
The Nepali Mathematical Sciences Report, Vol. 38, No.1, 2021: 39-50

DOI:https://doi.org/10.3126/nmsr.v38i1.38910

THE PILLAI–CHOWLA METHOD FOR AN ERROR TERM IN THE

MEAN SQUARE OF δk(n)

TADAAKI IGAWA 1, T. MAKOTO MINAMIDE 2 AND MIYU NAKANO 3

1 Nishihakushima-cho 17-22-403, Naka-ku, Hiroshima, 730-0005, Japan

E-mail: tadaaki i1122@yahoo.co.jp
2,3 Graduate School of Sciences and Technology for Innovation Yamaguchi University,

Yoshida 1677-1, Yamaguchi 753-8512, Japan

E-mail: minamide@yamaguchi-u.ac.jp and b020vb@yamaguchi-u.ac.jp

Abstract: Let k ≥ 2 be a fixed square-free integer and δk(n) be the greatest divisor of n which is coprime

to k. We consider the error term E
(2)
k (x) in the mean square of δk(n), E

(2)
k (x) :=

∑
n≤x δ

2
k(n) − k2

3σ(k2)
x3,

where σ(n) =
∑
d|n d. Using the Pillai–Chowla method we show

∑
n≤xE

(2)
k (n) ∼ k2

6σ(k2)
x3 (as x→∞) and∫∞

1

E
(2)
k

(t)

t3
dt = k2

3σ(k2)
. To prove them, we make a framework for the Pillai–Chowla method.
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1. Introduction

Let ϕ(n) be the Euler function, that is, ϕ(n) =
∑

1≤m≤n
(m,n)=1

1. Mertens [13] showed that

for any x ≥ 2 ∑
n≤x

ϕ(n) =
3

π2
x2 +O (x log x) .(1.1)

In [16], Pillai and Chowla studied the error term in (1.1)

E(x) :=
∑
n≤x

ϕ(n)− 3

π2
x2 (x ≥ 1)(1.2)

and showed that ∑
n≤x

E(n) =
3

2π2
x2 + o

(
x2
)
,(A)

E(x) 6= o(x log log log x).(B)
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The former is improved by Suryanarayana and Sitaramachandra Rao [21] and the latter is

developed by Erdős and Shapiro [7] and Montgomery [14]. In these notes, we shall apply

the method to obtain (A) due to Pillai and Chowla [16] to the mean square of δk(n),

where δk(n) denotes the greatest divisor of n which is coprime to a fixed square-free integer

k = p1p2 · · · pν(k) (pi are distinct primes). As for the average
∑

n≤x δk(n), Joshi and Vaidya

[12] showed that ∑
n≤x

δk(n) =
k

2σ(k)
x2 +Ok(x), (as x→∞),

where σ(n) =
∑

d|n d is the divisor function. Let

Ek(x) :=
∑
n≤x

δk(n)− k

2σ(k)
x2 (x ≥ 1).(1.3)

On Ek(x), many results were shown in the literature, Suryanarayana [20], Joshi and Vaidya

[12], Ramachandran [17], Herzog and Maxsein [9], Adhikari, Balasubramanian and Sankara-

narayanan [3], Adhikari and Balasubramanian [2], Pétermann [15], Adhikari [1], Adhikari

and Soundararajan [5], Adhikari and Chakraborty [4], Adhikari and Thangadurai [6], lately

Singh [19], Igawa and Sharma [11].

As a generalisation of an Ω-result in Joshi and Vaidya [12], Herzog and Maxsein [9]

obtained Ek(x) = Ω±(x), moreover, deduced that∑
n≤x

Ek(n) =
k

4σ(k)
x2 +Ok

(
x(log x)ν(k)

)
,

∫ x

1
Ek(t)dt = Ok

(
x(log x)ν(k)

)
,

(as x→∞).(C)

In addition they obtained an estimate for
∫ x
1 Ek(t)

2dt.

