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Abstract: In this paper, a result on absolute Riesz summability |N, pα,βn |q for an infinite series by Bor has

been extended using more variables. Further, we develope some well known results from our main result.
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1. Introduction

Let partial sum’s sequence of
∑
an be given by {sn} and nth sequence to sequence

transform of {sn} is given by un, where

(1.1) un =

∞∑
k=0

unksk.

Definition 1: An infinite series
∑
an is absolute summable, if

lim
n→∞

un = s,

and

(1.2)
∞∑
n=1

|un − un−1|<∞.

Definition 2: Let {pn} be a sequence with p0 > 0 and pn ≥ 0 for n > 0

(1.3) Pn =
n∑
v=0

pv →∞.

For α > −1, 0 < β ≤ 1, α+ β > 0, define:

(1.4) ∈α+β0 = 1, ∈α+βn =
(α+ β + 1)(α+ β + 2)....(α+ β + n)

n!
, (n = 1, 2, 3, ...)

(1.5) pα,βn =
n∑
v=0

∈α+β−1n−v pv,
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(1.6) Pα,βn =

n∑
v=0

pα,βn →∞, n→∞

and

Pα,β−n = pα, β−n = 0, n ≥ 1.

Then, the sequence-to-sequence transformation tn defines the (N, pα,βn ) mean of series
∑
an

and is given by:

(1.7) tn =
1

Pα,βn

n∑
k=0

pα,βk sk, P
α,β
n 6= 0, n ∈ N

and limn→∞ tn = s, and the series is called (N, pα,βn ), formed by sequence of coefficients

{pα,βn }.

Further, if sequences {tn} is of bounded variation with index k ≥ 1 i.e.

(1.8)
∞∑
n=1

(
Pα,βn

pα,βn

)k−1
|∆tn−1|k <∞,

then
∑
an is said to be absolutely (R, pα,βn )k summable with index k or |N, pα,βn |k summable

to s, where

(1.9) ∆tn = − pα,βn

Pα,βn Pα,βn−1

n∑
v=1

Pα,βv−1av, n ≥ 1.

Bor [1]-[3] generalized the result associated with Riesz summability factors. Bor and

Özarslan [4], [5] established theorems using |N, pn; δ| summability factors. Özarslan [9], [10]

used the definition of almost increasing sequence for absolute summability. Yildiz [17], [18]

determined theorems on generalized absolute matrix summability factors. Mishra et al. [7],

[8] provide interesting result on matrix summability and absolute summability. Sonker et

al. [11] worked on absolute summability factors for n-tupled trianle matrices. Also, Sonker

and Munjal [12]-[16] gave various useful results on summabilities. In this paper, we are

going to prove the more generalized version of the result given by Bor [6], under the weaker

conditions.

2. KNOWN-RESULT

By using |N, pαn|q summability, Bor [6] proved the following theorem.

2.1. Theorem [6]: Let {pn} be of +ive numbers s.t.:

(2.1) Pn = O(npn) as n→∞.

Let (χn) be an almost increasing sequence and assuming (ξn) and (λn) are s.t.:

(2.2) |∆λn| ≤ ξn,

(2.3) ξn → 0 as n→∞,
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(2.4)

∞∑
n=1

n|∆ξn|χn ≤ ∞,

(2.5) |λn|Xn = O(1) as n→∞,

(2.6)
∞∑

n=v+1

(
Pn
pn

)δq−1 1

Pn−1
= O

((
Pv
pv

)δq 1

Pv

)
,

and

(2.7)

m∑
n=1

(
Pn
pn

)δq−1
|tn|q = O(χn) as m→∞,

then
∑
anλn is |N, pn; δ|q summable where, q ≥ 1 and 0 ≤ δ ≤ 1

q .

3. MAIN RESULT

A sequence is of bounded variation i.e. (λn) ∈ BV , if :

∞∑
n=1

|∆λn| =
∞∑
n=1

|λn − λn−1| <∞.

3.1. Theorem: Let (χn), (ξn) and (λn) be as defined in Theorem 2.1 and verify (2.2)-(2.5).

If the following conditions also satisfy:

(3.1)
∞∑

n=v+1

1

Pα,βn−1

(
Pα,βn

pα,βn

)−1
= O

{
1

Pα,βv

}
,

(3.2)
m∑
n=1

(
Pα,βn

pα,βn

)−1
|tn|q = O(χm),

and

(3.3)
m∑
n=1

|λn|
n

= O(1)

then,
∑
anλn is |N, pα,βn |q summable where q ≥ 1.

Proof: Let Yn denote the (N, pα,βn ) mean of
∑
anλn. We have:

(3.4) Yn =
1

Pα,βn

n∑
v=0

pα,βv

v∑
i=0

aiλi.

For n ≥ 1,

∆Yn =
pα,βn

Pα,βn Pα,βn−1

n∑
v=1

Pα,βv−1avλv =
pα,βn

Pα,βn Pα,βn−1

n∑
v=1

Pv−1λv
v

vav.

