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Abstract: We are concerned with the existence of L? solution for the linearized cutoff Boltzmann equation
with the specular reflection condition. And we obtain the weak solution f € L([0,T]; L2) by applying the
dual method and the classical functional analysis tool such as Hahn-Banach theorem.
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1. INTRODUCTION

Boundary value problem occurs when the plasma-wall interaction happens. The gas par-
ticles are driven by binary collision dynamics following from the intermolecular potential
acting on them and by a gas-surface interaction process described by an interaction law.

This law gives a balance between the number of the incident particles and the ratio of those
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reflected or captured by the body, see [7), 8]. This phenomenon could be characterized by

the Boltzmann equation with boundary condition which could be formulated as follows:
(O +v-V,)F=Q(F,F),

where F(t,z,v) is the distribution function for the gas particles at time ¢ > 0, position

x € €, and velocity v € R3. And the collision operator takes the form of

QFL, ) = /R s o — ul'Fy () Py (v )go (60)duwdu

- / v — uYFy () Fa(v)qo (0) deodu
RS SQ

= anin(Fh FQ) - Qloss(FL FQ)a

where v’ = u + [(v — u) - Ww,v = v — [(v — u) - Ww,cosh = (T;fz}'|w,0 <~ <1 (hard

potential) and 0 < ¢o(f) < C|cosf|(angular cutoff), and the boundary condition will be
defined shortly.

In terms of the standard perturbation f near Maxwellian such that F' = u + ,/uf, the
Boltzmann equation can also be rewritten as

{at+UvI+L}f:F(fvf)7 f(oax’v):fO(maU)v

where the standard linearized Boltzmann operator [5] is given by

/

Lf=vf—Kf= —Z{Q(uvx/ﬁf) QRS )} = vf / (v, 0') f (o))

f
with the collision frequency v(v) = [ |v — u|”p(u)qo(8)dudf ~ {1+ |v|}7 for 0 < v < 1; and
L(f1, f2) = L{Q(\/ﬁfb Virf2) = Lgain(f1s f2) — Tioss(f1, f2)-

Vi
And the coercivity takes the form as following;:
(LS. f) = ol fI2; - el 1122,
where |13, = [ 1/ Pvdo.

As to the boundary conditions for the Boltzmann equation, mainly there are several
typical types as below:
1) Bounce-back reflection boundary condition: Va € 912,

(1.1) M’y"'f(lf,x,v) = f(t, @, —v);
2) Specular reflection boundary condition:
(1.2) MAytf(t,z,v) = f(t,z,v —2(n(z) -v) - n(z)), Ve

3) Diffuse boundary condition:

My f(t2,v) = cur/p(v) / f(t )/ () {n(x) - vide', V(z,v) €7

v'-n(z)>0

(1.3)
Cu /v-n(x)>0 w(v)|n(x) - vldv = 1.
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Now we turn to review some results related to the boundary value problems of Boltz-

mann equations which have been studied for seveval decades.
In the L' framework, Mischler [9] demonstrated the existence of DiPerna-Lions renor-

malized solutions [2] to the Boltzmann equation and the Vlasov-Poisson-Boltzmann system

for the initial boundary value problem. More precisely, Mischler considered the following

problem:

Wf+v-Vaf + Voo Vo f =Q(f, f)

Ag(t,z) = [ f(t,z,v)dv, (t,z) € (0,00) x Q
(1.4) o(t,z) =0, (t,z) € (0,00) x I

Y f=Mytf

Jfopegs fo(1 + [v]2 + | log fo|)dvda < oo,
and he obtained a solution f to ([1.4)) such that

sup // f(1+|v|? + |log f|)dvdx < Cr.
0,77 J JoxRr3

For the L*™°-framework, Guo [5] obtained an L*° solution for the Boltzmann equation
in the bounded domains with four basic types of boundary conditions: in-flow, bounce-back

reflection, specular reflection and diffuse reflection. For instance,

Proposition 1.1. ([5]) Assume w(v) = (1+p?|v]?)8,p > 0,8 € R,w2(1+v|)® € L', then

30 >0, such that if Fo(x,v) = p+ /ifo and ||wfollec < 6. There exists a unique solution
F(t,z,v) = p+/nf

to the specular boundary value problem
(O +v-Vo+L)f =T(f, f)
(1.5) MA*f(t,z,v) = f(t,v,0 —2(n(z) - v) - n(r))

f(0,z,v) = fo(z,v).
Moreover,

sup M wf(t)]loo < Cllwfolloo, for some A > 0.
0<t<o0

Further, Guo, Kim, Tonon and Trescases [6] considered the regularity of solution for

Boltzmann equation in the convex domain based on the existence of L solution.

For the L? framework, Esposito ect. [3] considered the linearized Boltzmann equation
for diffuse reflection boundary conditions and established an L2-solution for the following

system of equation:
Of+v-Vof+Lf=g
(1.6) v f=MyTf

f(0) = fo,
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where

Myt f(t z,v) = Cu\/u(v)/ ft, 2, 0") p(){n(z) - vid', V(x,v) €7

v'-n(z)>0
is the diffuse reflection boundary condition and [, s g(t,z,v)\/pdv = 0.

To study the linearized Boltzmann equation with specular boundary conditions is in-
teresting. In this context, we consider the existence of L? solution for the linearized cutoff

Boltzmann equation with the specular reflection boundary condition, i.e.,
of+v-Vyf+Lf=H
(1.7) v f=MyTf

£(0) = fo,

where M defined by (|1.2)), i.e. the specular reflection boundary condition, and
H € L%([0,T] x Q x R3).

