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Abstract

This work aims to introduce and study new classes of generalized Cesàro summable

vector-valued sequence spaces of bounded type . Besides exploring the completeness of

the classes Ces(X, p) and Ces(X, p)∞ when topologized with suitable natural p-normed,

our primary interest is to study the β- dual of Ces(X, p).
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1 Introduction

Before proceeding with the main work, we recall some of the basic notations and definitions

that are used in this paper.

A sequence space is defined to be a linear space of scalar (real or complex) valued functions

on a countable set. The study of sequence spaces is a special case of the more general

study of function spaces. The classical sequence spaces or scalar-valued sequence spaces

(real or complex) have proven their worth as a big contribution in introducing the spaces of

Cesàro almost convergent sequences (Kuddusi, and Şengönül [5]). Thus the vector-valued

sequence spaces, are the natural generalizations of the scalar-valued sequence spaces where

the sequence spaces are those of vectors from some vector spaces.
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Several workers like Ghimire and Pahari [2] , Kadak [3], Kolk [4], Maddox [6], Nath &

Tripathy [7], Pahari [8],[9], Pokharel & Pahari [10], [11], Pokharel, Pahari & Paudel [12] ,

Ruckle [14], Tripathy [16], etc. have made their contributions and enriched the theory on

sequence spaces in many directions.

The research in summability techniques had grown very fast by many mathematicians and

played pioneer roles in the development of different summability methods for divergent se-

quences and series in various directions.

Let (xn) be a sequence, and let sk be its k
th

partial sum. Then ∑xn is called Cesàro

summmable to A if the sequence of arithmetic mean of its n
th

partial sum tends to A as

n tends to infinity. Here the limit A is called Cesàro sum of the series ∑xn and we write

∑xn = A(C, 1) .

In particular, the Grandi’s series G = 1−1+1− ... has partial sum (si) given by
1−(−1)i

2
, i =

1, 2, 3, ...

Using Cesàro summable method we can observe that,

cn =
1
n

n

∑
i=1

si =
1
n

n

∑
i=1

1 − (−1)i
2

=
1

2
−

1

2n

n

∑
i=1

(−1)i

and lim
n→∞

cn =
1
2
.

This shows that G is Cesàro summable i.e. (C, 1)− summable to 1
2

and we have G =
1
2
(C, 1).

2 Classical Sequence Spaces

Let x = (xk) and y = (yk) be two sequences with complex terms x
,
is and y

,
is. Let us write

x + y = (xk + yk) and αx = (αxk), where α ∈ C is a complex number.

Let ω be the collection of all sequences of complex numbers and x, y ∈ ω and α, β ∈ C
then αx + βy ∈ ω.

Definition 2.1:

If X denotes the normed space and x
,
ks are the elements of X, then we have the following

well-known sequence spaces.

c0(X) = {x = (xk) ∶ xk ∈ X,∥xk∥ → 0 as k →∞};
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c(X) = {x = (xk) ∶ xk ∈ X, and there exists l ∈ X such that ∥xk − l∥ → 0 as k →∞}; and

l∞(X) = {x = (xk) ∶ xk ∈ X, supk≥1∥xk∥ <∞}.

The spaces c0(X), c(X) and l∞(X) are used by Maddox [6] and others.

Cesàro sequence spaces of absolute type were defined and studied in the work of Roopaei

and Başar [13] and Saejung [15]. Ahmad and Mursaleen [1] defined Cesàro sequence spaces

of a bounded type and almost convergent type.

Definition 2.2:

A p− normed space (X,∥.∥) is a linear space X together with the mapping ∥.∥ ∶ X → R+
(called p-norm on X) with 0 < p < 1 such that for all x, y ∈ X and α ∈ C, we have

∥x∥ ≥ 0 and ∥x∥ = 0 if and only if x = θ;∥αx∥ = ∣α∣p∥x∥, and ∥x + y∥ ≤ ∥x∥ + ∥y∥.

A p-normed space is a pair (X,G), where X is a vector space and G is a p-norm on X.

3 The Class Ces (X, p) and Ces (X, p)∞

Let X be a Banach space over the field C of complex-numbers. Let p, p, p, ... be a constant

sequence of real numbers. For a fixed positive number n and 0 < p < 1, we define the

vector-valued Cesàro sequence spaces of bounded type as follows:

Ces(X, p) = {x = (xk)andxk ∈ X ∶ supk≥1,n≥0∥
1

k

k

∑
i=1

xn+i∥p <∞} (3.1)

Ces(X, p)∞ = {x = (xk)andxk ∈ X ∶ supk≥1(
1

k

k

∑
i=1

∥xi∥)p <∞} (3.2).