= n+1

nPα,βn
pα,βn tnλn

− pα,βn
Pα,βn Pα,βn−1

n−1∑
v=1

pα,βv tvλv
v+1
v
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+ pα,βn
Pα,βn Pα,βn−1

n−1∑
v=1

Pα,βv tv∆λv
v+1
v

+ pα,βn
Pα,βn Pα,βn−1

n−1∑
v=1

Pα,βv tvλv+1
1
v

(3.5) = Y1 + Y2 + Y3 + Y4.

To prove the main result, we prove that

(3.6)
∞∑
n=1

(
Pα,βn

pα,βn

)q−1
|∆̄Yn|q <∞.

Using Minkowski’s inequality,

|Y1 + Y2 + Y3 + Y4|q ≤ 4q(|Y1|q + |Y2|q + |Y3|q + |Y4|q)

then, equation (4.3) reduces to:

(3.7)
∞∑
n=1

(
Pα,βn

pα,βn

)q−1
|Yr|q = Jr <∞ for r = 1, 2, 3, 4.

Now the L.H.S. of equation (4.4) is given as:

J1 =
m∑
n=1

(
Pα,βn

pα,βn

)q−1 ∣∣∣ n+1

nPα,βn
pα,βn tnλn

∣∣∣q
=

m∑
n=1

(
Pα,βn

pα,βn

)−1
|tn|q|λn|

= O(1)|λm|
m∑
n=1

(
Pα,βn

pα,βn

)−1
|tn|q

+O(1)
m−1∑
n=1

∆|λn|
n∑
v=1

(
Pα,βv

pα,βv

)−1
|tv|q

= O(1)|λm|χm +O(1)
m−1∑
n=1
|∆λn|χn

(3.8) = O(1) as m→∞,

J2 = O(1)
m+1∑
n=2

1

Pα,βn−1

(
Pα,βn

pα,βn

)−1
×

×
n−1∑
v=1

pα,βv |tv|q|λv|
(

1

Pα,βn−1

n−1∑
v=1

pα,βv

)q−1
= O(1)

m∑
v=1

pα,βv |tv|q|λv| 1

Pα,βv

= O(1)|λm|
m∑
n=1

(
Pα,βn

pα,βn

)−1
|tn|q
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+O(1)
m−1∑
n=1

∆|λn|
n∑
v=1

(
Pα,βv

pα,βv

)−1
|tv|q

(3.9) = O(1) as m→∞,

J3 = O(1)
m+1∑
n=2

1

Pα,βn−1

(
Pα,βn

pα,βn

)−1
×

×
n−1∑
v=1

Pα,βv |tv|qξv
(

1

Pα,βn−1

n−1∑
v=1

Pα,βv ξv

)q−1
= O(1)

m∑
v=1

Pα,βv ξv|tv|q×

×
m+1∑
n=v+1

1

Pα,βn−1

(
Pα,βn

pα,βn

)−1
= O(1)

m∑
v=1

Pα,βv |tv|qξv 1

Pα,βv

= mξm
m∑
v=1

1
v |tv|

q +O(1)
m−1∑
v=1

∆(vξv)
v∑
i=1

1
i |ti|

q

= O(1)mξmχm +O(1)
m−1∑
v=1
|∆(vξv)|χv

(3.10) = O(1) as m→∞,

and proceeding as in J3, we get

(3.11) J4 = O(1) as m→∞.

Collecting (3.8)-(3.11), we get that the condition (3.6) holds.

Hence, the theorem is proved.

4. COROLLARIES

4.1. Corollary: Let (χn), (ξn) and (λn) are s.t. conditions (2.2)-(2.5) of Theorem 2.1,

condition (3.3) of Theorem 3.1,

(4.1)
∞∑

n=v+1

pαn
Pαn P

α
n−1

= O

(
1

Pαv

)
,

(4.2)
m∑
n=1

pαn
Pαn
|tn|q = O(χm)

and

(4.3)

m∑
n=1

1

n
|tn|q = O(χm) as m→∞

holds. Then,
∑
anλn is |N, pαn|q summable for q ≥ 1.
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Proof: By using β = 1 in main theorem, we will get (4.1), (4.2) and (4.3). The proof

is same as the main theorem 3.1, but here we used equations (4.1), (4.2) and (4.3) instead

of equations (3.1), (3.2) and (3.4).

4.2. Corollary: Let (Xn), (ξn) and (λn) are s.t. conditions (2.2)-(2.5) of Theorem 2.1,

condition (3.3) of Theorem 3.1 and (4.1)-(4.3) holds. Then,
∑
anλn is |N, pαn| summable.

Proof: By using β = 1 and q = 1 in main theorem and equations (4.1)-(4.3), we get

this result.

5. CONCLUSION:

The negligeable set of conditions has been obtained for the infinite series in this paper.

By the examination we may infer that our hypothesis is a summed up variant which can be

diminished for a few notable summabilities as appeared in corollaries.
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[9] H.S. Özarslan, A note on |N, pn; δ|k summability factors, Indian J. Pure Appl. Math., Vol. 33(3), pp

361-366, 2002
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