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Abstract: In this article, we introduce and study a new class c0(M, (X, ||.||), ā, ᾱ) of normed space (X, ||.||)

valued difference sequences with the help of Orlicz function M . This is a generalization of the classical

sequence space c0 . Our primarily interest is to explore some linear structures and investigate the conditions

relating to the containment relation of the class c0(M, (X, ||.||), ā, ᾱ) in terms of different ā and ᾱ.
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1. Introduction

The sequence spaces and function spaces have very important position in different

branches of mathematics. They occupy prominent position mainly in analysis, for instance,

in structure theory of topological linear spaces, summability theory, operator theory, frame

theory, Schauder basis theory, approximate theory, etc. This introduces several new con-

cepts in functional analysis and thereby enriching the theory of mathematics.

A sequence space is defined as a linear space of sequences. If ω denotes the set of all func-

tions from the set of positive integers N to the field K, then it becomes a vector space.

Sequence space is defined as a linear subspace of ω. A sequence of the form (xk)∞k=1 is called

a single sequence and a sequence of the form (xmn)∞m,n=1 is called a double sequence or a

matrix.

Let c, c0, l∞, and lp be the linear spaces of convergent, null, bounded, and absolutely p-

summable sequences x = (xi) with complex terms respectively; and norm be given by

||x||∞ = sup|xi|, i ∈ N .

Definition 1.1. A non-decreasing, continuous, and convex function M : [0,∞) → [0,∞)

is said to be an Orlicz function if M satisfies the following conditions:

(1) M(0) = 0

(2) M(t) > 0 for t > 0

(3) M(t) → ∞ as t → ∞. (see [11])
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It is said to satisfy ∆2- condition, if M(2t) ≤ QM(t), for all t ≥ 0 and a constant Q > 0.

It is equivalent to the condition M(Kt) ≤ QKM(t), ∀t and K > 1.(see [11])

Definition 1.2. Lindenstrauss and Tzafriri [8] had used Orlicz function in order to con-

struct Orlicz sequence space lM given by

lM =

{
x̄ = (ξk) ∈ ω :

∞∑
k=1

M

(
|ξk|
s

)
< ∞ for some s > 0

}
of scalars (ξk). The space is named due to W ladys law Orlicz, first defined in 1932 and

the first detailed study on Orlicz spaces was given by Krasnosel’skii and Rutickii[11]. The

Orlicz sequence space lM becomes a Banach space when we define the norm as

||x̄||M = inf

{
s > 0 :

∞∑
k=1

M

(
|ξk|
s

)
≤ 1

}
Moreover, lM is closely related to the space lp with M(t) = tp; 1 ≤ p < ∞.

Definition 1.3. Kizmaz [6] defined the difference sequence spaces by

co(∆) = {x̄ = (ξk) : ∆ξ ∈ c0}
c(∆) = {x̄ = (ξk) : ∆ξ ∈ c}
l∞(∆) = {x̄ = (ξk) : ∆ξ ∈ l∞} where, ∆ξ = (∆ξk) = (ξk–ξk+1) and showed that these

spaces are Banach spaces with the norm given by ||x̄|| = |ξ1|+ ||∆ξ||∞. A sequence x̄ = (ξk)

is called ∆-convergent if the lim ∆ξk is finite and exists. Every convergent sequence is

∆-convergent but not conversely. If we consider the sequence ξk = 1 + k for all natural

numbers k, then (∆ξk) = (ξk–ξk+1) = −1 for each natural numbers k. Thus, x̄ = (ξk) is

divergent but it is ∆-convergent.

Definition 1.4. Let C be the field of complex numbers and X be a normed space over

C . Let ω(X) denote the linear space of all sequences x̄ = (ξk), ξk ∈ X, k ≥ 1 with usual

coordinate wise addition and scalar multiplication i.e., for all x̄, ȳ ∈ ω(X) and α ∈ C,

x̄ + ȳ = (ξk + ηk) and αx̄ = (αξk). We shall write ω(C) by ω. Further, λ̄ = (λk) ∈ ω and

x̄ ∈ ω(X) we have λ̄x̄ = (λkξk). Moreover, a scalar( vector) valued sequence space means a

linear subspace of ω(X).