We now analyse the results corresponding to (C) for an error term in the mean square∑
n≤x δ

2
k(n). In our previous paper [8], we had for any x ≥ 1∑

n≤x
δ2k(n) =

k2

3σ (k2)
x3 +Ok

(
x2
)
,(1.4)

and we defined an error term in formula (1.4) as

E
(2)
k (x) :=

∑
n≤x

δ2k(n)− k2

3σ (k2)
x3 (x ≥ 1).(1.5)

Moreover, in [8], we introduced another error term R
(2)
k (x) as

R
(2)
k (x) := E

(2)
k (x) +

k

6
x (x ≥ 1)(1.6)

and showed that for any prime p

R(2)
p (x) = Ω±

(
x2
)

which is a corresponding result to [12]. However, in these present notes we would like to

change the definition (1.6) of R
(2)
k (x) as

R
(2)
k (x) := E

(2)
k (x) + (−1)ν(k)+1k

6
x (x ≥ 1),(1.7)



THE PILLAI–CHOWLA METHOD FOR AN ERROR TERM 41

where k is a fixed square-free integer and ν(k) is the number of distinct prime divisors.1

Using the method in [16] and some ideas from [17], [9], [3] and [11], we obtain the

following theorem.

Theorem 1.1. Let k ≥ 2 be a fixed square-free integer. As for E
(2)
k (x) and R

(2)
k (x) (defined

by (1.5) and (1.7), respectively), for any x ≥ 1 we have

(a)
∑
n≤x

E
(2)
k (n) =

k2

6σ(k2)
x3 +Ok

(
x2
)
,

∑
n≤x

R
(2)
k (n) =

k2

6σ(k2)
x3 +Ok

(
x2
)
,

(b)

∫ x

1
E

(2)
k (t)dt = Ok

(
x2
)
,∫ x

1
R

(2)
k (t)dt = Ok

(
x2
)
.

It is trivial that assertion (a) of Theorem 1.1 implies R
(2)
k (n), E

(2)
k (n) 6= o(n2). On the

other hand, we also obtain the following estimations.

Theorem 1.2. We have

(a)

∫ ∞
1

E
(2)
k (t)

t3
dt =

k2

3σ(k2)
,

(b)

∫ ∞
1

R
(2)
k (t)

t3
dt =

k2

3σ(k2)
+

(−1)ν(k)+1k

6
.

Theorem 1.3. We have

(a)

∫ x

1

E
(2)
k (t)

t2
dt = Ok(1),

(b)

∫ x

1

R
(2)
k (t)

t2
dt =

(−1)ν(k)+1k

6
log x+Ok(1).

To deduce Theorems 1.2 and 1.3 we find a framework for the Pillai–Chowla method in

[16] for the result (A). Here we note that as for E(x) in the above (1.2) Suryanarayana [22,

p. 184] has shown that ∫ ∞
1

E(t)

t2
dt =

3

π2
.(1.8)

This impies the framework for the Pillai–Chowla method.

Notation. Throughout this paper, we use [x] to express the integer part of a positive

number x, and {x} = x− [x] to denote a fractional part of x ≥ 0. For a positive integer n

we write n = dd′ as a product of positive integers d and d′.

1In [8], even if we use the new definition (1.7) of R
(2)
k (x) we can obtain the same assertions for theorems.
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2. Proof of Theorem 1.1

To prove Theorem 1.1, we shall apply ideas of Pillai and Chowla [16], Ramachandran

[17], Herzog and Maxsein [9], Adhikari, Balasubramanian and Sankaranarayanan [3], Igawa

and Sharma [11] and Segal [18]. First, we collect some lemmas and then we prove Theorem

1.1.

As we mentioned k ≥ 2 is a fixed square-free integer, moreover, ν(k) denotes the

number of distinct prime divisors of k, by p a prime number.

Lemma 2.1 (cf. [17], [9], [3] and [11]). For any positive integer n we have a Dirichlet

convolution for δ2k(n) as

δ2k(n) =
∑
d|n

g(k,2)(d)
(n
d

)2
,(2.1)

where g(k,2)(n) is a multiplicative function which is defined by g(k,2)(1) = 1 and

g(k,2) (pm) =

1− p2 (if p|k)

0 (if p - k)
,(2.2)

for any prime powers pm (m = 1, 2, . . .).

