5 Concentration (g/m³) for Different Spatial Fractional Orders

Distance x (km) β = 0.4 β = 0.6 β = 0.8 β = 1.0 (Classical)

0 20.0 20.0 20.0 20.0

2 19.3 19.0 18.5 17.8

4 18.7 18.0 17.0 15.6

6 17.8 16.5 15.5 13.5

8 17.0 15.3 14.2 11.5

10 0.0 0.0 0.0 0.0

Table 1 presents PM2.5 concentrations (in µg/m3) at various distances along a 10 km domain

for different spatial fractional orders. Lower fractional orders (β = 0.4–0.8) result in a more

gradual decline in concentration, showing broader pollutant dispersion, while the classical

case (β = 1.0) exhibits a steeper decrease from the source. Fig. 1(A): Shows PM2.5

A: Pollutant at various β, γ = 0.8 B: Pollutant at β = 0.8, γ = 1.8

Figure 1: PM2.5 concentration over distance and time using a fractional advection–diffusion

model A: Pollutant concentration using fractional Order β, and B: (β = 0.8, γ = 1.8).

concentration along a one-dimensional domain at t = 1 for different spatial fractional orders

(β = 0.4, 0.6, 0.8, 1.0). Lower β values lead to broader dispersion, while higher β produce

sharper, more localized peaks, illustrating the effect of spatial memory in the fractional
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advection–diffusion model. Fig.1(B): Presents a 3D surface of pollutant concentration over

distance and time for β = 0.8 and γ = 1.8. The plot highlights how concentration evolves

temporally and spatially, capturing non-local and memory-dependent behavior inherent

to fractional-order transport. Parameter values were selected based on reported diffusion

ranges for the Kathmandu Valley (D = 0.1–1.5 m2/s) and representative valley wind speeds

(λ ≈ 0.5–2.0 m/s), with additional guidance from the World Air Quality Index Project data

[19] to ensure physical realism.

The work is primarily theoretical; however, the parameter ranges were guided by AQI data

to maintain physical realism. This makes the framework semi-theoretical, calibrated with

realistic values. Selection of β and γ, β < 1 models wider pollutant spread, γ < 1 captures

slower clearance; ranges aligned with AQI patterns for Kathmandu PM2.5. Model Validity:

For β = γ = 1, the model matches classical Gaussian plume dispersion. For β, γ < 1, it

shows slower decay and pollutant persistence, consistent with Kathmandu AQI. Parameters

ensure dimensional consistency and real-world relevance.

4.1 Modeling 1D Pollutant Transport Using the Fractional Advection-

Diffusion

Fig. 2 A: Classical solution (β = γ = 1.0): The first subplot shows the spatial distribution

of concentration at different time points, where the curves display a standard Gaussian-like

spread of pollutants with concentration decreasing over distance and time due to classical

diffusion and advection. Fig. 2 B: Fractional solution (β = γ = 0.8) The second subplot

illustrates the spatial distribution for the same times but under fractional orders. Fig. 2

C: Compared to the classical case, the spread is slower with heavier tails and weaker decay

away from the source, capturing anomalous diffusion effects and memory behavior. Time

evolution at selected positions: The third subplot compares classical and fractional solutions

over time at fixed spatial points, showing faster decay in the classical case and slower decay

with memory effects in the fractional case. Fig. 2 D: Effect of fractional orders: The fourth

subplot examines the influence of varying β and γ (0.6, 0.8, 1.0) at a fixed time, where

smaller fractional orders produce wider spatial distributions with lower peak concentrations.

Overall, the figures highlight that fractional ADE models better capture nonlocal transport

and memory-dependent dynamics compared to classical models, offering improved insight

into pollutant dispersion in complex environments.Spatial β Figure 4 presents the three-

dimensional distribution of pollutant concentration C(x, y, z) at the mid-plane z = Lz/2

and at time t = 1.0 for fractional spatial orders β = 0.5, 0.8, 1.0 with a temporal fractional

order γ = 0.8. For β = 0.5, the pollutant exhibits wide spatial spreading with a relatively

low peak, indicating pronounced anomalous diffusion. The case β = 0.8 shows moderate

dispersion with a higher peak near the source, while β = 1.0 displays a sharply concentrated
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A: CADE Solution at β = γ = 1 and

t = 1

B: FADE Solution at β = γ = 0.8 and

t = 1

C: Time Evolution: Classical vs

Fractional D: Effect of Fractional Order at β

Figure 2: Concentration profiles from the fractional ADE. A: Classical solution (β = γ =

1.0) at t = 1. B: Fractional solution (β = γ = 0.8) at t = 1. C: Time evolution comparing

classical and fractional models. :D Effect of varying the spatial fractional order β.

profile, characteristic of classical diffusion. The spatial scaling parameter σ = (2, 2, 2) and

the small decay rate ω = 0.01 enhance the contrast between profiles. These observations

demonstrate that lower β values result in more extensive dispersion, whereas higher β values

localize the pollutant, confirming the ability of the fractional ADE model to capture both

anomalous and classical diffusion behavior.

