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Abstract

Computational problems and their complexity analysis play a crucial role in computer science,
mathematics, and real-world applications. Such tasks can be solved using computational pro-
cesses known as an algorithms. Such a process consists of a set of inputs and corresponding
outputs that satisfy certain conditions. Search, decision, and optimization problems are differ-
ent variants of the computational problems. Complexity theory studies the measure of efficiency
in solving such problems. Such a measure is expressed in terms of space and time. Regarding
time complexity, its major variants include: (i) P: polynomial time, (ii) NP: nondeterministic
polynomial time, (iii) NP-complete, and (iv) NP-hard.

Understanding computational complexity is essential for designing efficient algorithms, op-
timizing resources, and making informed decisions about problem-solving approaches. This
work offers a comprehensive overview of computational problems and their associated com-
plexities and opens a wide horizon for in-depth and broader research in this area.

Keywords: Computational problem, algorithm, complexity, approximation, deterministic, non-
deterministic.
AMS(MOS) Subject Classification: 68Q25, 68Q17, 03D15.

1 Introduction

Computational problems can be solved using a computational process, typically through an
algorithm. The computational model underlies many research areas in natural as well as physical
sciences, and even in mathematical biology and neuroscience. The running time might be different
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on different computer devices for the same algorithm. For this, we need to establish an agreement
that the run algorithm is modeled theoretically. Mainly, the computational problems are classified
as decision, optimization,and search problems. Decision problems are those with a yes/no answer
like checking a number for prime. The optimization problems are to get the best one from a set of
feasible solutions like to determine the shortest path between two cities. The search problems require
finding a solution that satisfies given constraints, like the solution of a Sudoku puzzle.

The field of computational complexity rigorously examines the efficiency of problem-solving,
focusing primarily on time and space resources. Understanding these complexities empowers us to
tackle some of themost daunting challenges in computer science. Depending on the time complexity,
computational problems are classified: (i) P: Deterministic polynomial Time, (ii) NP: Nondetermin-
istic Polynomial Time, (iii) EXP: Exponential Time, (iv) NP-Complete, and (v) NP-Hard.

Section 2 presents the fundamentals of the computational problems. Different variants of the
computational complexities and their characteristics are in Section 3. The most challenging and the
interesting issues as the P verses NP is in Section 4 and is followed by the computational problems
and their complexities in Section 5. Approximations schemes on such problems in Section 6. Finally,
we conclude it in Section 7.

2 Fundamentals

Figure 1: Sorting a card using insertion sort

Computation and algorithm: In different computational problems, an algorithm produces
certain output in a finite number of steps. Consider a sorting problem-

Input: A sequence, < k1, k2, ..., kn > having n numbers..
Output: A reordering of < k1, k2, ..., kn > in the form k′1 ≤ k′2 ≤ k′3... ≤ k′n.
For the input sequence, < 21, 43, 39, 79, 63 > a sorting algorithm returns to < 21, 39, 43, 63, 79 >.

Running time of an algorithm: Consider an algorithm as an INSERTION-SORT for sorting
a small number of elements like sorting of playing cards properly as in Figure 1.
The time required for the INSERTION-SORT procedure is strongly influenced by the characteristics
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Algorithm 1: An INSERTION-SORT (X).
1: for j = 2 to X do
2: key = X[j]
3: /*Insert X[j] into X[1, 2, 3, ..., j-1]*/
4: i = j − 1
5: while i > 0 and X[i] > key do
6: X[i + 1] = X[i]
7: i = i − 1
8: end while
9: X[i + 1] = key
10: end for
11: Output: The final sorted array X.

of the input. For example, sorting of hundred numbers will take considerably longer than sorting of
four. Furthermore, even two sequences of the same size can have markedly different sorting times,
depending on how close they are to being sorted. As the input size increases, the running time will
certainly increase. It might be machine-dependent, but it is better to be as machine-independent
as possible. Comments are written in /*...*/ are not executable statements, and, therefore, do not
consume any time. In above example of INSERTION-SORT, we have,

Table 1: Running time of an algorithm
Line No. cost time

1 k1 n
2 k2 n-1
3 0
4 k4 n-1
5 k5

∑n
j=2 tj

6 k6
∑n
j=2(tj − 1)

7 k7
∑n
j=2(tj − 1)

8 k8 n-1

Here, the total running time becomes,

T (n) = k1n + k2(n − 1) + k4(n − 1) + k5
n
∑

j=2
tj + k6

n
∑

j=2
(tj − 1) + k7

n
∑

j=2
(tj − 1) + k8(n − 1).