Proof. We consider the Dirichlet series
∑∞

n=1 δ
2
k(n)n−s for Re s > 2, which is convergent

absolutely by the trivial estimate |δk(n)| ≤ n. Note that by the definition (2.2) of g(k,2)(n)

we observe that ∏
p|k

1− p2

ps

1− 1
ps

=
∞∑
n=1

g(k,2)(n)

ns
(Re s > 0).(2.3)

Since δk(n) is a multiplicative function satisfying for any prime powers pm (m ≥ 1),

δk(p
m) =

pm (if p - k)

1 (if p|k)
,

we observe that
∞∑
n=1

δ2k(n)

ns
=
∏
p

(
1 +

δ2k(p)

ps
+
δ2k(p

2)

p2s
+ · · ·

)

=
∏
p|k

(
1− 1

ps

)−1∏
p-k

(
1− p2

ps

)−1

=
1∏

p

(
1− p2

ps

)∏
p|k

1− p2

ps

1− 1
ps

=
∞∑
n=1

n2

ns

∞∑
n=1

g(k,2)(n)

ns

=
∞∑
n=1

∑
d|n g(k,2)(d)

(
n
d

)2
ns

.

Then we have the assertion of Lemma 2.1. �
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Remark 2.2. By (2.2) and identity (2.3) we observe that for Re s > 0

∞∑
n=1

|g(k,2)(n)|
ns

=
∏
p|k

(
1 +

p2 − 1

ps − 1

)
.(2.4)

Lemma 2.3 (cf. [17, pp. 337–338], [9, p. 147], [3, p. 832]). Let k = p1p2 · · · pν(k) be a

square-free integer ≥ 2. For any integer n ≥ 1 and real x ≥ 1 we have

(a) |g(k,2)(n)| ≤
∏
p|k

(p2 − 1)

(b)
∑
n≤x
|g(k,2)(n)| ≤ k2

(
log 2x

log 2

)ν(k)
(c)

∞∑
n=1

g(k,2)(n)

n3
=

k2

σ(k2)

(d)
∑
n≤x

g(k,2)(n)

n3
=

k2

σ(k2)
+Ok

(
(log 2x)ν(k)

x3

)

(e)
∞∑
n=1

g(k,2)(n)

n2
= 0

(f)
∑
n≤x

g(k,2)(n)

n2
= Ok

(
(log 2x)ν(k)

x2

)

(g)

∞∑
n=1

|g(k,2)(n)|
n2

= 2ν(k)

(h)

∞∑
n=1

g(k,2)(n)

n
= (−1)ν(k)k

(i)
∑
n≤x

g(k,2)(n)

n
= (−1)ν(k)k +Ok

(
(log 2x)ν(k)

x

)

(j)
∞∑
n=1

|g(k,2)(n)|
n

=
∏
p|k

(p+ 2) ≤ 2ν(k)k

Proof. By the definition (2.2) of g(k,2)(n), the first assertion (a) is trivial. Using prime

factors of k = p1p2 · · · pν(k) we have

∑
n≤x
|g(k,2)(n)| ≤

ν(k)∏
i=1

p2i ∑
pmi ≤x

1

 ≤ k2 ν(k)∏
i=1

(
1 +

log x

log 2

)
= k2

(
log 2x

log 2

)ν(k)
that is, the second assertion (b). Assertions (c), (e) and (h) are trivial by (2.3). As for the

assertion (d), using partial summation with (b) and (c) we have∑
n≤x

g(k,2)(n)

n3
=

∞∑
n=1

g(k,2)(n)

n3
− lim
T→∞

∑
x<n≤T

g(k,2)(n)

n3
=

k2

σ(k2)
+Ok

(
(log 2x)ν(k)

x3

)
.

We obtain an assertion (f) by estimation as in the above equation. As for the assertions

(g) and (j), we put s = 2 and s = 1 in the identity (2.4), respectively. By (h) and partial

summation we have assertion (i). �

Remark 2.4. A certain generalisation of Lemma 2.3 is discussed in Igawa and Sharma [11].
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Lemma 2.5 (cf. [9, Theorem 1], [3, Lemma 3.1], [16]). For any x ≥ 1 we have

(a)
∑
n≤x

δ2k(n) =
k2

3σ(k2)
x3 − x2

∑
d′≤x

g(k,2)(d
′)

d′2

{ x
d′

}
+Ok(x),

(b)
∑
n≤x

δ2k(n)

n2
=

k2

σ(k2)
x−

∑
d′≤x

g(k,2)(d
′)

d′2

{ x
d′

}
+Ok

(
(log 2x)ν(k)

x2

)
,

(c)
∑
n≤x

δ2k(n)

n
=

k2

2σ(k2)
x2 − x

∑
d′≤x

g(k,2)(d
′)

d′2

{ x
d′

}
+Ok(1).