4 Main Results

In this section, we shall investigate the result that characterize the completeness of the

classes Ces(X, p) and Ces (X, p)∞ when topologized with the suitable natural p-norm.

Let x ∈ Ces(X, p). Define

∥x∥ = supk≥1,n≥0∥
1

k

k

∑
i=1

xn+i∥p (4.1)
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Theorem 4.1: Ces (X, p) is a complete p-normed space.

Proof:

It is easy to see that ∥x∥ defined in (4.1) is a well-defined p-norm in Ces (X, p).

To prove the completeness of Ces(X, p), let (xr) be a Cauchy sequence in Ces (X, p),

where x
r
= (xri )∞r=1, r = 1, 2, 3, ... Given 0 < ε < 1, there exists a positive integer N0

such that

∥xr − xs∥ < ε,∀r, s ≥ N0

⇒ supk≥1,n≥0∥
1

k

k

∑
i=1

x
r
n+i − x

s
n+i∥p < ε,∀r, s ≥ N0

⇒ ∥xrn+i − xsn+i∥ < ε
1
p < ε,∀n ≥ 0 & r, s ≥ N0 (4.2)

This shows that for a fixed i(1 ≤ i <∞), the sequence (xri )∞i=1 is a vector-valued Cauchy

sequence. Since the space X is complete, therefore (xri )∞i=1 converge in it.

Let xi
r
→ xi as r →∞. Define x = (xi)∞i=1 and taking limit s→∞ in (4.2), we get

∥xrn+i − xn+i∥ ≤ ε
1
p < ε,∀n ≥ 0 & r ≥ N0.

Therefore, we have

supk≥1,n≥0∥
1

k

k

∑
i=1

x
r
n+i − xn+i∥p ≤ ε,∀r ≥ N0 (4.3)

or,∥xr − x∥ ≤ ε,∀ r ≥ N0

Now,

∥x∥ = supk≥1,n≥0∥
1

k

k

∑
i=1

xn+i∥p

≤ supk≥1,n≥0∥
1

k

k

∑
i=1

xn+i−x
r
n+i∥p+supk≥1,n≥0∥

1

k

k

∑
i=1

x
r
n+i∥p

<∞ (using (4.3)

⇒ x ∈ Ces(X, p).
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Therefore, Ces (X, p) is a complete p-normed space. This completes the proof.

In the following, we have to determine the β-dual Ces
β (X, p) is S(p) ∩ S0, where;

Ces
β(X, p) = {a = (ak) ∈ ω ∶ ∑∞

k=1 akxk converges for every x = (xk) ∈ Ces(X, p)} (4.4)

S(p) = {a = (ak) ∈ ω ∶ ∑∞
k=1 k∆akN

1
p converges for all N > 1}

where ∆ak = ak−ak+1 (4.5)

S0 = {a = (ak) ∈ ω ∶ lim
k→∞

kak = 0} (4.6)

Theorem (4.2): Ces
β(X, p) = S(p) ∩ S0

Proof:

Let a ∈ S(p) ∩ S0 and x ∈ Ces (X, p). Choose a natural number N > 1, such that

N > max{1, supk≥1,n≥0∥
1

k

k

∑
i=1

xn+i∥p}

Applying Abel’s partial summation formula for a positive integer m, we have

∥
m

∑
k=1

akxk∥ = ∥
m−1

∑
k=1

k∆ak(
1

k

k

∑
i=1

xi) +mam( 1
m

m

∑
i=1

xi)∥

≤ supk≥1∥
1

k

k

∑
i=1

xi∥ ∣
m−1

∑
k=1

k∆ak∣ + ∣mam∣ ∥ 1
m

m

∑
i=1

xi∥

≤ supk≥1,n≥0∥
1

k

k

∑
i=1

xn+i∥ ∣
m−1

∑
k=1

k∆ak∣ + ∣mam∣ ∥ 1
m

m

∑
i=1

xn+i∥

Taking m → ∞ and second term of the above relation vanishes because a ∈ S0 and
1
m
∑m
i=1 xn+i is finite, therefore

∥∑∞
k=1 akxk∥ ≤ ∣∑∞

k=1 k∆ak∣N
1
p <∞.(using(4.5))

Thus, a ∈ Ces
β(X, p).

Conversely, suppose that a ∈Ces
β(X, p)/S(p) ∩ S0, then either a ∉ S(p) or a ∉ S0.

Let a ∉ S(p) and a ∈ S0 i.e. ∑∞
k=1 k∆akN

1
p =∞, for some N > 1.