If the array is already sorted, it gives the best case with,
T (n) = k1n+k2(n−1)+k4(n−1)+k5(n−1)+k8(n−1) = (k1+k2+k4+k5+k8)n−(k2+k4+k5+k8) = an+b,

a linear function in n.
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The worst case is, at its reverse order sorting, i.e.,
T (n) = k1n+k2(n−1)+k4(n−1)+k5

(

n(n + 1)
2

− 1
)

+k6

(

n(n − 1)
2

)

+k7

(

n(n − 1)
2

)

+k8(n−1)

= 1
2
(

2k5 + 2k6 + 2k7
)

n2+1
2
(

2k1 + 2k2 + 2k4 + k5 − k6 − k7 + 2k8
)

n−(k2+k4+k5+k8) = an2+bn+c

a quadratic function in n.
Example 2.1. A simple illustrative example for insertion sort related to above case of insertion on
the sequence 5, 2, 4, 6, 1, 3 in ascending order.

Table 2: An illustrative example of insertion sort

1 2 3 4 5 6
5 2○ 4 6 1 3

1 2 3 4 5 6
2 5 4 6 1 3

1 2 3 4 5 6
2 5 4○ 6 1 3

1 2 3 4 5 6
2 4 5 6 1 3

1 2 3 4 5 6
2 4 5 6 1○ 3

1 2 3 4 5 6
2 4 5 1○ 6 3

1 2 3 4 5 6
2 4 1○ 5 6 3

1 2 3 4 5 6
2 1○ 4 5 6 3

1 2 3 4 5 6
1 2 4 5 6 3

1 2 3 4 5 6
1 2 4 5 6 3○

1 2 3 4 5 6
1 2 4 5 3○ 6

1 2 3 4 5 6
1 2 4 3○ 5 6

1 2 3 4 5 6
1 2 3 4 5 6

Let X =< 5, 2, 4, 6, 1, 3 >. The variety in the first row represents their order. The values are
sorted and appear within the circles in second row of the Table. Here, the respective iterations of
the Algorithms are illustrated serially, in Table 2. The circled number is the key in each array, that
is compared iteratively with the entries to its left up to final sorting.

Growth rate of an algorithm: The growth rate of an algorithm’s execution time offers a
straightforward way to assess the algorithm’s efficiency, helping us evaluate the relative performance
of different algorithms. This refers to the asymptotic efficiency of an algorithm. Typically, an algo-
rithm that shows greater asymptotic efficiency will be the preferred option for nearly all input sizes
except for very small ones. For details we refers to [1], [10].

BigΘ-notation: It gives theworst-case running time. Then, for sufficiently large n, for above in-
sertion sort, it becomes, T (n) = Θ(n2). For a given g(n), the set of functions is Θ(g(n)), where,
Θ(g(n)) =

{

f (n) ∶ ∃ c1 > 0, c2 > 0, n0 > 0 such that 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) ∀n ≥ n0.
}
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For f (n) = an2+bn+c with a, b, c ∈ ℝ and a > 0, wewrite,Θ(f (n)) = n2. Here,Θ(n0) = Θ(1),
indicating either a continuous or a continual function.

n

n0

c1g(n)
f (n)
c2g(n)

(a)
n

n0

f (n)
cg(n)

(b)
n

n0

f (n)

cg(n)

(c)

Figure 2: Asymptotic notation visualizations: (a) Θ(g(n)), (b) O(g(n)), (c) Ω(g(n))

Big O-notation: It bounds asymptotically a function from both sides. But, O-notation is used
for asymptotic upper bound, as in Figure 2(b) for this,