Proof. Using the Dirichlet convolution (2.1) of Lemma 2.1 we have∑
n≤x

δ2k(n) =
∑
dd′≤x

d2g(k,2)(d
′)

=
∑
d′≤x

g(k,2)(d
′)
∑

d≤x/d′
d2

=
1

3

∑
d′≤x

g(k,2)(d
′)
[ x
d′

]3
+

1

2

∑
d′≤x

g(k,2)(d
′)
[ x
d′

]2
+

1

6

∑
d′≤x

g(k,2)(d
′)
[ x
d′

]
=: S1 + S2 + S3 (say)(2.5)

estimate S1, S2, and S3.

By (d), (b) and (j) of Lemma 2.3 we observe that

S1 =
x3

3

∑
d′≤x

g(k,2)(d
′)

d′3
− x2

∑
d′≤x

g(k,2)(d
′)

d′2

{ x
d′

}
+ x

∑
d′≤x

g(k,2)(d
′)

d′

{ x
d′

}2

− 1

3

∑
d′≤x

g(k,2)(d
′)
{ x
d′

}3

=
k2

3σ(k2)
x3 − x2

∑
d′≤x

g(k,2)(d
′)

d′2

{ x
d′

}
+Ok(x) +Ok

(
(log 2x)ν(k)

)
.(2.6)

By (f), (b) and (j) of Lemma 2.3 we have

S2 =
x2

2

∑
d′≤x

g(k,2)(d
′)

d′2
− x

∑
d′≤x

gk,2(d
′)

d′

{ x
d′

}
+

1

2

∑
d′≤x

gk,2(d
′)
{ x
d′

}2

= Ok(x) +Ok

(
(log 2x)ν(k)

)
(2.7)

By (i) and (b) of Lemma 2.3 we see

S3 =
x

6

∑
d′≤x

g(k,2)(d
′)

d′
− 1

6

∑
d′≤x

g(k,2)(d
′)
{ x
d′

}
= (−1)ν(k)

k

6
x+Ok

(
(log 2x)ν(k)

)
.(2.8)

Collecting these results (2.5)–(2.8) we reach assertion (a).

As demomstrated above we obtain assertions (b) and (c) as follows.∑
n≤x

δ2k(n)

n2
=
∑
d′≤x

g(k,2)(d
′)

d′2

[ x
d′

]
= x

∑
d′≤x

g(k,2)(d
′)

d′3
−
∑
d′≤x

g(k,2)(d
′)

d′2

{ x
d′

}

=
k2

σ(k2)
x−

∑
d′≤x

g(k,2)(d
′)

d′2

{ x
d′

}
+Ok

(
(log 2x)ν(k)

x2

)
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and ∑
n≤x

δ2k(n)

n
=
x2

2

∑
d′≤x

g(k,2)(d
′)

d′3
− x

∑
d′≤x

g(k,2)(d
′)

d′2

{ x
d′

}
+

1

2

∑
d′≤x

g(k,2)(d
′)

d′

{ x
d′

}2

+
x

2

∑
d′≤x

g(k,2)(d
′)

d′
− 1

2

∑
d′≤x

g(k,2)(d
′)

d′

{ x
d′

}
=

k2

2σ(k2)
x2 − x

∑
d′≤x

g(k,2)(d
′)

d′2

{ x
d′

}
+Ok(1).

�

Remark 2.6. In (b) and (c) of Lemma 2.5 we use (g) Lemma 2.1 (g) to get∑
n≤x

δ2k(n)

n2
=

k2

σ(k2)
x+Ok(1),

∑
n≤x

δ2k(n)

n
=

k2

2σ(k2)
x2 +Ok(x),

as x→∞.

