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Abstract: The Maximum static flow problem, in a single-source-single-sink network, deals with finding the

maximum amount of flow from a source to a sink. Given a set of possible sinks, identification of the sink

that maximizes the amount of the maximum flow is an important optimization problem. In this work, we

consider the problem of identification of a sink when the possible sinks have given capacities. We devise a

simple network transformation so that algorithms in the uncapacitated case can be used in the capacitated

one proving that the problem can be solved with strongly polynomial time complexity. Further, we propose

an algorithm whose average-case complexity is better than that of an iterative procedure that iterates over

all the possible sinks.
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1. Introduction

Network flow modeling, has been widely used to solve problems in various fields of

inquiry, e.g. engineering, management, applied mathematics, and computer science [1].

Evacuation planning is one of the active research areas in which network flow modeling has

been widely used. The survey of such models can be found in [2, 3]. One of current research

interests is identification of facility locations using network flow approach [4, 6]. Hamacher

et al. [2] consider the problem of identification of facility locations on arcs so that the

reduction in the flow is minimum because of the placement the facilities. Dhungana and

Dhamala [5] extend their problem to the case where the direction of arcs can be reversed.

Nath et al. [6] consider a similar problem in which the increase in the egress time of a given

amount of flow, because placement of facilities, is minimum. Likewise, Pyakurel et al.[7, 8]

consider saving of capacities of road-segments in emergency evacuations, so that they can

be used for some facilities. Nath et al. [9, 10] consider problems of saving a path for facility

movements in the opposite direction of the evacuee flow.

One of the interesting problems in network flow approach is the shelter (sink) location

problem in which appropriate sinks are chosen from among a given set of possible shelters

[11, 12]. In their work, Heßler and Hamacher [11] present a model that choose shelters
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so as to minimize the opening cost of the shelter. Nath and Dhamala [12] present sink

location models based on static and dynamic network flows to choose a single sink with the

objectives of maximizing the flow or minimizing the time of evacuation.

In this work, we consider the problem of identification of a sink from among a set of

sinks of given capacities so that the value of the maximum flow is the greatest and modify

the algorithm given in [12]. The outline of the paper is as follows: Section 2 gives the

basic ideas about the maximum static flow problem and MaxStatic sink location problem,

Section 3 extends the ideas to the capacitated sinks case and presents algorithms to solve

it, and Section 4 concludes the paper.

2. Preliminaries

2.1. Maximum static flow problem. In network flow modeling, a network is a directed

graph in which something called flow moves from some nodes called sources to some other

nodes called sinks via arcs or edges with non-negative capacities.

A network N = (V,A) consists of a set V of nodes, and a set A ⊆ V × V of directed

arcs. We assume that |V | = m and |A| = n. For each i ∈ V , we define

Va(i) = {j ∈ V : (i, j) ∈ A}

which denotes the set of nodes that succeed i (the nodes after i). and

Vb(i) = {j ∈ V : (j, i) ∈ A}

which denotes the set of nodes that precede i (the nodes before i). Associated with each

arc (i, j) is a capacity uij ≥ 0 denoting the maximum amount of flow that can flow on (i, j).

Given two special nodes: a source node s and a sink node t, a vector x = {xij} satisfying

the mass balance constraints

(2.1)
∑

j∈Va(i)

xij −
∑

j∈Vb(i)

xji = 0 ∀i ∈ V − {s, t}

and the capacity constraints

(2.2) 0 ≤ xij ≤ uij ∀(i, j) ∈ A

is known as a static s-t flow. The value of x is defined by

(2.3) v(x) =
∑

j∈Va(s)

xsj −
∑

j∈Vb(s)

xjs = −
∑

j∈Va(t)

xtj +
∑

j∈Vb(t)

xjt

The flow x, that maximizes v(x) is known as a maximum static flow.

So, the maximum static flow problem can be stated as [1]

max v(2.4)

subject to

∑
j∈Va(i)

xij −
∑

j∈Vb(i)

xji =


v, i = s

0, i ∈ V \ {s, t}

−v, i = t

(2.5)
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The maximum static flow problem is a well-studied problem. Following the labeling

algorithm with complexity O(mnU), where U = max{uij : (i, j) ∈ A}, by Ford and Fulk-

erson [13], there are several improvements of the algorithm. For example, the capacity

scaling algorithm augments flows along paths with sufficiently large residual capacity and

runs in O(mn logU) time, the shortest augmenting path algorithm, which augments the

flows along shortest augmenting paths, runs in O(mn2) time [14]. There are preflow-push

algorithms which relax the flow conservation constraints at the intermediate steps, seek out

the shortest paths, but send flows on individual arcs from active nodes (nodes with positive

excess flow) rather than on an s–t paths. The first preflow-push algorithm with running

time O(n3) is due to Karzanov [15]. A generic pre-flow push algorithm runs in O(mn2)

time [17]. Among the several specific implementations of the algorithm, FIFO (first in first

out) preflow-push algorithm [16] runs in O(n3) time, highest-label perflow push algorithm

[17] runs in O(n2√m) time, and the excess scaling algorithm [18], runs in O(mn+n2 logU)

time. Among the various improvements in the algorithms to solve maximum static flow

problem, the algorithm by Orlin [19], solves the maximum flow problem in O(mn) time if

m < n1.06.