To realize our goal, we mainly adopt the dual method. Comparatively, in [3], the
authors adopted the iteration method. To be more precise, we establish the functional
inequality [I(P*g)| < cl[P*gllz2jo,my; £2_,)» V9 € W, and Hahn-Banach theorem, Riesz rep-

resentation theorem are applied to establish this estimate.

Lastly, we introduce some definitions and notations for later use.
i) ([I0]) The trace operator v*f = f|s+ are defined primarily on f € CZ(D), which could
be extended to Wo = {f € L3(D) | (0; +v- V) f € L*(D)}, where

YT ={(z,0) € xR3: n(x) v>0},
Y7 ={(z,v) €N xR: n(zx) v<0}
D =(0,T) x 2 xR Qis a domain in R

ii) Denote the boundary inner product

(g1, g2)s = / / 912, v)g2(, v)|v - n(x)|dvdSs,
+v-n(z)>0

and
gl = [ 1ol o n(a)ldods.,

where dS; is the standard surface measure on 0f2, n(x) is outward normal vector, and the
L? inner product is defined as (f,g) = f[o T)x QX3 fgdsdzdv.
iii) We call f € L%([0,T]; L2) is weak solution if

T
(f, (=0 —v Ve + L)g) = /0 (H,g)r2ds + (fo,9(0)) 2, Yge W,
where
W= {geL2| (O +v-Vi)geL? yrge L** yTg=Myg, g(T) =0}.

Now we are in the position to state the main theorem and give its proof as well.
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2. THE MAIN THEOREM AND ITS PROOF

Theorem 2.1. Assume fo € L>(Q x R3), H € L%([0,T] x Q x R3), then there exists a weak
solution f € L*([0,T]; L?) to .

Proof. Our proof relies on the dual method. Firstly, we introduce a formal adjoint operator

defined as follows:
(2.1) Pg=—-0g—v-Veg+Lg, geW.
Then we are going to prove the following claim.
. T T || px
Claim: lg(, )| + [, l9(s)lZzds < Jy [1P*gl72  ds.
In fact, on the one hand, by the Green formula [4], we have

(2.2)
1
//Q RS(U - Vzg9)gdvdr = 3 //Q - v - Vegidvde
X X
1

=5 // g% - (n(z) - v)dvdS, (Green’s formula)
2 OO xR3

1
=5 // lgl* - (n(x) 'U)dvdSer// 19]? - (n(z) - v)dvdS,
2 n(x)-v>0 n(x)-v<0

1
—5([[ ity oideds, — [ jgJnta) o) dvds,)
n(x)-v>0 n(z)-v<0
Lew v 2
= 3 (I* gl — Iy gli3:).
Thus,
(2.3) (P g.9) = =5 Zllollze + 7 gll2r — " gllza- ) + (L9, 9)r2,
multiplying €2 with ¢ to be determined, and integrating with respect to s in [t, 7], we have
4 2cs * 1 T 2cs d 2 1 T 2cs — 112 + 112
e (Prg.9)ds = —5 | e llgleds +5 [ (v glza- — T gllzz)ds
t t S 2 J

T
+ / e2es (Lg,g)ds
t

= L+IL+]I3

For I,

1 [T d 2cs 2 17 2cs 2
Il = —5 \ £(e ||g||L2)d8 + 5 ] 2ce ||g||L2d8

1

1 T
= —§(€QCTH9(T)HZ —Mg()72) + 2/ 2ce(|g(s) 7 2ds,
t

note that g(T') = 0, we have I; > 3||g(t)[|%. + cftT e ||g(s)||2ds.
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For I, it is easy to get Jo = 0 since |[yvFgl|F2 = (7 gl7a.--
For I3, note that

(Lg,9) > collgllzz — allgl?a

and
T T
I3 > co/ 6203||g||2L3d8—01/ eQCngH%zds.
¢ ¢

It follows that ,

T T
CcS * 1 CS
| el a.lds = Glals < [ e lg)ads
(2.4)

T T
e [ lglpds - [ glfads
t t

On the other hand, by Young’s inequality with e [4], taking e small enough, and the

Cauchy-Schwartz inequality, we derive

T T
/ 25|(Pg, g)lds < / 25 (e | Pgll e +ellgl2:)ds
t t v

AN

T T
| eedPralie dse [ gl s
t v t Y

Consequently,

T T
N 1
[ escdpral s = Sla@IP+ [ e e glds
t v t

T
+ [ o= gl
t

Note € is small and taking ¢ > ¢, then the claim holds.

Now we define a functional [ on P*W as follows:

T
(2.5) Py — 1(Pg) = /0 (H. g)12ds + (fo. 9(0)) 2

By the claim proved above , we have

T
(Pl < [ 1H I lglds + 1olle ool
T T ) %
(] 1ds 4 1lse) ([ 1Pl ds)7,

T 1
1Pl < [ 1Pl ds)” = el gliagom 12

IN

i.e.

Thanks to the Hahn - Banach Theorem [1], [ has a bounded extension [ to L2 ([0, T, L2_)).
Finally, the Riesz representation theorem guarantees there exists f € L?([0,77], L2), such
that

(2.6) I(h) = (f,h), ¥ heL*0,T),L>,).



L? SOLUTION OF LINEARIZED CUTOFF BOLTZMANN EQUATION 7

Restricting to P*W C L*([0,T], L?_,), we have

(2.7) I(P*g) = (f,P*g), YgeW,

i.e.

T
(2.8) (. (=0 — v+ Vo + L)g) = /0 (H. g)12ds + (fo, 9(0))

which ends the proof of Theorem O
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