Definition 2.7 (cf. [3, p. 831], [16]). For any x ≥ 1 we shall define H
(2)
k (x) and G

(1)
k (x) by

H
(2)
k (x) :=

∑
n≤x

δ2k(n)

n2
− k2

σ(k2)
x,(2.9)

G
(1)
k (x) :=

∑
n≤x

δ2k(n)

n
− k2

2σ(k2)
x2.(2.10)

Lemma 2.8 (cf. [16, Theorem III], [3, Lemma 3.3] ). For any x ≥ 1 we have∑
n≤x

H
(2)
k (n) =

k2

2σ(k2)
x+Ok(1).(2.11)

Proof. First of all, let x ≥ 1 be any positive integer. Using the definition (2.9) we observe

that ∑
n≤x

H
(2)
k (n) =

∑
n≤x

∑
m≤n

δ2k(m)

m2
− k2

σ(k2)
n


= (x+ 1)

∑
n≤x

δ2k(n)

n2
−
∑
n≤x

δ2k(n)

n
− k2

2σ(k2)
x2 − k2

2σ(k2)
x.(2.12)

Here, we use (b) and (c) of Lemma 2.5, to obtain assertion (2.11) for any positive integer

x ≥ 1. If x ≥ 1 is real, then∑
n≤x

H
(2)
k (n) =

∑
n≤[x]

H
(2)
k (n) =

k2

2σ(k2)
[x] +Ok(1)(2.13)

which implies (2.11). �

We give another proof of Lemma 2.8 to elucidate the Pillai–Chowla method in [16].

We prepare the next lemma.
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Lemma 2.9 (cf. [16, Theorem II], [3, Lemmas 3.2]). For any x ≥ 1 we have

(a) E
(2)
k (x)− x2H(2)

k (x) = Ok(x),

(b) E
(2)
k (x)− xG(1)

k (x) = Ok(x).

Proof. By the definitions (1.5), (2.9) and Lemma 2.5 (a) and (b) we see the assertion (a).

Moreover, by the definitions (1.5), (2.10) and Lemma 2.5 (a), (c) we obtain the assertion

(b). �

Using Lemma 2.9 we will prove Lemma 2.8.

The second proof of Lemma 2.8.

Let x ≥ 1 be any positive integer. In the identity (2.12), we use definitions (2.9) and (2.10)

to show

∑
n≤x

H
(2)
k (n) =

k2

2σ(k2)
x+ (x+ 1)H

(2)
k (x)−G(1)

k (x)

=
k2

2σ(k2)
x+ (x+ 1)

x2

x2
H

(2)
k (x)− x

x
G

(1)
k (x)

− x+ 1

x2
E

(2)
k (x) +

x+ 1

x2
E

(2)
k (x)

=
k2

2σ(k2)
x− x+ 1

x2

(
E

(2)
k (x)− x2H(2)

k (x)
)

+
1

x

(
E

(2)
k (x)− xG(1)

k (x)
)

+
E

(2)
k (x)

x2
.(2.14)

Here we use Lemma 2.9 and formula (1.4) to get the assertion (2.11) for any positive integer

x ≥ 1. Moreover, using (2.13) we complete the proof for Lemma 2.8. �

To complete a proof of Theorem 1.1 we shall recall Segal’s lemma in [18].

Lemma 2.10 ([18, p. 279, p. 765]). Let f(n) be a real valued arithmetical function and

g(x), R(x) certain real valued functions for x ≥ 1. If

(a)
∑
n≤x

f(n) = g(x) +R(x),

(b) g(x) is twice continuously differentiable,

(c) g′′(x) > 0 or g′′(x) < 0,

then we have

∑
n≤x

R(n) =
1

2
g(x) + (1− {x})R(x) +

∫ x

1
R(t)dt+O(|g′(x)|) +O(1).

Now we shall prove Theorem 1.1.
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Proof of Theorem 1.1.

By Lemma 2.9 (a) and Lemma 2.8 we have the first assertion of (a) as follows.∑
n≤x

E
(2)
k (n) =

∑
n≤x

n2H
(2)
k (n) +Ok(x

2)

= x2
∑
n≤x

H
(2)
k (n)−

∫ x

1
2t
∑
n≤t

H
(2)
k (n)dt+Ok(x

2)

=
k2

6σ(k2)
x3 +Ok(x

2).(2.15)

From this we have the second assertion of (a). Here, we use Lemma 2.10 with formula

(2.15), to get the assertion (b) of Theorem 1.1. �

3. Pillai-Chowla method and Proof of Theorems 1.2 and 1.3

Finally, we shall prove Theorems 1.2 and 1.3. We make reference to a similar results

on the error terms (1.2) and (1.3). To this end, we prepare the following lemma which is a

framework in [16].