The various topological and algebraic properties of sequence spaces with the help of

Orlicz function have been introduced,studied and investigated as a generalization of various

sequence spaces. For instances, we refer a few: Bhardwaj and Bala[19], Maddox [7], Ghosh

and Srivastava[3], Kamthan and Gupta[15], Karakaya[18], Khan[17], Kolk[4], Parashar and

Choudhary[16], Pahari[14], Rao and Subremanina[10], Savas and Patterson[5], Wilansky[1],

Tripathy and Mahanta [2],Srivastava and Pahari[9],Basarir and Altundag[13],and Et et

al.[12].

2. The Class c0(M, (X, ||.||), ā, ᾱ) of Vector Valued Difference Sequences

Let ᾱ = (αk) and γ̄ = (γk) be the sequences of complex numbers with non-zero terms

and ā = (ak) and b̄ = (bk) be sequences of positive real numbers. Let X be a normed space
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over C, and M be an Orlicz function. Now we introduce a new class

c0(M, (X, ||.||), ā, ᾱ)

=

{
x̄ = (ξk) : limk→∞M

(
||ak∆ξk||ak

s

)
= 0,where ξk ∈ X, k ≥ 1; for some s > 0

}
.

It is a class of Normed space X-valued sequences. Furthermore, if ak = 1 ∀k ∈ N ,

then c0(M, (X, ||.||), ā, ᾱ) is denoted by c0(M, (X, ||.||), ᾱ) and if αk = 1 ∀k ∈ N , then

c0(M, (X, ||.||), ā, ᾱ) is denoted by c0(M, (X, ||.||), ā). If ak = αk = 1 ∀k ∈ N , then the class

c0(M, (X, ||.||), ā, ᾱ) is denoted by c0(M, (X, ||.||)).

In this section, we characterize some topological linear structures of c0(M, (X, ||.||), ā, ᾱ)

and then investigate some of the inclusion relations between the classes c0(M, (X, ||.||), ā, ᾱ)

that arise in terms of ā and ᾱ. Throughout this paper, we shall denote sup ak = S, ∀k ∈ N .

When the sequences ak and bk both occur, then we use sup ak = S(a) and sup bk = S(b).

3. Some Topological Linear Structures on c0(M, (X, ||.||), ā, ᾱ)

In this section, we will study the linear structure of c0(M, (X, ||.||), ā, ᾱ) of vector

valued difference sequences defined by using Orlicz function M . It is a generalization of

sequence space c0. Also, we will investigate the conditions pertaining to the containment

relations of c0(M, (X, ||.||), ā, ᾱ) in terms of ā and ᾱ. In this article, the following inequality

will be used: |x + y|uk ≤ H {|x|uk + |y|uk}, Where; x, y ∈ C, 0 < ak ≤ supkak = S, and

H = max(1, 2S−1). Throughout the article we shall denote ck = bk
ak

and δk = |αk
γk
|ak .

Theorem 3.1. The class c0(M, (X, ||.||), ā, ᾱ) of difference sequences is a linear space over

C if and only if supkak = S < ∞.

Proof. Necessary part: Let c0(M, (X, ||.||), ā, ᾱ) be a linear space over C but supkak = ∞.

Then there exists a sequence of positive integers (k(n)) satisfying the condition

1 ≤ k(n) < k(n + 1);n ≥ 1, and ak(n) > n;n ≥ 1. Let z ∈ X with ||z|| = 1. We now define

a sequence x̄ = (ξk) as

∆ξk =

 αk(n)
−1n

− 2
ak(n) z if k = k(n); n ≥ 1

0 otherwise
(3.1)

Let s > 0 be given. Then from (3.1), using convexity of Orlicz function M , we can write