O(g(n)) =
{

f (n) ∶ ∃ c > 0, n0 > 0, such that 0 ≤ f (n) ≤ cg(n)∀n ≥ n0.
}

Here, f (n) = O(g(n)). Then, f (n) = Θ(g(n)) ⟹ f (n) = O(g(n)). Hence, Θ(g(n)) ⊆ O(g(n));
Θ-notation is a stronger than O-notation. For any f (n) = an2 + bn + c, where a > 0, then f (n) ∈
Θ(n2) ⟹ f (n) ∈ O(n2). The following are standard properties of Big-O notation:

• For c ≥ 0, c ⋅ f = O(f ) and c ⋅ O(f ) = O(f )

• For any constant p, O(f1) +⋯ + O(fp) = O(f1 +⋯ + fp) = O
(

max{f1,… , fp}
)

• For functions f and g, O(f ) ⋅ O(g) = O(f ⋅ g)

Big Ω-notation: It gives an asymptotic lower bound, Figure 2 (c), where,

Ω(g(n)) =
{

f (n) ∶ ∃ c > 0, n0 > 0, such that 0 ≤ cg(n) ≤ f (n) for all n ≥ n0
}

.

Theorem 2.2. [10] Let f (n) and g(n) be any two functions, then

f (n) = Θ(g(n)) iff f (n) = O(g(n)) and f (n) = Ω(g(n)).

Consider, f ∶ ℕ → ℝ+. Then it becomes, logarithmic if f = O(log n); poly-logarithmic if
f = O(logk n) for some k ∈ ℕ; linear, quadratic, or cubic if f = O(n), f = O(n2), or f = O(n3)
respectively. Likewise, it is quasi-linear if f = O(n logk n) for some k ∈ ℕ; polynomial bounded
( polynomial) if f = O(nk) for some k ∈ ℕ; super-polynomial if f = Ω(nk)∀k ∈ ℕ; sub-
exponential if f = O(2n") for every " > 0; exponential if f = Ω(2n") for some " > 0; and strictly
exponential if f = Ω(2"n) for some " > 0.
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Classification of computational problems: Computational problems can be classified like
decision problems, optimization problems, search problems, etc. A Combinatorial optimization
problem can be reformed to its decision version but each of such an optimization problem need not
be a decision problem. A Hamiltonian cycle (HC) problem is a decision problem.
Example 2.3. Consider a graph G = (V ,E). Does it contain a cycle passing through each vertex
only once as an HC?

Input: A graph G = (V ,E).
Step 1: Assume a permutation ∀ V.
Step 2: Check if step 1 gives an HC
If Yes, then accept the input.

A simple decision problem on the matrix is like: Let b be an n-dimensional integer vector and
A be an m × n matrix. Does there exit an m-dimensional integer vector x such that Ax ≥ b.

This problem is in NP. For details, we refer standard texts like [41], [9], [48]. Let us have a
classical TSP:
Problem 1. Consider a complete connected graph of n cities with known distances. Find the shortest
Hamiltonian tour as an HC in the complete graph.

Its decision version becomes,
Problem 2. Given a complete connected graph of n cities with known distances. Consider K > 0
for K ∈ ℕ, does it have a HC tour with, total distance ≥ K ?

If the above Problem 1 is solvable in polynomial time, then is so for the Problem 2 and vice-
versa. In 1965, Admonds presented a conjecture ’TSP does not have a polynomial time solution.’
After a decade in 1971, S. Cook established the 1st NP-complete problem like:
Problem 3. A problem is NP-complete if it is both NP-hard and belongs to the NP class.

For detail, we refer the text like [23] and [48].

3 Taxonomy of algorithms

An algorithm is performed with (i) assignment steps, (ii) operation steps, and (iii) logical steps.
The time required by it is largely dependent on the problem instance, which differs from one instance
to another. We can measure its performance with (i) empirical (ii) average-case, and (iii)worst-case
analysis. The empirical one is to estimate how an algorithm behaves. The average-case forecasts
for expected number of steps. In contrast, the worst-case analysis provides the upper bounds. The
performance of an algorithm depends on the compiler, programmer and their programming language,
and the machine used which are the major drawback to empirical analysis. Moreover, it may be
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time-consuming and expensive to perform, and different algorithms perform differently on various
classes of problems. Average-case analysis depends on the probability distribution and is challenging
to determine the appropriate choice, and is extremely difficult for more complex algorithms. The
majority of the drawbacks encountered by empirical and average-case analysis are improved upon
in worst-case analysis.