Lemma 3.1. As for a real valued arithmetical function f(n), a constant α 6= 0, a positive

integer l, and a real parameter x ≥ 1, we set

E(x) :=
∑
n≤x

f(n)− αx1+l,

H(l)(x) :=
∑
n≤x

f(n)

nl
− α(1 + l)x,

G(l−1)(x) :=
∑
n≤x

f(n)

nl−1
− α(1 + l)

2
x2 (if l ≥ 2).

Then we obtain the following assertions.

(a) E(x)− xlH(l)(x) = −lxl
(∫ x

1

E(t)

t1+l
dt− α

)
,

(b) When l ≥ 2 we have E(x)− xl−1G(l−1)(x) = −(l − 1)xl−1
(∫ x

1

E(t)

tl
dt− α

2

)
,

(c) The assumption E(x)− xlH(l) = o(xl) (as x→∞) is equivalent to∫ ∞
1

E(t)

t1+l
dt = α.

(d) When l ≥ 2, the assumption E(x)− xl−1G(l−1)(x) = O
(
xl−1

)
is equivalent to∫ x

1

E(t)

tl
dt = O(1).

(e) When l = 1, for any positive integer x ≥ 1 we have∑
n≤x

H(1)(n) = αx+H(1)(x)−
(
E(x)− xH(1)(x)

)
= αx+

E(x)

x
− x+ 1

x

(
E(x)− xH(1)(x)

)
.
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(f) When l ≥ 2, for any positive integer x ≥ 1 we have∑
n≤x

H(l)(n) =
α(1 + l)

2
x+ (x+ 1)H(l)(x)−G(l−1)(x)

=
α(1 + l)

2
x+

E(x)

xl
− x+ 1

xl

(
E(x)− xlH(l)(x)

)
+

1

xl−1

(
E(x)− xl−1G(l−1)(x)

)
.

Proof. By partial summation we see that∑
n≤x

f(n)

nl
= α(1 + l)x+

E(x)

xl
+ l

(∫ x

1

E(t)

t1+l
dt− α

)
.(3.1)

To get assertions (a) and (c), assume that l ≥ 2. The identity∑
n≤x

f(n)

nl−1
=
α(1 + l)

2
x2 +

E(x)

xl−1
+ (l − 1)

(∫ x

1

E(t)

tl
dt− α

2

)
(3.2)

yields assertions (b) and (d). Note that (3.2) and (b) hold for l = 1.

For any integer x ≥ 1

∑
n≤x

H(l)(n) =
∑
n≤x

∑
m≤n

f(m)

ml
− α(1 + l)n


= (x+ 1)

∑
n≤x

f(n)

nl
−
∑
n≤x

f(n)

nl−1
− α(1 + l)

2
x2 − α(1 + l)

2
x.(3.3)

When l = 1, by the definitions E(x) and H(1)(x) we see assertion (e) as follows.∑
n≤x

H(1)(n) = αx+H(1)(x)−
(
E(x)− xH(1)(x)

)
= αx+H(1)(x) +

E(x)

x
− E(x)

x
−
(
E(x)− xH(1)(x)

)
= αx+

E(x)

x
− x+ 1

x

(
E(x)− xH(1)(x)

)
.

When l ≥ 2, by the definitions H(l)(x) and G(l−1)(x) we have assertion (f) as∑
n≤x

H(l)(n) =
α(1 + l)

2
x+ (x+ 1)H(l)(x)−G(l−1)(x)

=
α(1 + l)

2
x+ (x+ 1)

xl

xl
H(l)(x)− xl−1

xl−1
G(l−1)(x)

+
x+ 1

xl−1
E(x)− x+ 1

xl
E(x)

=
α(1 + l)

2
x+

E(x)

xl
− x+ 1

xl

(
E(x)− xlH(l)(x)

)
+

1

xl−1

(
E(x)− xl−1G(l−1)(x)

)
.