M

(
||αk∆ξk||ak

s

)
= M

 ||n
− 2

ak(n) z||ak(n)

s

 = M

(
1

n2s

)
≤ M

(
1

s

)
1

n2

and M
(
||αk∆ξk||ak

s

)
= 0, otherwise. This shows that limk→∞M

(
||αk∆ξk||ak

s

)
= 0 and

therefore x̄ ∈ c0(X, ||.||, ā, ᾱ). But on the other hand, for any s > 0 and taking v = 4, we

find that for k = k(n);n ≥ 1

M

(
||αkv∆ξk||ak

s

)
= M

 ||4n
− 2

ak(n) z||ak(n)

s

 = M

(
4n

n2s

)
≥ M

(
1

s

)
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This shows that limk→∞M
(
||αkv∆ξk||ak

s

)
̸= 0 and vx̄ does not belong c0(M, (X, ||.||), ā, ᾱ),

which contradicts our assumption.

For sufficiency part, assume that supkak = S < ∞. Let x̄ = (ξk), ȳ = (ηk) ∈
c0(X, ||.||, ā, ᾱ) and β, v ∈ C. Then there exists positive real numbers s1 and s2 such

that limk→∞M
(
||αk∆ξk||ak

s1

)
= 0 and limk→∞M

(
||αk∆ηk||ak

s2

)
= 0. We now choose s3 > 0

such that max(1, |β|s) ≤ s3
2Hs1

and max(1, |v|s) ≤ s3
2Hs2

. Now applying the convex and non

decreasing properties of Orlicz function, we have

limk→∞M
(
||αk(β∆ξk+v∆ηk)||ak

s3

)
≤ limk→∞M

(
H||βαk∆ξk||ak+H||vαk∆ηk)||ak

s3

)
= limk→∞M

(
H|β|ak ||αk∆ξk||ak

s3
+ H|v|ak ||αk∆ηk)||ak

s3

)
≤ limk→∞M

(
Hmax(1,|β|s)||αk∆ξk||ak

s3
+ Hmax(1,|v|s)||αk∆ηk)||ak

s3

)
≤ limk→∞M

(
1

2s1
||αk∆ξk||ak + 1

2s2
||αk∆ηk)||ak

)
≤ 1

2 limk→∞M
(
||αk∆ξk||ak

s1

)
+ 1

2 limk→∞M
(
||αk∆ηk||ak

s2

)
= 0.

This implies that c0(M, (X, ||.||), ā, ᾱ) forms a linear space over C. □

Lemma 3.2. For any sequence ā = (ak), c0(M, (X, ||.||), ā, ᾱ) ⊂ c0(M, (X, ||.||), ā, γ̄)

if lim inf k δk > 0.

Proof. Assume that lim infk δk > 0 i.e. lim infk|αk
γk
|ak > 0. Then there exists q > 0 such

that

q|γk|ak < |αk|ak ∀k sufficiently large. Let x̄ = (ξk) ∈ c0(M, (X, ||.||), ā, ᾱ), then for some

s > 0, we have

limk→∞M
(
||αk∆ξk||ak

s

)
= 0. Now we choose s1 > 0 such that s ≤ qs1. Using the non

decreasing property of Orlicz function, we have M
(
||γk∆ξk||ak

s1

)
≤ M

(
||αk∆ξk||ak

s

)
. This

implies that x̄ ∈ c0(M, (X, ||.||), ā, γ̄) and hence c0(M, (X, ||.||), ā, ᾱ) ⊂ c0(M, (X, ||.||), ā, γ̄).

□

Lemma 3.3. Let ā = (ak). If c0(M, (X, ||.||), ā, ᾱ) ⊂ c0(M, (X, ||.||), ā, γ̄) then

lim infk δk > 0.