Choose a sequence x = (xk) such that xk = N
1/p

for some N > 1, then x ∈ Ces(X, p).
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Again using Abel’s partial summation

∥
m

∑
k=1

akxk∥ = ∥
m

∑
k=1

(k∆ak)(
1

k

k

∑
i=1

xi)∥ + ∥mam( 1
m

m

∑
i=1

xi)∥

≤ supk≥1,n≥0∥
1

k

k

∑
i=1

xn+i∥ ∣
m

∑
k=1

k∆ak∣ + ∣mam∣ ∥ 1
m

m

∑
i=1

xn+i∥

Taking m→∞ and the second term in the above relation vanishes because a ∈ S0 and
1
m
∑m
i=1 xn+i remain finite, therefore ∑∞

k=1 akxk = ∑∞
k=1 k∆akN

1
p =∞,

which contradicts that a ∈ Ces
β(X, p).

Hence a ∈ Ces(X, p).

Next, we suppose a ∉ S0 but a ∈ S(p) then l = lim
k→0

kak ≠ 0.

Define x = (xk) by xk = (−1)kk.

Then x ∈ Ces(X, p), but ∑∞
k=1 akxk = l∑∞

k=1(−1)k,

i.e. ∑∞
k=1 akxk does not converge which contradicts that x ∈ Ces

β(X, p). Hence a ∈ S0.

This completes the proof.

Theorem 4.3: For x ∈ Ces(X, p)∞, the class

Ces(X, p)∞ = {x = (xk) and xk ∈ X ∶ supk≥1( 1k ∑
k
i=1 ∥xi∥)

p
<∞}

is a complete p-normed space with p-norm G defined by

G(x) = supk≥1
1

k
(
k

∑
i=1

∥xi∥)p (4.7)

Proof:
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It is easy to see that G defined in (4.7) is a well-defined p-norm in Ces(X, p) as it satisfies

G(x) ≥ 0 and G(x) = 0 if and only if x = θ, where θ is the zero element ;

G(αx) = ∣α∣pG(x) and G(x + y) ≤ G(x) +G(y).

Let (xn) be a Cauchy sequence in Ces (X, p)∞ , and let 0 < ε < 1 be given. Then there

exists an N0 ∈ Z+ such that

d(xn, xm) ≤ ε,∀n,m ≥ N0

⇒ G(xn − xm) ≤ ε,∀n,m ≥ N0

⇒ supk≥1(
1

k

k

∑
i=1

∥xni − xmi ∥)p < ε,∀n,m ≥ N0 (4.8)

or, ( 1
k
∑k
i=1 ∥x

n
i − x

m
i ∥)p < ε,∀n,m ≥ N0 & ∀k ∈ Z+

or,∥xni − xmi ∥ < ε,∀n,m ≥ N0 & ∀i ∈ Z+

This shows that (xni ) is a Cauchy sequence in X. But X is complete, so there exists

xi ∈ X for each i ∈ Z+ such that x
n
i → xi as n→∞.

Define x = (xi)∞i=1 and taking limit m→∞ in (4.8), we get

supk≥1(
1

k

k

∑
i=1

∥xni − xi∥)p < ε,∀n ≥ N0 (4.9)

⇒ G(xn − x) < ε,∀n ≥ N0

or, d(xn, x) < ε,∀n ≥ N0

or, x
n
→ x as n→∞.

We shall show that x actually lies in Ces (X, p)∞ . By triangle inequality, and in view

of (4.9), we have

d(x, θ) ≤ d(x, xn) + d(xn, θ)

or,G(x − θ) ≤ G(x − xn) +G(xn − θ).
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or, supk≥1(
1

k

k

∑
i=1

∥xi − θ∥)p ≤ supk≥1(
1

k

k

∑
i=1

∥xi − xni ∥)p + supk≥1(
1

k

k

∑
i=1

∥xni − θ∥)p

or, supk≥1(
1

k

k

∑
i=1

∥xi − θ∥)p ≤ ε + finite number <∞

Thus,

supk≥1(
1

k

k

∑
i=1

∥xi∥)p <∞.

This shows that x = (xi) ∈ Ces(X, p)∞ and hence Ces(X, p)∞ is a complete p− normed

space. This completes the proof.

5 Conclusion

In this work, we have introduced and studied a new class of generalized Cesàro summable

vector-valued sequence space of bounded type with suitable natural p−norm. These results

can be used in the fields of Functional Analysis, Fourier series, and Engineering to investigate

other properties of many sequences spaces.

References
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