2.2. MaxStatic Sink Location Problem. If there are more than one possible sinks, and

one sink is taken at a time, the value of the maximum flow will depend on the choice of the

sink. If we have to choose only one sink, a natural idea is to choose the one that maximizes

the maximum flow.

Definition 2.1 (MaxStatic sink [12]). Consider a set of possible sinks T ⊂ V such that

s /∈ T . Let vt be the value of a maximum static s-t flow. The MaxStatic sink is defined as

arg maxt∈T {vt}.

A simple iterative procedure given in Algorithm 1 can be used to identify the MaxStatic

sink. This makes easy to realize that the MaxStatic sink problem can be solved in a strongly

polynomial time.

Algorithm 1 Identifying the MaxStatic sink [12]

Input: Network N = (V,A) with a set of possible sinks T ⊂ V .

Output: MaxStatic sink

1: max f = −1

2: for t ∈ T do

3: Calculate the maximum flow value vt

4: if vt > max f then

5: MaxStatic sink = t

6: max f = vt

7: end if

8: end for

9: return MaxStatic sink
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Figure 1. Example Network

3. MaxStatic Sink Location Problem with Capacitated Sinks

In the problem considered in Section 2.2, the possible sinks are considered to have

infinite capacity (i.e. each sink has the capacity to hold any amount of flow that can reach

the sink).

Example 3.1. Consider an example network given in Figure 1. Each arc label represents

the capacity of the arc. The node s is the source and T = {t1, t2} is the set of possible sinks.

Suppose that we have to choose one sink out of them. If t1 is considered as the sink, the

value of the maximum flow is 45 (20 via s–a–t1, and 25 via s–b–t1). If t2 is considered as

a sink, the value of the maximum flow is 50 (15 via s–a–t2, and 5 via s–a–b–t2, and 30 via

s-b-t2). If the maximum flow value is considered, t2 is has to be chosen as the MaxStatic

sink.

For each t ∈ T , let ct > 0 be assigned its capacity. If the sinks also have the limited

capacity, the sink location decision may change. The fact is illustrated in the following

example.

Example 3.2. In the network given in Figure 1, let ct1 = 50, ct2 = 40 as shown in Figure 2a.

If t1 is considered as the sink, the value of the maximum flow that can reach it is 45, and if

t2 is considered as the sink, the corresponding value is limited to 40 because of the capacity

of t2. So, the MaxStatic sink is t1.

To find the maximum static flow in the network with a capacitated sink, we can extend

the network by adding a node t′ and an arc tt′ corresponding to the sink t such that utt′ = ct

and find the maximum static s-t′ flow. See Figure 2b.

Observation 3.3. Given a network N = (V,A) with a source s and a capacitated sink t

with capacity ct, the maximum s-t flow in network N is equivalent to the maximum s–t′

flow in the network N ′ = (V ′, A′) such that V ′ = V ∪ {t′} and A′ = A ∪ {(t, t′)} with the

capacity utt′ = ct.

To find the MaxStatic sink with possible capacitated sinks, we can use Algorithm 1 in

the extended network formed as explained in Observation 3.3. The procedure is given in

Algorithm 2.
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(a) Network with possible sinks t1 and

t2 with capacities 50 and 40
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(b) Extended network corresponding to (a)

Figure 2. Network with capacitated sinks

Algorithm 2 MaxStatic sink with capacitated sinks

Input: Network N = (V,A) with a set of possible sinks T = {t1, · · · tk} ⊂ V with capcity

ct for each t ∈ T

Output: MaxStatic sink

1: Form the extended network N ′ = (V ′, A′) with V ′ = V ∪ {t′1, · · · , t′k},
A′ = A ∪ {(t1, t′1) · · · , (tk, t′k)} such that utit′i = cti , 1 ≤ i ≤ k and take

T ′ = {t′1, · · · , t′k} as the set of possible sinks.

2: Use Algorithm 1 in N ′ to find the optimal sink = t′i∗ .

3: MaxStatic sink = ti∗ .

4: return MaxStatic sink

As the extended network adds |T | < n nodes and |T | arcs to the original network and

the MaxStatic sink problem with uncapacitated sinks can be solved in a strongly polynomial

time [12], we have the following theorem.