Letℐ = { ∶  ∈ ℐ } denote the set of all problem instances  for the computational problem
Pc . For an algorithmA , the runtime function f (n) ∶ ℕ → ℕ is determined by the input size nwhere
|| = n. The time complexity reflects the smallest function that achieves a running time of O(f (n)),
indicating its worst-case performance. For a set of valid instances ℐc , the worst-case running time
is given by, max{min{f ()} ∶  ∈ ℐc}. This captures the maximum execution time across all
instances, highlighting the algorithm’s performance in the most challenging scenarios.

Algorithmic complexity measures expected execution time and required storage space. Sym-
bolically, A ≤T B tells that A is no more difficult than B. Thus, A and B are algorithmically similar
if A ≤T B and B ≤T T , i.e., A ≡ B, turning equivalent. There are many problems which are not
computable. Still there are some very difficult computable problems that do not belong to any of the
complexity classes. See in [10] and [16] for details.

4 P versus NP in complexity

P, NP, NP-complete and NP-hard are four major categories of the computational problems.
Shortly, P: decision problems in polynomial time by a deterministic Turning machine; NP: decision
problems whose "yes" instances can be verified in polynomial time by a deterministic Turning ma-
chine; NP-complete: problems in NP to which every problem in NP can be reduced in polynomial
time; and NP-hard: at least as hard as NP-complete, not necessarily in NP. Figure 3 provides a simple
comparison of such problems, illustrating how their complexity increases from P to NP-hard.

NP

NP-complete

P
Here, P ≠ NP

NP -hard

Figure 3: Comparison between P , NP , NP − complete, & NP − hard.

One of the open problem in the field of mathematics is whether P=NP. In case if P = NP, then
there will be fast ways to solve problems that are currently considered very difficult. It will be the
huge implications for computing, cryptography, and our daily lives. There will be no privacy in
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the digital domain with the complete breakdown of all cryptography, which could lead to a loss of
internet security and the world being mostly a Utopia. By this, there would be no fundamental gap
between solving a problem and recognizing the solution.

SAT, the Boolean satisfiability problem is the first problem proven to be NP-complete as in [7].
As mentioned earlier, P ⊆ NP , but it is an open problem whether NP ⊆ P . Here, we use their
3-SAT problem to demonstrate NP-completeness. Intuitively, we show that any SAT instance can
be converted into an equivalent 3-SAT instance without changing whether it is satisfiable.
Theorem 4.1. [7] 3-SAT is NP-complete.

Proof. 3-SAT is a special case of SAT problem. In this, each clause contains at most 3 variables.
So, it is NP. Now, it is sufficient to show that there is a polynomial reduction from SAT to 3-SAT.

Consider the case with m clauses. Consider a literal as a variable or its negation. A clause is
the logical OR of one or more literals. Now, consider a clause with more than 3 variables with the
tree diagram demonstration corresponding to u1 ∨ ū2 ∨ ū3 ∨ u4 ∨ ū5. Then, the leaves for the new
3-SAT problem contains u1 ∨ ū2 ∨ y, ȳ ∨ ū3 ∨w, and w̄ ∨ u4 ∨ ū5.

u1 ∨ ū2 ∨ ū3 ∨ u4 ∨ ū5

u1 ∨ ū2 ∨ y ȳ ∨ ū3 ∨ u4 ∨ ū5

ȳ ∨ ū3 ∨w w̄ ∨ u4 ∨ ū5

Figure 4: A tree diagram of SAT decomposition
In each level of the tree, the clause corresponding to the rightest node has one fewer variable

than the previous one, simplifying the structure while preserving satisfiability. In a k−3 layers tree,
we can construct k−2 new clauses on 3 variables. For m clauses, with k1, k2,… , km variables, such
a problem can be constructed with∑i=m

i=1 (ki−2) clauses. This process takesO(2
∑i=m
i=1 (ki−2)) steps,

polynomial in the size of input.
Clauses at level i can be satisfied if and only if the clauses at level i + 1 can be satisfied. As in

