
The Nepali Mathematical Sciences Report, Vol. 38, No. 1, 2021: 8-15

DOI: https://doi.org/10.3126/nmsr.v38i1.38872

SOME TOPOLOGICAL INDICES OF DOUBLE SQUARE SNAKE

GRAPHS

PUSHPALATHA MAHALANK 1 AND BHAIRABA KUMAR MAJHI 2 AND ISMAIL

NACI CANGUL 3

1 Department of Mathematics, SDM College of Engineering and Technology,

Dharwad-580002, Karnataka, INDIA

e-mail: mahalankpushpalatha@gmail.com
2 Department of Mathematics, School of Applied Sciences, Centurion University of

Technology and Management, Bolangir Campus, 767001 Odisha, INDIA

e-mail: bhairabakumar.majhi@cutm.ac.in
3 Department of Mathematics, Faculty of Arts and Science, Bursa Uludag University,

16059 Bursa, TURKEY

e-mail: cangul@uludag.edu.tr

Abstract: In many areas of science, lattice structures are very useful phenomenons. In network sciences,

in chemistry and in social sciences, we face them in the solution of many daily life problems. Several large

lattice structures can also be thought as graphs and in that way, are useful in the study of large networks.

A very recently defined and studied class of such networks are snake graphs which has close relations with

number theory due to the use of continued fractions. Following the works on square snake graphs, in this

work, we study some non-Zagreb type topological graph indices of some interesting lattice structures called

as double square snake graphs. We first obtain the vertex and edge partitions of these graphs and calculate

their indices by means of these partitions.
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1. Introduction

Special lattice structures called as the snake graphs are studied in different contexts

in mathematics and other sciences. They have finite or infinite one or two dimensional

repetitions of some geometric shape. They are, at the same time, planar bipartite graphs.

In [2, 3, 4], Canakci et al. studied snake graphs in relation with cluster algebras. In [8],
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Shiffler constructed snake graphs consisting of square tiles and used them to establish rela-

tions with perfect matchings and positive continued fractions which are used in estimating

real numbers by some infinite sequences of rational numbers. As a result, the idea of con-

tinued fractions have been a popular and useful tool in number theory. They are used in

the solutions of some Diophantine equations. Bradshaw et al. continued the above work

in [1] and established their relations with linear algebra by studying their characteristic

polynomials in relation with the Chebycheff polynomials of the first and second type. In

[5], snake graphs are studied in relation with strongly *-graphs.

The Zagreb indices of square snake graphs, see Fig. 1, are recently studied in [6].

Figure 1 The square snake graph C1
4,k

In this work, we consider double square snake graphs given in Fig. 2. Some Zagreb

type topological indices of double square snake graphs have been determined in [7]. In

this work, we calculate some additive and multiplicative topological graph indices of double

square snake graphs.

Figure 2 The double square snake graph C2
4,k

Modeling by graphs is a very useful tool that allows to use graphs in solving many real

life problems. Many daily problems can indeed be modeled by a graph. As the most frequent

example, a chemical molecule can be modeled by a graph in the following way: A vertex

corresponds to each atom in the molecule and an edge corresponds to each chemical bond

between two atoms. A graph obtained in that way is called a chemical graph. In Chemistry,

QSPR and QSAR studies are realized by means of some simple mathematical formulae. A

topological index or a molecular descriptor is a mathematical formula calculated by means

of either vertex degrees, distances, graph matrices or some graph parameters. They are used

to obtain a real number corresponding to a given graph and commenting on such a number,
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one can obtain physico-chemical properties of the corresponding molecules. Modeling by

graphs can also be used in other areas of science, especially in social network studies and

other social sciences where there are relations between things, persons, firms, countries

etc. There are several classes of topological graph indices including Zagreb indices, atom-

bond-connectivity indices, geometric-arithmetic indices, Randic indices etc. In this paper,

we determine some non-Zagreb-type topological graph indices of the double square snake

graphs C2
4,k.

