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Abstract: We are concerned with the existence of L2 solution for the linearized cutoff Boltzmann equation

with the specular reflection condition. And we obtain the weak solution f ∈ L2([0, T ]; L2
ν) by applying the

dual method and the classical functional analysis tool such as Hahn-Banach theorem.
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1. Introduction

Boundary value problem occurs when the plasma-wall interaction happens. The gas par-

ticles are driven by binary collision dynamics following from the intermolecular potential

acting on them and by a gas-surface interaction process described by an interaction law.

This law gives a balance between the number of the incident particles and the ratio of those
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reflected or captured by the body, see [7, 8]. This phenomenon could be characterized by

the Boltzmann equation with boundary condition which could be formulated as follows:

(∂t + v · ∇x)F = Q(F, F ),

where F (t, x, v) is the distribution function for the gas particles at time t ≥ 0, position

x ∈ Ω, and velocity v ∈ R3. And the collision operator takes the form of

Q(F1, F2) =

∫
R3

∫
S2
|v − u|γF1(u

′
)F2(v

′
)q0(θ)dωdu

−
∫
R3

∫
S2
|v − u|γF1(u)F2(v)q0(θ)dωdu

≡ Qgain(F1, F2)−Qloss(F1, F2),

where u
′

= u + [(v − u) · ω]ω, v
′

= v − [(v − u) · ω]ω, cos θ = (u−v)·ω
|u−v| , 0 ≤ γ ≤ 1 (hard

potential) and 0 ≤ q0(θ) ≤ C| cos θ|(angular cutoff), and the boundary condition will be

defined shortly.

In terms of the standard perturbation f near Maxwellian such that F = µ+
√
µf, the

Boltzmann equation can also be rewritten as

{∂t + v · ∇x + L}f = Γ(f, f), f(0, x, v) = f0(x, v),

where the standard linearized Boltzmann operator [5] is given by

Lf ≡ νf −Kf = − 1
√
µ
{Q(µ,

√
µf) +Q(

√
µf, µ)} = νf −

∫
k(v, v

′
)f(v

′
)dv

′
,

with the collision frequency ν(v) ≡
∫
|v− u|γµ(u)q0(θ)dudθ ∼ {1 + |v|}γ for 0 ≤ γ ≤ 1; and

Γ(f1, f2) =
1
√
µ
{Q(
√
µf1,
√
µf2) ≡ Γgain(f1, f2)− Γloss(f1, f2).

And the coercivity takes the form as following:

(Lf, f) ≥ c0‖f‖2L2
ν
− c1‖f‖2L2 ,

where ‖f‖2L2
ν

=
∫
|f |2νdv.

As to the boundary conditions for the Boltzmann equation, mainly there are several

typical types as below:

1) Bounce-back reflection boundary condition: ∀x ∈ ∂Ω,

(1.1) Mγ+f(t, x, v) = f(t, x,−v);

2) Specular reflection boundary condition:

(1.2) Mγ+f(t, x, v) = f(t, x, v − 2(n(x) · v) · n(x)), ∀ x ∈ ∂Ω;

3) Diffuse boundary condition:
Mγ+f(t, x, v) = cµ

√
µ(v)

∫
v′·n(x)>0

f(t, x, v′)
√
µ(v′){n(x) · v}dv′, ∀(x, v) ∈ γ−

cµ

∫
v·n(x)>0

µ(v)|n(x) · v|dv = 1.

(1.3)
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Now we turn to review some results related to the boundary value problems of Boltz-

mann equations which have been studied for seveval decades.

In the L1 framework, Mischler [9] demonstrated the existence of DiPerna-Lions renor-

malized solutions [2] to the Boltzmann equation and the Vlasov-Poisson-Boltzmann system

for the initial boundary value problem. More precisely, Mischler considered the following

problem:

(1.4)



∂tf + v · ∇xf +∇xφ · ∇vf = Q(f, f)

∆φ(t, x) =
∫
f(t, x, v)dv, (t, x) ∈ (0,∞)× Ω

φ(t, x) = 0, (t, x) ∈ (0,∞)× ∂Ω

γ−f = Mγ+f∫∫
Ω×R3 f0(1 + |v|2 + | log f0|)dvdx <∞,

and he obtained a solution f to (1.4) such that

sup
[0,T ]

∫∫
Ω×R3

f(1 + |v|2 + | log f |)dvdx ≤ CT .