Figure 4, let u1 ∨ ū2 ∨ ū3 ∨ u4 ∨ ū5 is True, then either u1 ∨ ū2 is True or ū3 ∨ u4 ∨ ū5 is True. Set
y = False in previous case and y = T rue, in the later one, then by such assignment, both u1 ∨ ū2 ∨y
and ȳ ∨ ū3 ∨ u4 ∨ ū5 are satisfied. Conversely, if both u1 ∨ ū2 ∨ y and ȳ ∨ ū3 ∨ u4 ∨ ū5 are satisfied,
then if y = T rue, we know that ū3 ∨ u4 ∨ ū5 is true; and if y = False, we know that u1 ∨ ū2 is True.
Hence, the original clause is True.

Such satisfiability property can be satissfied for forward and backward cases. For forward,
begins from the root of the tree and applies the property to the leaves. For backward, start from the
leaves and move similarly to the root clause. Hence, 3-SAT problem is NP-complete.
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NP-hard problems: A problem 1 becomes NP-hard, if every problem in NP can be polyno-
mially reduced to 1, i.e., 2 ≤p 1 for all 2 ∈ NP. In addition, if 1 ∈ NP, then the problem 1
becomes NP-complete. Hence, the class NP-hard includes the problems not in NP.

5 Time complexity of some common algorithms

Having established the theoretical framework of complexity classes and NP-completeness, we
now turn to concrete algorithmic examples and summarize their complexities classes.

Table 3: Time complexity of some common algorithms

Name Algorithm for Complexity Further reading

Sorting
Sorting a sequene an for
each ai > 0 into
non-decreasing order

O(n2) [30]

Merge sort
Sorting a1, a2,… , an in an
array to
ai1 ≤ ai2 ≤⋯ ≤ ain

O(n ln n) [37], [30]

Quick sort
Sorting a1, a2,… , an in an
array to
ai1 ≤ ai2 ≤⋯ ≤ ain

O(n ln n) [31]

Heap sort
Sorting a1, a2,… , an in an
array to
ai1 ≤ ai2 ≤⋯ ≤ ain

O(n ln n) [30]

Counting sort
Sorting a1, a2,… , an in an
array to
ai1 ≤ ai2 ≤⋯ ≤ ain with
k the largest integer input

O(n + k) [10]

Topological sort
Sorting of nodes from
G = (V ,E) with m = |E|,
n = |V |

O(m) [30]

Kruskal
A minimum spanning tree
on the connected graph
with no non-negative edge
weight

O(m lnm) [8], [45]

Ford-Fulkerson A max-flow from
G = (V ,E)

O(nm2) [20], [34]

Edmond-Karp A max-flow in G = (V ,E)
with m = |E| and n = |V |

O(nm2) [38], [45]
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Table 4: Time complexity of some common algorithms (Continued...)

Dijkstra

The shortest path in no
negative weight
directed graph
G = (V ,E) with
m = |E|, n = |V |

O((m + n) ln n) [1], [11]

Breadth-First Search

The shortest path
detection in a
unweighted graph with
m = |E|, n = |V |,
source s

O(m + n) [10]

Depth-First Search

Graph traversal cycle
detection with
topological sort to get
strongly connected
components, m = |E|,
n = |V |

O(m + n) [10]

Bellman Ford

The min-weight of the
path from the source to
sink in a directed
graph, m = |E| and
n = |V | with no
negative weights

O(mn) [3], [14]

Johnson

All pairs shortest paths
in a weighted network
with m = |E| and
n = |V | with no
negative cycle

O(n2 ln n + mn) [24], [33]

Greedy for Selection

Selecting a maximum
subset of
non-overlapping
activities from a
sequence of n activities

O(n) [45]

Greedy for Huffman Tree
Selecting a binary tree
from a sequence of leaf
weights

O(n) [8], [45]

Hopcroft-Karp
A maximum bipartite
matching in a bipartite
graph, m = |E| and
n = |V |

O|mn| [8], [43]
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Table 5: Continued...