Proof. Assume that c0(M, (X, ||.||), ā, ᾱ) ⊂ c0(M, (X, ||.||), ā, γ̄) holds but lim inf k|αk
γk
|ak =

0. Then there exists a sequence of positive integers (k(n)) satisfying the condition

1 ≤ k(n) < k(n + 1), n ≥ 1 and

n2|αk(n)|ak(n) < |γk(n)|ak(n) , ∀n > 1(3.2)

. Let z ∈ X, with ||z|| = 1. We now define a sequence x̄ = (ξk) as

∆ξk =

 αk(n)
−1n

− 2
ak(n) z if k = k(n); n ≥ 1

0 otherwise
(3.3)
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Let s > 0 be given. Then for k = k(n), n ≥ 1, using convexity of Orlicz function, we have

M

(
||αk∆ξk||ak

s

)
= M

 ||n
− 2

ak(n) z||ak(n)

s

 = M

(
1

n2s

)
≤ M

(
1

s

)
1

n2

and M
(
||αk∆ξk||ak

s

)
= 0, otherwise. This shows that limk→∞M

(
||αk∆ξk||ak

s

)
= 0 and

therefore x̄ ∈ c0(X, ||.||, ā, ᾱ).

But on the other hand, for any s > 0 and k = k(n), n ≥ 1 and from (3.2) and (3.3), we

obtain

M
(
||γk∆ξk||ak

s

)
= M

 ||
γk(n)
αk(n)

n
− 2

ak(n) z||ak(n)

s

 = M
(
| γk(n)

αk(n)
|ak(n) 1

n2s

)
≥ M

(
1
s

)
. This shows

that limk→∞M
(
||γk∆ξk||ak

s

)
̸= 0 and hence x̄ /∈ c0(M, (X, ||.||), ā, γ̄), a contradiction. This

completes the proof. □

Next, combining Lemma (3.2) and Lemma(3.3), we obtain the theorem given below.

Theorem 3.4. For any ā = (ak), c0(M, (X, ||.||), ā, ᾱ) ⊂ c0(M, (X, ||.||), ā, γ̄) if and only if

lim infk δk > 0.

Theorem 3.5. For any ā = (ak), c0(M, (X, ||.||), ā, γ̄) ⊂ c0(M, (X, ||.||), ā, ᾱ) if and only if

lim supk δk > 0.

Proof. Let lim sup k|αk
γk
|ak < ∞. Then there exists Q > 0 such that

Q|γk|ak > |αk|ak ∀k sufficiently large. Then analogous to the proof of Lemma (3.2),the

sufficient part follows.

For the necessity part of the theorem, suppose c0(M, (X, ||.||), ā, γ̄) ⊂ c0(M, (X, ||.||), ā, ᾱ)

holds. Suppose lim supk δk = ∞. Then there exists a sequence of positive integers k(n)

satisfying 1 ≤ k(n) < k(n + 1);n ≥ 1, for which

|αk(n)|ak(n) > n2|γk(n)|ak(n) , ∀n > 1(3.4)

Now as proved in Lemma (3.3), corresponding to z ∈ X with ||z|| = 1 we can construct a

sequence x̄ = (ξk) by

∆ξk =

 γk(n)
−1n

− 2
ak(n) z if k = k(n); n ≥ 1

0 otherwise
(3.5)

Now in view of (3.4) and (3.5), we can show that x̄ ∈ c0(M, (X, ||.||), ā, γ̄) but x̄ /∈
c0(M, (X, ||.||), ā, ᾱ) which contradicts our assumption. This completes the proof. □

On combining Theorem (3.4) and Theorem (3.5), one can obtain the following theorem.

Theorem 3.6. For any ā = (ak), c0(M, (X, ||.||), ā, ᾱ) = c0(M, (X, ||.||), ā, γ̄) if and only if

0 < lim infk δk ≤ lim supk δk < ∞.

Corollary 3.7. Let ā = (ak). Then we have

(1) c0(M, (X, ||.||), ā, ᾱ) ⊂ c0(M, (X, ||.||), ā) if and only if lim inf k|αk|ak > 0.
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(2) c0(M, (X, ||.||), ā) ⊂ c0(M, (X, ||.||), ā, ᾱ) if and only if lim supk|αk|ak < ∞.

(3) c0(M, (X, ||.||), ā, ᾱ) = c0(M, (X, ||.||), ā) if and only if

0 < lim infk |αk|ak ≤ lim supk |αk|ak < ∞.