For the L∞-framework, Guo [5] obtained an L∞ solution for the Boltzmann equation

in the bounded domains with four basic types of boundary conditions: in-flow, bounce-back

reflection, specular reflection and diffuse reflection. For instance,

Proposition 1.1. ([5]) Assume w(v) = (1+ρ2|v|2)β, ρ > 0, β ∈ R, w−2(1+ |v|)3 ∈ L1, then

∃ δ > 0, such that if F0(x, v) = µ+
√
µf0 and ‖wf0‖∞ ≤ δ. There exists a unique solution

F (t, x, v) = µ+
√
µf

to the specular boundary value problem

(1.5)


(∂t + v · ∇x + L)f = Γ(f, f)

Mγ+f(t, x, v) = f(t, x, v − 2(n(x) · v) · n(x))

f(0, x, v) = f0(x, v).

Moreover,

sup
0≤t≤∞

eλt‖wf(t)‖∞ ≤ C‖wf0‖∞, for some λ > 0.

Further, Guo, Kim, Tonon and Trescases [6] considered the regularity of solution for

Boltzmann equation in the convex domain based on the existence of L∞ solution.

For the L2 framework, Esposito ect. [3] considered the linearized Boltzmann equation

for diffuse reflection boundary conditions and established an L2-solution for the following

system of equation:

(1.6)


∂tf + v · ∇xf + Lf = g

γ−f = Mγ+f

f(0) = f0,
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where

Mγ+f(t, x, v) = cµ
√
µ(v)

∫
v′·n(x)>0

f(t, x, v′)
√
µ(v′){n(x) · v}dv′, ∀(x, v) ∈ γ−

is the diffuse reflection boundary condition and
∫∫

Ω×R3 g(t, x, v)
√
µdv = 0.

To study the linearized Boltzmann equation with specular boundary conditions is in-

teresting. In this context, we consider the existence of L2 solution for the linearized cutoff

Boltzmann equation with the specular reflection boundary condition, i.e.,

(1.7)


∂tf + v · ∇xf + Lf = H

γ−f = Mγ+f

f(0) = f0,

where M defined by (1.2), i.e. the specular reflection boundary condition, and

H ∈ L2([0, T ]× Ω× R3).

To realize our goal, we mainly adopt the dual method. Comparatively, in [3], the

authors adopted the iteration method. To be more precise, we establish the functional

inequality |l(P ∗g)| ≤ c‖P ∗g‖L2([0,T ]; L2
ν−1 ), ∀g ∈ W, and Hahn-Banach theorem, Riesz rep-

resentation theorem are applied to establish this estimate.

Lastly, we introduce some definitions and notations for later use.

i) ([10]) The trace operator γ±f = f |Σ± are defined primarily on f ∈ C1
0 (D̄), which could

be extended to W2 = {f ∈ L2(D) | (∂t + v · ∇x)f ∈ L2(D)}, where

Σ+ = {(x, v) ∈ ∂Ω× R3 : n(x) · v > 0},

Σ− = {(x, v) ∈ ∂Ω× R3 : n(x) · v < 0},

D = (0, T )× Ω× R3, Ω is a domain in R3.

ii) Denote the boundary inner product

〈g1, g2〉± =

∫∫
±v·n(x)>0

g1(x, v)g2(x, v)|v · n(x)|dvdSx,

and

‖γ±g‖2L2,± =

∫
Σ±
|g|2 |v · n(x)|dvdSx,

where dSx is the standard surface measure on ∂Ω, n(x) is outward normal vector, and the

L2 inner product is defined as (f, g) =
∫

[0,T )×Ω×R3 fgdsdxdv.

iii) We call f ∈ L2([0, T ];L2
ν) is weak solution if

(f, (−∂t − v · Ox + L)g) =

∫ T

0
(H, g)L2ds+ (f0, g(0))L2 , ∀g ∈W,

where

W =: {g ∈ L2
ν | (∂t + v · ∇x)g ∈ L2, γ±g ∈ L2,±, γ+g = Mγ−g, g(T ) = 0}.

Now we are in the position to state the main theorem and give its proof as well.
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2. The main theorem and its proof

Theorem 2.1. Assume f0 ∈ L2(Ω×R3), H ∈ L2([0, T ]×Ω×R3), then there exists a weak

solution f ∈ L2([0, T ]; L2
ν) to (1.7).

Proof. Our proof relies on the dual method. Firstly, we introduce a formal adjoint operator

defined as follows:

(2.1) P ∗g = −∂tg − v · ∇xg + Lg, g ∈W.

Then we are going to prove the following claim.

Claim: ‖g(t, ·)‖2 +
∫ T
t ‖g(s)‖2L2

ν
ds .

∫ T
t ‖P

∗g‖2
L2
ν−1

ds.