Labeled-tree
Canonical guilotine
partitions to get the
minimum cost of
labeled tree

O(n4) [15], [39]

Gabow"s scaling
A single source
shortest path in a
directed no negative
weights network

O(mn) [14], [22]

Floyd-Warshall

Source to sink
shortest path for all
pairs in a directed
graph with no
negative cycle

O|n|3 [19], [47]

Prim
A spanning tree from
a non-negative
weights graph

O(m ln n) [27], [44]

Diniz
A max-flow from a
network with
m = |E|, n = |V |

O|mn2| [12], [13]

Max-flow min-cost

A max-flow in
min-cost in a no
negative cost cycle
network with
m = |E|, n = |V |

O|nm2| [2], [20]

Maximum graph matching
The maximum
matching on the graph
with m = |E|,
n = |V |

O(mn) [1], [20]

Goldberg-Tarjan push relabel
A max-flow in a
network with
m = |E|, n = |V |

O|mn2| [26]

Goldberg-Rao

A max-flow in
min-cost from a
sparse network with
m = |E|, n = |V |, no
negative cost cycle

O(min(
√

n, 3
√

m).m ln(Um )) [25]

Orlin
The max-flow on the
graph, m = |E|,
n = |V |

O(mn) [1], [40]
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Table 6: Continued...

Kelner et al.

An approximate
max-flow on the graph
with m = |E|, n = |V |,
� as approximation
error

O( m�2 ) [36]

Out-of-Kilter
Min-cost-flow in the
network with m = |E|,
n = |V |, U=maximum
edge capacity

O(nmU ) [21], [36]

Cheapest augmenting path

Min-cost-flow along
the cheapest
augmenting path with
m = |E|, n = |V |,
U=maximum flow
capacity

O(mnU ) [1], [34]

Cycle cancellation

A max-flow in
min-cost from a
network with
m = |E|,n = |V |,
U=maximum capacity,
no negative cost cycle

O|mn2U | [4]

Successive shortest path

The max-flow in
min-cost on graph
m = |E|,n = |V |,
U=maximum capacity,
no negative cost cycle

O(mn ln n + mnU ) [18], [21]

About integer vector

Given an
n-dimensional integer
vector b and an m × n
integer matrix A,
whether there exist an
m-dimensional integer
vector x s.t. Ax ≥ b

NP [7], [17]

Desion version of TSP

Given n connected
cities with known
distances, and an
integer K > 0, is there
a Hamiltonian tour
with total distance at
most K?

NP-complete [7]
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Table 7: Continued...

SAT
In conjunctive normal
form, is there a variable
assignment making the
formula true?

NP-complete [7], [8]

3 SAT Problem
Let a 3 SAT, each
clause having three
literals. Is it satisfiable?

NP-complete [7] , [8]

HC
Given a completely
connected network
G = (V ,E), does G
contain a HC tour.

NP-complete [32], [35]

Vertex cover
Given G = (V ,E) &
K ∈ ℤ+, does there
exist a vertex cover of
size at most K?

NP-complete [6], [7]

Minimum vertex cover
For G = (V ,E),
compute a minimum
cardinality vertex cover

NP-complete [5], [29]

Graph coloring

Can we color the
vertices of G = (V ,E)
with three colors so that
no two adjacent vertices
are with same color?

NP-complete [23], [35]

Partition Problem
Can a given multiset of
ℕ+ be partitioned into
two subsets having
equal sums?

NP-Complete [23] , [35]

Job Scheduling Problem
Can we schedule n jobs
on m machines so that
all jobs complete within
a given time bound?

NP-complete [23] , [35]

Knapsack Problem
Choose a subset of
items with a total
weight ≤ W and a total
value ≥V

NP-complete [23] , [35]

Maximum clique
Given G = (V ,E), find
a clique with maximum
size.

NP-hard [42], [50]
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Table 8: Continued...

Set cover
The minimum size
subsets of sets that
covers a given finite set

NP-hard [51]

TSP
Decision version is
NP-complete. Whats
about the metric to
optimize.

NP-hard. [23]

Integer Programming
Determine whether there
exits an integer solution
to a system of linear
equation.