2. Some additive topological indices of double square snake graphs

In this section, we will determine some additive non-Zagreb-type topological graph in-

dices of the double square snake graphs C2
4,k. The following indices are used in this work:

The harmonic index of a graph G denoted by H(G) is defined by

H(G) =
∑

uv∈E(G)
2

d(u)+d(v) .

In a similar way, for a fixed real number α, the generalized harmonic index is defined by

H∗α(G) =
∑

uv∈E(G)

(
2

d(u)+d(v)

)α
.

Another topological graph index is the sum-connectivity index given by

χ(G) =
∑

uv∈E(G)
1√

d(u)+d(v)
.

For a fixed real number α, the general sum connectivity index is defined by

Hα(G) =
∑

uv∈E(G)(d(u) + d(v))α.

Inverse sum indeg index is denoted by ISI(G) and defined by

ISI(G) =
∑

uv∈E(G)
d(u)d(v)
d(u)+d(v) .

One of the most important topological graph indices is called the Randic index which is

defined by

R(G) =
∑

uv∈E(G)
1√

d(u)d(v)
.

There are some variants of the Randic index as below. The reverse Randic index is defined

by

RR(G) =
∑

uv∈E(G)

√
d(u)d(v)

and the generalized Randic index is similarly defined by

Rα(G) =
∑

uv∈E(G)
1

(d(u)d(v))α .

Another group of frequently used topological graph indices are the atom-bond-connectivity

indices. The classical atom-bond-connectivity index of G is defined by

ABC(G) =
∑

uv∈E(G)

√
d(u)+d(v)−2
d(u)d(v) .

The geometric-arithmetic index of G is defined by

GA(G) =
∑

uv∈E(G)
2
√
d(u)d(v)

d(u)+d(v) .
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A graph G is called regular if all vertices have the same vertex degree. Regularity is an

important property which makes calculations easier. Naturally, most of the graphs are not

regular and called irregular. It is sometimes important to decide which one of the two given

graphs is more regular. To this aim, several irregularity indices are defined. Albertson index

is one of these irregularity indices defined by

Alb(G) =
∑

uv∈E(G) |d(u)− d(v)|.

Another useful irregularity measure is the sigma index denoted by σ(G) defined by

σ(G) =
∑

uv∈E(G) (d(u)− d(v))2.

Another frequently used irregularity index is the Bell index defined by

B(G) =
∑

u∈V (G)

(
d(u)− 2m

n

)
.

The final irregularity index we shall be calculating in this work is the ireegularity index

denoted by Irr(G) and defined by

Irr(G) =
∑

u∈V (G)

∣∣d(u)− 2m
n

∣∣.
Here, note that the fraction 2m/n is the ratio of the sum of the vertex degrees and the

number of vertices in a graph G. Therefore it is the average vertex degree.

Before determining the above additive topological graph indices of non-Zagreb-type for

the double square snake graphs, we must first determine the vertex and edge partitions of

the double square snake graph C2
4,k. It has 5k+1 vertices and 8k edges. The vertex degrees

are 2, 4 or 8 and the vertex partition of C2
4,k together with the parity of each number is

therefore appears as in Table 1:

Table 1. Vertex partition of C2
4,k

di ] di

2 4k

4 2

8 k − 1

Similarly, the edge partition of C2
4,k together with the parity of each edge type is shown

in Table 2:

Table 2. Edge partition of C2
4,k

(di, dj) ] (di, dj)

(2,4) 8

(2,8) 8(k − 1)
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Now, we are ready to determine the additive non-Zagreb-type topological graph indices

of the double square snake graph C2
4,k listed above. We shall be using the vertex and

edge partitions of these graphs given in Tables 1 and 2. The results obtained here can

be commented to obtain information on several chemical properties of the corresponding

molecular structures.