Proof. The statements (1), (2), (3) follow by taking γk = 1,∀k ∈ N in Theorem (3.4), (3.5), (3.6).

□

Lemma 3.8. For any ᾱ = (αk),if c0(M, (X, ||.||), ā, ᾱ) ⊂ c0(M, (X, ||.||), b̄, ᾱ) then

lim infkck > 0.

Proof. Suppose that c0(M, (X, ||.||), ā, ᾱ) ⊂ c0(M, (X, ||.||), b̄, ᾱ) holds but lim infkck = 0 i.e

lim infk
bk
ak

= 0. Then there exists a sequence of positive integers (k(n)) satisfying

1 ≤ k(n) < k(n + 1), for which

nbk(n) < ak(n),∀n ≥ 1(3.6)

Now, let z ∈ X with ||z|| = 1. We can construct a sequence x̄ = (ξk) by

∆ξk =

 α−1
k(n)n

− 1
ak(n) z if k = k(n); n ≥ 1

0 otherwise
(3.7)

Let s > 0.Then for k = k(n), n ≥ 1 and using properties of Orlicz function, we have

M

(
||αk∆ξk||ak

s

)
= M

 ||n
− 1

ak(n) z||ak(n)

s

 = M

(
||z||ak(n)

ns

)
≤ 1

n
M

(
1

s

)

and M
(
||αk∆ξk||ak

s

)
= 0 for k ̸= k(n), n ≥ 1.

Thus limk→∞M
(
||αk∆ξk||ak

s

)
= 0 and hence x̄ ∈ c0(M, (X, ||.||), ā, ᾱ). But, for each

k = k(n), n ≥ 1 and from (3.6) and (3.7), we have

M

(
||αk∆ξk||bk

s

)
= M

 ||n
− 1

ak(n) z||bk(n)

s

 ≥ M

(
1

sn
1
n

)
≥ M

(
1

s
√
e

)
.

This shows that limk→∞M
(
||αk∆ξk||bk

s

)
̸= 0 and so x̄ does not belong to c0(M, (X, ||.||), b̄, ᾱ),

a contradiction. □

Lemma 3.9. For any ᾱ = (αk), c0(M, (X, ||.||), ā, ᾱ) ⊂ c0(M, (X, ||.||), b̄, ᾱ)

if lim infkck > 0

Proof. Assume that lim infkck > 0 i.e. lim infk
bk
ak

> 0. Then there exists q > 0 such that
bk
ak

> q,∀k sufficiently large. Let x̄ = (ξk) ∈ c0(M, (X, ||.||), ā, ᾱ).Then for some s > 0,

limk→∞M
(
||αk∆ξk||ak

s

)
= 0. Hence for a given ϵ > 0, if we choose a positive number η such

that η < 1 satisfying nqM
(
1
s

)
< ϵ, then we have M

(
||αk∆ξk||ak

s

)
< M

(η
s

)
,∀k sufficiently

large. Since M is non decreasing, therefore ∀k sufficiently large, we have ||αkξk||ak < η < 1

and hence ||αkξk|| < 1. Since Orlicz function is convex, we can write,

M

(
||αk∆ξk||bk

s

)
≤ M

(
[||αk∆ξk||ak ]q

s

)
≤ M

(
ηq

s

)
≤ ηqM

(
1

s

)
< ϵ,∀k,
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sufficiently large. This implies limk→∞M
(
||αk∆ξk||bk

s

)
= 0 and so x̄ ∈ c0(M, (X, ||.||), b̄, ᾱ)

and hence c0(M, (X, ||.||), ā, ᾱ) ⊂ c0(M, (X, ||.||), b̄, ᾱ). □

Next combining lemma (3.8) and lemma (3.9), one can obtain the following theorem.