NP-hard [35]

Job Scheduling

Given jobs and machines
with processing orders,
determine the minimum
time-span to complete
all jobs.

NP-hard [35]

Many problems listed in our tables are NP-hard, so we do not expect polynomial-tme exact
algorithms for them. This motivates the study of approximation algorithms, which we discuss next.

6 Approximations

An approximation algorithm is a polynomial-time. For an optimization problem, it provides
a solution close to the optimal solution. Specifically, a c-approximation algorithm guarantees the
solution’s value as a factor of ’c’ of the optimal value. Let OPT denote the optimal solution value,
then for minimization problems, the solution is at most c.OPT, while for maximization problems, it
is at least OPT/c. We refer to [28], [46] and [49] for their extensive coverage.

Flow-Approximations: For flows over time problems, approximation algorithms can focus on
either the flow value or the time horizon. A c-flow-approximation algorithm ensures:

For maximization problems, the computed flow value is at least 1/c of the optimal flow value,
where c is a constant. For minimization problems, the solution satisfies only 1/c of the demands or
uses only 1/c of the supplies while being as effective as the optimal solution.

This distinction arises because finding feasible solutions can sometimes be -hard. For
example, in the minimum bounded-degree spanning tree problem, finding a feasible solution under
strict degree constraints is intractable, but approximation algorithms can allow slight violations of
these constraints.
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Time-Approximations: Flows over time introduce additional complexity due to the need to
specify flow rates at different time points for each arc. This leads to the concept of time-approximations,
which ensures:

For minimizing the time horizon, the computed time horizon is at most c times the optimal time
horizon. For maximizing flow value or minimizing costs, the solution is as effective as the optimal
solution but can use a time horizon extended by a factor of c.

Bicriteria Approximations: Some algorithms approximate both time and value simultane-
ously. These bicriteria approximation algorithms provide guarantees such as:

To minimize the time horizon, the solution’s time horizon is within a factor of c of the optimal
time horizon, while satisfying only 1/c’ of the demands or using only 1/c’ of the supplies.

PTAS for the Knapsack Problem: A polynomial-time approximation scheme (PTAS) pro-
vides a (1 − �)-approximation for any � > 0, the running time may depend exponentially on 1∕�.

Example:

1. Suppose � = 0.1, meaning we want a solution with at least 90% of the optimal value.

2. A PTAS might use a dynamic programming approach that scales with n (the number of items)
but grows exponentially with 1∕�. For instance, the running time could be (n1∕�).

3. If n=100 and �=0.1, the running time could be (10010), which is polynomial in n but im-
practical for small �.

Thus, the running time is polynomial in n but exponential in 1∕�. As � gets smaller, the running
time grows rapidly.

FPTAS for the Knapsack Problem: A fully polynomial-time approximation scheme (FPTAS)
also provides a (1 − �)-approximation, but the running time is polynomial in both n and 1∕�.

Example:

1. Using � = 0.1, an FPTAS would provide a solution with at least 90% of the optimal value.

2. The running time might be (n2∕�) or (n3∕�), which is polynomial in both n and 1∕�.

3. For n = 100 and � = 0.1, the running time could be (1002∕0.1) = (100, 000), which is
much more efficient than the PTAS.

Thus, the running time is polynomial in both n and 1∕�. Even for very small �, the algorithm remains
efficient.

86



I.M. Adhikari, S. P. Gupta, & R. C. Dhungana Computational Problem and Its Time Complexity

7 Conclusions

Computational problems and their complexity analysis play a crucial role in computer science,
mathematics, and real-world applications. Understanding computational complexity helps in de-
signing efficient algorithms, optimizing resources, and making informed decisions about problem-
solving approaches. Determining whether a problem can be solved within a reasonable timeframe is
vital for achieving sucessful outcomes. Complexity analysis distinguishes between tractable (solv-
able in polynomial time, P-class) and intractable ones (suspected to require exponential time, such as
NP-complete problems). Complexity theory helps define fundamental classes like P, NP, EXP, NP-
complete, and NP-hard, influencing fields auch as cryptography and artificial intelligence, shaping
algorithm design, and opening a wider horizon for further research.
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