Theorem 2.1. Some non-Zagreb-type additive indices of double square snake graph C2
4,k

are as follows:

H(C2
4,k) = 8

5(3k + 2),

H∗α(C2
4,k) = 8 ·

(
2

2+4

)α
+ 8(k − 1) ·

(
2

2+8

)α
,

χ(C2
4,k) = 4

15(5
√

6 + 3
√

10(k − 1)),

Hα(C2
4,k) = 2α+3(3α + 5α(k − 1)) = 8(3−α + 5−α(k − 1)),

ISI(C2
4,k) = 32

5 (2k − 1),

R(C2
4,k) = 2(k − 1 +

√
2),

RR(C2
4,k) = 16(2(k − 1) +

√
2),

Rα(C2
4,k) = 8(2−3α + 2−4α(k − 1)),

ABC(C2
4,k) = 4

√
k,

GA(C2
4,k) = 16

15(6(k − 1) + 5
√

2),

Alb(C2
4,k) = 16(3k − 2),

σ(C2
4,k) = 32(9k − 8),

B(C2
4,k) = 16k(45k2−64k+33)−32

(5k+1)2
,

Irr(C2
4,k) = 4k(17k−4)

5k+1 .

Proof. Let us start with the harmonic index. By the definition, using the edge partition of

C2
4,k given in Table 2, we obtain

H(C2
4,k) =

∑
v∈V (G)

2
d(u)+d(v)

= 8 · 26 + 8(k − 1) · 2
10

= 8
5(3k + 2).

Secondly, the generalized harmonic index is

H∗α(C2
4,k) = 8 ·

(
2

2+4

)α
+ 8(k − 1) ·

(
2

2+8

)α
= 8(3−α + 5−α(k − 1)).

The sum-connectivity index of C2
4,k is

χ(C2
4,k) = 8 · 1√

6
+ 8(k − 1) · 1√

10

= 4
15(5
√

6 + 3
√

10(k − 1))

and the generalized sum-connectivity index would be

Hα(C2
4,k) = 8 · (2 + 4)α + 8(k − 1) · (2 + 8)α

= 2α+3(3α + 5α(k − 1)).
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Next, the inverse sum indeg index is found to be

ISI(C2
4,k) =

∑
uv∈E(C2

4,k)
d(u)d(v)
d(u)+d(v)

= 8 · 2·4
2+4 + 8(k − 1) · 2·8

2+8

= 64
5 k −

32
5 .

The Randic index of double square snake graph C2
4,k is

R(C2
4,k) = 8 · 1√

8
+ 8(k − 1) 1√

16

= 2(k − 1 +
√

2),

its reverse Randic index would be

RR(C2
4,k) = 8

√
2 · 4 + 8(k − 1)

√
2 · 8

= 16(2(k − 1) +
√

2),

and also the generalized Randic index of C2
4,k will be

Rα(C2
4,k) = 8 · 1

(2·4)α + 8(k − 1) · 1
(2·8)α

= 8(2−3α + 2−4α(k − 1)).

The atom bond connectivity index of C2
4,k is

ABC(C2
4,k) = 8 ·

√
2+4−2
2·4 + 8(k − 1)

√
2+8−2
2·8

= 4
√

2k,

and the geometric-arithmetic index will be

GA(C2
4,k) = 82

√
2·4

2+4 + 8(k − 1)2
√
2·8

2+8

= 16
15(6(k − 1) + 5

√
2).

Finally we calculate the irregularity indices of C2
4,k as follows:

Alb(C2
4,k) = 8 · |2− 4|+ 8(k − 1) |2− 8|

= 16(3k − 2),

σ(C2
4,k) = 8(2− 4)2 + 8(k − 1)(2− 8)2

= 32(9k − 8),

B(C2
4,k) = 4k

(
2− 16k

5k+1

)2
+ 2

(
4− 16k

5k+1

)2
+ (k − 1)

(
8− 16k

5k+1

)2
= 16k(45k2−64k+33)−32

(5k+1)2

and

Irr(C2
4,k) = 4k

∣∣∣2− 16k
5k+1

∣∣∣+ 2
∣∣∣4− 16k

5k+1

∣∣∣+ (k − 1)
∣∣∣8− 16k

5k+1

∣∣∣
= 4k(17k−4)

5k+1 .