Theorem 3.10. For any ᾱ = (αk), c0(M, (X, ||.||), ā, ᾱ) ⊂ c0(M, (X, ||.||), b̄, ᾱ) if and only

if lim infkck > 0

Lemma 3.11. For any sequence ᾱ = (αk), if c0(M, (X, ||.||), b̄, ᾱ) ⊂ c0(M, (X, ||.||), ā, ᾱ)

then lim supkck < ∞.

Proof. Let the inclusion holds but lim supkck = ∞. That is, lim supk
bk
ak

= ∞. Then there

exists a sequence of positive integers (k(n)) satisfying 1 ≤ k(n) < k(n+ 1), n ≥ 1, for which

bk(n) > nak(n);∀n ≥ 1.(3.8)

Let z ∈ X with ||z|| = 1. Now, We can define a sequence x̄ = (ξk) by

∆ξk =

 α−1
k(n)n

− 1
bk(n) z if k = k(n); n ≥ 1

0 otherwise
(3.9)

Suppose s > 0.Then using properties of Orlicz function, for each k = k(n), n ≥ 1; we obtain

M

(
||αk∆ξk||bk

s

)
= M

 ||n
− 1

bk(n) z||bk(n)

s

 = M

(
||z||bk(n)

ns

)
≤ 1

n
M

(
1

s

)

and M
(
||αk∆ξk||bk

s

)
= 0 for each k ̸= k(n), n ≥ 1.

This shows that limk→∞M
(
||αk∆ξk||bk

s

)
= 0 and so x̄ ∈ c0(M, (X, ||.||), b̄, ᾱ). But, for

each k = k(n), n ≥ 1 and from (3.8) and (3.9), we obtain

M

(
||αk∆ξk||ak

s

)
= M

 ||n
− 1

bk(n) z||ak(n)

s

 ≥ M

(
1

sn
1
n

)
≥ M

(
1

s
√
e

)

. This implies that limk→∞M
(
||αk∆ξk||ak

s

)
̸= 0 and so x̄ does not belong to c0(M, (X, ||.||), ā, ᾱ),

which is a contradiction. □

Lemma 3.12. For any sequence ᾱ = (αk), c0(M, (X, ||.||), b̄, ᾱ) ⊂ c0(M, (X, ||.||), ā, ᾱ) if

lim supkck < ∞.

Proof. Assume that lim supkcki.e. lim supk
bk
ak

< ∞. Then ∃Q > 0 such that bk
ak

< Q, ∀k
sufficiently large. Then analogous to Lemma (3.8), we can easily show that

c0(M, (X, ||.||), b̄, ᾱ) ⊂ c0(M, (X, ||.||), ā, ᾱ). □

Next, combining the Lemma (3.11) and Lemma (3.12), one can obtain the following

theorem.

Theorem 3.13. For any sequence ᾱ = (αk), c0(M, (X, ||.||), b̄, ᾱ) ⊂ c0(M, (X, ||.||), ā, ᾱ) if

and only if lim supkck < ∞.



ON CERTAIN LINEAR STRUCTURES OF ORLICZ SPACE ... 43

On combining the Theorem (3.10) and Theorem (3.13), one can obtain the following

theorem.

Theorem 3.14. For any sequence ᾱ = (αk), c0(M, (X, ||.||), ā, ᾱ) = c0(M, (X, ||.||), b̄, ᾱ) if

and only if 0 < lim infkck ≤ lim supkck < ∞.

Corollary 3.15. For the sequence ᾱ = (αk), following statements holds:

(1) c0(M, (X, ||.||), ᾱ) = c0(M, (X, ||.||), ā, ᾱ) if and only if lim infkak > 0.

(2) c0(M, (X, ||.||), ā, ᾱ) ⊂ c0(M, (X, ||.||), ᾱ) if and only if lim supkak < ∞.

(3) c0(M, (X, ||.||), ā, ᾱ) = c0(M, (X, ||.||), ᾱ) if and only if

0 < lim infkak ≤ lim supkak < ∞.

Proof. The statements (1), (2), (3) follow by taking ak = 1; ∀k and replacing b̄ by ā

in the theorems (3.12), (3.13), (3.14) respectively. □
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