Note that it is true for l = 1. �
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Remark 3.2. We also obtain the second equalities in Lemma 3.1 (e) and (f) as follows. In

(3.3), we use (3.1) and (3.2), then∑
n≤x

H(l)(n) = α(1 + l)x+
E(x)

xl
+ (x+ 1)l

(∫ x

1

E(t)

t1+l
dt− α

)

− (l − 1)

(∫ x

1

E(t)

tl
dt− α

2

)
.

Here, we use the assertions (a) and (b) in Lemma 3.1, hence∑
n≤x

H(l)(n) = α(1 + l)x+
E(x)

xl
− x+ 1

xl

(
E(x)− xlH(l)(x)

)
+

1

xl−1

(
E(x)− xl−1G(l−1)(x)

)
.

We obtain Theorems 1.2 and 1.3 as follows.

Proof of Theorems 1.2 and 1.3.

In Lemma 3.1, we set f(n) = δ2k(n), α = k2

3σ(k2)
, and l = 2. By Lemma 2.9 (a) we have

known E(x) − x2H(x) = o
(
x2
)
, hence by Lemma 3.1 (c) we obtain the first assertion of

Theorem 1.2, and the second assertion. Moreover, by Lemma 2.9 (b) and Lemma 3.1 (d)

we obtain the assertions of Theorem 1.3. �

In this occasion, we shall apply Lemma 3.1 to error terms in two averages
∑

n≤x δk(n)

and
∑

n≤x ϕ(n). In [3], Adhikari, Balasubramanian and Sankaranarayanan showed the

formula ∑
n≤x

δk(n)

n
=

k

σ(k)
x+Ok(log 2x).

Moreover, as for Ek(x) defined in (1.3), and

Hk(x) :=
∑
n≤x

δk(n)

n
− k

σ(k)
x,

they deduced a relation between Ek(x) and Hk(x) in Lemma 3.2 in [3, p. 383] as

Ek(x) = xHk(x) + o(x).(3.4)

Therefore by Lemma 3.1 (c) we obtain an analogue of Theorem 1.2 as

Theorem 3.3. ∫ ∞
1

Ek(t)

t2
dt =

k

2σ(k)
.

Remark 3.4. We would like to remark that lemmas in [3] leads the first assertion of (C).

Actually, using (II)
∑

n≤x |g(n)| = O
(
(log 2x)ν(k)

)
in [3, p. 832] we can replace o(x) in the

above (3.4) by O
(
(log 2x)ν(k)

)
and obtain∑

n≤x
Hk(n) =

k

2σ(k)
x+Ok

(
(log 2x)ν(k)

)
which is a sharp form of Lemma 3.3 in [3, p. 384]. Therefore we have (C), as the proof of

Theorem 1.1.
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We shall go back to (1.1) the average of the Euler function ϕ(n). Using Lemma 3.1 we

explain (1.8). By [16] we know that∑
n≤x

ϕ(n) =
3

π2
x2 − x

∑
d≤x

µ(d)

d

{x
d

}
+ o(x),

∑
n≤x

ϕ(n)

n
=

6

π2
x−

∑
d≤x

µ(d)

d

{x
d

}
+ o(1),

and Theorem III in [16] : E(x) = xH(x) + o(x), where E(x) is the function defined in (1.1)

and H(x) is defined as

H(x) :=
∑
n≤x

ϕ(n)

n
− 6

π2
x (x ≥ 1).

Hence, by Lemma 3.1 (c) we obtain (1.8). The idea of Lemma 3.1 (a) and (c) is same as

[22, p. 183, (3.9)].

Note that Lemma 3.1 (f) with (1.4) (i.e. E
(2)
k (x) = Ok

(
x2
)
) and Lemma 2.9 give the

assertion (2.11) of Lemma 2.8. Then we reach (a) of Theorem 1.1. Also, Lemma 3.1 (d)

leads the first assertion of (C) and (A). We may state that Lemma 3.1 is a framework of

the Pillai–Chowla method in [16].
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[13] F. Mertens, Über einige asymptotische Gesetze der Zahlen-Theorie, J. Reine Angew. Math. 77 (1874),

289–338.

[14] H. L. Montgomery, Fluctuations in the mean of Euler’s phi function, Proc. Indian Acad. Sci. (Math.

Sci.) 97 (1987), 239–245.
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