�
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3. Some multiplicative topological indices of C2
4,k

In this section, we shall determine some of the multiplicative topological graph indices

of the double square snake graphs. Again, we shall be using the vertex and edge partitions

of these graphs given in Tables 1 and 2. The multiplicative indices we shall calculate are as

follows:
Π1(G) =

∏
u∈V (G) d(u)2,

Π2(G) =
∏
uv∈E(G) d(u)d(v),

Π3(G) =
∏
u∈V (G) d(u)3,

NK(G) =
∏
u∈V (G) d(u),

Π∗1(G) =
∏
uv∈E(G)(d(u) + d(v)),

GAΠ(G) =
∏
uv∈E(G)

2
√
d(u)d(v)

d(u)+d(v) ,

HΠ1(G) =
∏
uv∈E(G)(d(u) + d(v))2,

HΠ2(G) =
∏
uv∈E(G)(d(u) · d(v))2,

RΠ(G) =
∏
uv∈E(G)

1√
d(u)d(v))

,

χΠ(G) =
∏
uv∈E(G)

1√
d(u)+d(v))

,

ABCΠ(G) =
∏
uv∈E(G)

√
d(u)+d(v)−2
d(u)d(v) .

Theorem 3.1. Some multiplicative indices of double square snake graph C2
4,k are as follows:

Π1(C
2
4,k) = 214k+2,

Π2(C
2
4,k) = 232k−8,

Π3(C
2
4,k) = 221k+3,

NK(C2
4,k) = 27k+1,

Π∗1(C
2
4,k) = (2k · 3 · 5k−1)8,

GAΠ(C2
4,k) = 216k+11 · 516(1−k)/3,

HΠ1(C
2
4,k) = 216k · 316 · 516(k−1),

HΠ2(C
2
4,k) = 216(4k−1),

RΠ(C2
4,k) = 24(1−4k),

χΠ(C2
4,k) = [2k · 34 · 54(k−1)]−1,

ABCΠ(C2
4,k) = 2−4k.

Proof. The proof uses the vertex and edge partitions of C2
4,k in Tables 1 and 2. As the

calculations are similar to Theorem 1, we prefer to omit the details. �

4. Summary and conclusions

In this work, double square snake graphs are considered as special network structures

and some of their indices are calculated. Similar studies can be done for other lattice types

and for other topological graph indices.
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[4] I. Çanakçi, R. Schiffler, Snake graph calculus and cluster algebras from surfaces III: Band graphs and

snake rings, International Mathematics Research Notices, rnx157, 2017.

[5] I.I. Jadav, G.V. Ghodasara, Snakes related strongly*-graphs, International Journal of Advanced Engi-

neering Research and Science, Vol. 3 (9) pp 240-245, 2016.

[6] P. Mahalank, B.K. Majhi, I. N. Cangul, Zagreb indices of square snake graphs, Montes Taurus Journal

of Mathematics (preprint)

[7] B.K. Majhi, P. Mahalank, I. N. Cangul, Several Zagreb indices of double square snake graphs, (preprint)

[8] R. Schiffler, Snake Graphs, Perfect Matchings and Continued Fractions, Snapshots of Modern Math-

ematics form Oberwolfach, No: 1, Mathematisches Forschungsinstitut Oberwolfach, 2019 DOI:

10.14760/SNAP-2019-001-EN.


	1. Introduction
	2. Some additive topological indices of double square snake graphs
	3. Some multiplicative topological indices of C4,k2
	4. Summary and conclusions
	References