In fact, on the one hand, by the Green formula [4], we have

(2.2)∫∫
Ω×R3

(v · ∇xg)gdvdx =
1

2

∫∫
Ω×R3

v · ∇xg2dvdx

=
1

2

∫∫
∂Ω×R3

g2 · (n(x) · v)dvdSx (Green’s formula)

=
1

2

(∫∫
n(x)·v>0

|g|2 · (n(x) · v)dvdSx +

∫∫
n(x)·v<0

|g|2 · (n(x) · v)dvdSx

=
1

2

(∫∫
n(x)·v>0

|g|2 · |(n(x) · v)|dvdSx −
∫∫

n(x)·v<0
|g|2 · |(n(x) · v)|dvdSx

)
=

1

2

(
‖γ+g‖2L2 − ‖γ−g‖2L2

)
.

Thus,

(2.3) (P ∗g, g) = −1

2

( d
dt
‖g‖2L2 + ‖γ+g‖2L2,+ − ‖γ−g‖2L2,−

)
+ (Lg, g)L2 ,

multiplying e2cs with c to be determined, and integrating with respect to s in [t, T ], we have∫ T

t
e2cs(P ∗g, g)ds = −1

2

∫ T

t
e2cs d

ds
‖g‖2L2ds+

1

2

∫ T

t
e2cs(‖γ−g‖2L2,− − ‖γ+g‖2L2,+)ds

+

∫ T

t
e2cs(Lg, g)ds

=: I1 + I2 + I3

For I1,

I1 = −1

2

∫ T

t

d

ds
(e2cs‖g‖2L2)ds+

1

2

∫ T

t
2ce2cs‖g‖2L2ds

= −1

2
(e2cT ‖g(T )‖2 − e2ct‖g(t)‖2L2) +

1

2

∫ T

t
2ce2cs‖g(s)‖2L2ds,

note that g(T ) = 0, we have I1 ≥ 1
2‖g(t)‖2L2 + c

∫ T
t e2cs‖g(s)‖2L2ds.
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For I2, it is easy to get I2 = 0 since ‖γ+g‖2L2,+ = ‖γ−g‖2L2,− .

For I3, note that

(Lg, g) ≥ c0‖g‖2L2
ν
− c1‖g‖2L2

and

I3 ≥ c0

∫ T

t
e2cs‖g‖2L2

ν
ds− c1

∫ T

t
e2cs‖g‖2L2ds.

It follows that ,

(2.4)

∫ T

t
e2cs|(P ∗g, g)|ds ≥ 1

2
‖g(t)‖2L2 + c

∫ T

t
e2cs‖g(s)‖2L2ds

+ c0

∫ T

t
e2cs‖g‖2L2

ν
ds− c1

∫ T

t
e2cs‖g‖2L2ds.

On the other hand, by Young’s inequality with ε [4], taking ε small enough, and the

Cauchy-Schwartz inequality, we derive

∫ T

t
e2cs|(P ∗g, g)|ds .

∫ T

t
e2cs(cε‖P ∗g‖L2

ν−1
+ ε‖g‖2L2

ν
)ds

.
∫ T

t
e2cscε‖P ∗g‖L2

ν−1
ds+ ε

∫ T

t
e2cs‖g‖2L2

ν
ds.

Consequently,∫ T

t
e2cscε‖P ∗g‖L2

ν−1
ds ≥ 1

2
‖g(t)‖2 +

∫ T

t
(c− c1)e2cs‖g‖2L2ds

+

∫ T

t
(c0 − ε)e2cs‖g‖2L2

ν
ds.

Note ε is small and taking c > c1, then the claim holds.

Now we define a functional l on P ∗W as follows:

(2.5) P ∗g −→ l(P ∗g) =

∫ T

0
(H, g)L2ds+ (f0, g(0))L2

By the claim proved above , we have

|l(P ∗g)| ≤
∫ T

0
‖H‖L2‖g‖L2ds+ ‖f0‖L2‖g0‖L2

≤
(∫ T

0
‖H‖L2ds+ ‖f0‖L2

)(∫ T

0
‖P ∗g‖2L2

ν−1
ds
) 1

2
,

i.e.

|l(P ∗g)| ≤ c
(∫ T

0
‖P ∗g‖2L2

ν−1
ds
) 1

2
= c‖P ∗g‖L2([0,T ]; L2

ν−1 ).

Thanks to the Hahn - Banach Theorem [1], l has a bounded extension l̃ to L2([0, T ], L2
ν−1).

Finally, the Riesz representation theorem guarantees there exists f ∈ L2([0, T ], L2
ν), such

that

(2.6) l̃(h) = (f, h), ∀ h ∈ L2([0, T ], L2
ν−1).
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Restricting to P ∗W ⊂ L2([0, T ], L2
ν−1), we have

(2.7) l(P ∗g) = (f, P ∗g), ∀ g ∈W,

i.e.

(2.8) (f, (−∂t − v · Ox + L)g) =

∫ T

0
(H, g)L2ds+ (f0, g(0))L2

which ends the proof of Theorem 2.1. �
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