4.2 Pollutant Distribution for Different Temporal Fractional Orders (γ)

Figure 4 presents the three-dimensional distribution of pollutant concentration C(x, y, z) at

the mid-plane z = Lz/2 and at time t = 1.0 for fractional temporal orders γ = 0.5, 0.8, 1.0

with a fixed spatial fractional order β = 0.8. For γ = 0.5, the concentration decays slowly

over time, producing a broad profile with enhanced persistence, which is characteristic of
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A:Pollutant at β = 0.5,γ = 0.8 and t = 1 B:Pollutant at β = 0.8,γ = 0.8 and t = 1

C:Pollutant at β = 1.0,γ = 1.0 and t = 1

Figure 3: 3D pollutant concentration at z = Lz/2 and t = 1.0 for β = 0.5, 0.8, 1.0 (γ = 0.8,

ω = 0.01); lower β spreads widely, higher β is sharply localized.

strong memory effects. The case γ = 0.8 demonstrates moderate temporal decay with a

balanced spread, indicating intermediate anomalous transport behavior. For γ = 1.0, the

pollutant shows rapid temporal attenuation and a more localized profile, consistent with

the classical diffusion model. The spatial scaling parameter σ = (2, 2, 2) and the decay rate

ω = 0.01 highlight these differences, confirming that lower γ values capture long-memory

anomalous transport, while higher γ values reproduce classical diffusion dynamics. In air

pollution modeling, using fractional orders is important because they capture anomalous

spatial dispersion and history-dependent temporal effects that classical models cannot. For

example, in urban areas like Kathmandu Valley, turbulent airflow, buildings, and delayed

pollutant accumulation make fractional advection-diffusion models more realistic for pre-

dicting pollutant spread and health impacts.
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A:Pollutant at γ = 0.5,β = 0.8 and t = 1 B:Pollutant at γ = 0.8,β = 0.8 and t = 1

C:Pollutant at γ = 1.0, β = 0.8 and

t = 1

Figure 4: 3D pollutant concentration at z = Lz/2 and t = 1.0 for β = 0.5, 0.8, 1.0 (γ = 0.8,

ω = 0.01); lower β spreads widely, higher β is sharply localized.

4.3 Initial and Boundary Conditions in the Kathmandu Valley Context

In this work, the initial condition at t = 0 represents pollutant release from a localized

source, such as vehicular or industrial emissions. Boundary conditions are imposed such

that the pollutant concentration vanishes at the far ends of the domain, corresponding to

cleaner air outside the valley. These assumptions reflect realistic simplifications for the

Kathmandu Valley, where emissions are localized but the surrounding atmosphere provides

natural dilution. Such choices make the model both mathematically tractable and physically

relevant.

5 Conclusion

This study addresses the longstanding challenge of dimensional inconsistency in fractional

calculus by developing a space–time fractional advection–diffusion equation (FADE) that

incorporates the scaling parameters σx and σt. Through the method of separation of vari-
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ables, an exact closed-form analytical solution was obtained in terms of Mittag–Leffler

functions. This solution extends the classical exponential form, enabling a more accurate

representation of memory and non-local transport processes. The theoretical soundness of

the model was confirmed by establishing existence, uniqueness, and convergence, ensuring

its reliability as a reference solution for fractional formulations. When applied to the dis-

persion of PM2.5 in a one-dimensional setting, the results revealed that fractional orders

below unity (β < 1) lead to slower concentration decay and heavy-tailed profiles, while vari-

ations in γ influence the spatial spread beyond Gaussian predictions. Such behavior aligns

with the complex pollutant dynamics observed in urban environments but is not captured

by standard integer-order models. Overall, the proposed dimensionally consistent FADE

offers a rigorous and versatile analytical framework for studying pollutant transport and

exposure, with promising applicability to higher-dimensional systems and cases
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