Theorem 3.4. MaxStatic sink problem with capacitated sinks can be solved in a strongly

polynomial time.

Algorithm 1 has to iterate over all the nodes in the set of possible sinks T . But if we

know the value of the minimum cut corresponding to each sink, the MaxStatic sink is the one

with the highest value of the minimum cut. However, the complexity of finding the minimum

cut is not less than that of finding the maximum flow, finding minimum cut does not improve

the complexity of the algorithm. But the observation that the value of a maximum flow

cannot exceed the value of any cut can help improve the average case complexity of the

algorithm. For example, for each t ∈ T, vt ≤
∑

i∈Vb(t)
uit and vt ≤

∑
j∈Va(s)

usj .

Let T = {t1, t2, · · · , tk}. If Ut is the value of an s–t cut, then the value of the maximum

static flow vt ≤ Ut for each t ∈ T . Let t1, t2, · · · , tk be ordered in such a way that Ut1 ≥
Ut2 ≥ · · · ≥ Utk . If vti ≥ Uti+1 for some i, 1 ≤ i < k, then vti ≥ Utj ≥ vtj for all j ≥ i

showing that MaxStatic sink is in the set {t1, · · · , ti}. So, we have the following result.
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Theorem 3.5. Let T = {t1, t2, · · · , tk} be the set of possible sinks ordered in the decreasing

values of cuts Ut1 ≥ Ut2 ≥ · · · ≥ Utk . If vti ≥ Uti+1 for some i, 1 ≤ i < k, then the MaxStatic

sink is arg max{vt1 , · · · , vti}.

Based on Theorem 3.5, we construct Algorithm 3 which does not necessarily have to

iterate over all the nodes in T . It sorts the possible sinks in the order of decreasing values

of, easy-to-obtain, cuts and stops if maximum flow in any sink is not less than the value

of a cut of the next possible sink. As the sorting can be done in O(|T | log |T |) time, the

average case complexity of the algorithm will be better than that of Algorithm 1.

Algorithm 3 MaxStatic sink (improved)

Input: Network N = (V,A) with a set of possible sinks T

Output: MaxStatic sink

1: For each t ∈ T , Ut = min{
∑

i∈Vb(t)
uit,

∑
j∈Va(s)

usj}.
2: Get the sorted set T = {t1, t2, · · · , tk} so that Ut1 ≥ Ut2 ≥ · · · ≥ Utk

3: Utk+1
= 0

4: max f = −1

5: for 1 ≤ i ≤ k do

6: Calculate the maximum static flow vti
7: if vti > max f then

8: MaxStatic sink = ti

9: max f = vti
10: end if

11: if vti ≥ Uti+1 then

12: Go to Line 15

13: end if

14: end for

15: return Maxstatic sink

Using Algorithm 3 in the extended network as in Algorithm 2, taking

Ut′ = min{
∑

i∈Vb(t)

uit,
∑

j∈Va(s)

usj , ct},

we can construct an algorithm that works in case of capacitated sinks. The major steps of

such an algorithm are illustrated and compared with Algorithm 2 in the following example.

Example 3.6. Major steps in the application Algorithm 2 to identify the optimal sink in

the network given in Figure 2 are as follows.

max f = −1

First Iteration:

vt′1 = 45 > −1 = max f

MaxStatic sink = t′1

max f = 45
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Second Iteration:

vt′2 = 40 < 45 = max f

At the termination of the algorithm, MaxStatic sink = t1

Using Algorithm 3 we get Ut′1
= max{50, 65, 50} = 50, Ut′2

= max{50, 50, 40} = 40. So, the

sorted sinks are {t′1, t′2}.

max f = −1

First Iteration:

vt′1 = 45 > −1 = max f

MaxStatic sink = t′1

max f = 45

vt′1 = 45 ≥ 40 = Ut′2

So, the algorithm terminates without going for the second iteration and returns MaxStatic

sink = t′1, i.e. t1.

4. Conclusion

In a network with arc capacities and a set of possible sinks with sink capacities, we

considered a problem of identification of a sink (MaxStatic sink) so that the value of the

maximum static flow is maximum. We presented a network transformation strategy so that

the idea of finding MaxStatic sink in the uncapacitated case can be used to the capacitated

one, showing that the problem can be solved in strongly polynomial time. We modify the

simple iterative procedure of identification of MaxStatic sink by sorting the possible sinks in

the decreasing order of cut-values so that we do not have to iterate over all the possible sinks

in average case. One of the application area of the problem can be emergency evacuation

where people in the disastrous areas have to be transferred to the safe places (sinks) but

the sinks have limited capacities.
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