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Abstract: Evacuation planning problem deals with sending the maximum number of evacuees from the

danger zone to the safe zone in minimum time as efficiently as possible. The dynamic network flow models

for various evacuation network topology have been found suitable for the solution of such a problem. Bus-

based evacuation planning problem (BEPP), as an important variant of the vehicle routing problem (VRP),

is one of the emerging evacuation planning problems. In this work, an organized overview of this problem

with a focus on their solution status is compactly presented. Arrival patterns of the evacuees including their

transshipments at different pickup locations and their assignments are presented. Finally, a BEPP model

and a solution for a special network are also proposed.
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1. Introduction

Evacuation planning problem deals with sending the maximum number of evacuees

from source (danger zone) to sink (safe zone) in minimum time as efficiently as possible.

It can be further classified into microscopic and macroscopic planning. The microscopic

planning deals with the individual evacuee’s behavior in which some probabilistic laws for

individual evacuees movement are presented and mainly based on the simulation approaches.

But in macroscopic planning, they are principally based on optimization approaches where

the evacuees are treated as the homogeneous group and only the common characteristics are

considered. Optimization approaches on such macroscopic evacuation planning can further

be classified like a heuristic approach, population optimization, modeling as fluid dynamics,

traffic management, optimal evacuation destination, and network flow formulation. Among

them, the dynamic network flow formulation has been found suitable evacuation optimiza-

tion approach. There has been a fair amount of work regarding different aspects of network

flow formulation related to the evacuation planning problem, as referred by [2], [3], [6]-[8].

For detail about the time minimization on such problems with minimum clearance time in

an integrated evacuation network topology, we refer to [1], [4] and the references therein.
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For an evacuation network, a remarkable BEPP model was formulated by Bish in [5]

to minimize the time of evacuation using a given number of homogeneous buses satisfying

all evacuee demands, without violating both sink and vehicle capacity constraints. Here,

the number of evacuees at the demand node might be greater than the capacity of a bus

and requests the split delivery within the pickup locations. But for a BEPP in [12], the

number of evacuees at every source node be known in terms of the integral multiples of

the busloads and does not request for the split delivery service. However, the split delivery

need not improve always the evacuation duration, as mentioned in [4].

A robust bus-based evacuation planning problem RBEPP has been presented in [11]

in which only some possible scenarios of the evacuees are provided rather than the exact

number in each of the collection points. Based on such BEPP and RBEPP, Pyakurel et

al. [23] explored a wide horizon to the research related to the transit-dependent evacuation

planning problem. Kathmandu, one of the densely populated city, has been considered

as the disaster region. In their solutions, they have used the branch and bound approach

presented in [12], and the tabu search heuristic from [11], respectively. In their results,

the domain of optimal solutions remains on a large number of buses with higher capacity

and speed, irrespective of the population chosen where the choice of the number of sources

and sinks does not play a significant role. A risk-based bus schedule technique for pickup

location with concerns of disaster dynamics and time-varying supply-demand conditions is

proposed in [17].

This paper considers optimization problems in evacuation planning. However, covering

the broad horizon of the evacuation strategies respecting to such problems in a single paper

is almost impossible. Here, we are focused fundamentally on the time minimization aspect

of the transshipment problems in the transit-based evacuation scenarios in the integrated

evacuation network topology. A compact and systematic overview of the evacuation strate-

gies based on network flow formulation with regard to their solution status is presented.

Besides this, it has a glimpse of the arrival patterns of the evacuees in such the evacuation

network and their assignment with reference to a bus-based evacuation planning problem.

The paper is organized as follows. Section 2 presents an organized overview of evac-

uation network topology, different variants the network flow models and their solution

strategies. Collection of evacuees at different pickup locations in an evacuation scenario

is presented Section 3. Bus based evacuation planning problem is in Section 4. Finally,

Section 5 concludes the paper.

2. Evacuation Network Topology

Consider a dynamic network N = (G, u, τ, S, Z) that consists of a directed graph

G = (V,A) in which an arc e = (i, j) ∈ A has a flow capacity function u : A → R+

and a transit time function τ : A → R+. Here, S and Z are used to denote the set of

sources (danger zones) and sinks (shelters or safe zones), respectively. Their union, i.e.

S ∪ Z denotes the terminals. It may additionally provided with supply/demand function

ν : S ∪ Z → R+ with supplies ν(s) > 0 for all sources s ∈ S and demands ν(z) < 0 for all
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sinks z ∈ Z such that
∑

s∈S∪Z ν(s) = 0. One of the fundamental problems in the dynamic

network is the evacuation planning problem.

In a dynamic network flow model, the time can be considered continuous or discrete.

In the case of a static network flow model, the time parameter is absent. In general, the

continuous model yields more accurate results over the discrete but are more challenging to

compute. Evacuees movement can be considered as pedestrian or car-based (auto-based)

or bus-based (transit-based). In most of the large cities, many people depend on transit-

vehicles, say buses, and are not provided with their own vehicles. The great loss of people in

disasters is due to a lack of proper planning of transit-vehicles rather than the disaster itself.

In such situations, transit-based evacuation system is more effective than others, in general,

and can be operated in an integrated approach in a different network topology. However, it

may depend upon the nature of the evacuation scenario. The nature of the pickup locations

may also differ from each other. Such pickup locations can also be prioritized depending

upon their locations and availabilities.

2.1. Prioritized network. A prioritized network is a multi-terminal network which con-

sists prioritized terminals. Under the given priority of terminals, two flows can be compared

according to departure/arrival flows form/in the sinks or sources. A flow value is said to be

lexicographic if it is compared according to the rank of the terminals. LetN = (G, u, τ, S, Z)

be a prioritized network with priority t1, t2, . . . , tn; ti ∈ S ∪ Z. Let

|f |t :=

{ ∑
e∈A+

t
fe, t ∈ S is a source∑

e∈A−t
fe, t ∈ Z is a sink

be the out/in flow value from/in the source and sink, respectively. Suppose f1 and f2 be

the terminal respecting flows, f1 is said to be lexicographically bigger than f2 and written

as f1 ≥L f2 if ∃l ∈ {0, 1, . . . , k− 1} : ∀ i ∈ {1, 2, . . . , l} : |f1|ti = |f2|ti ∧ |f1|tl+1
> |f2|tl+1

or

∀i ∈ {1, 2, . . . , k} : |f1|ti = |f2|ti . The maximum flow respecting the rank of the terminals

is said to be lexicographically maximum flow.

A solution to maximum flow problem sends the maximal amount of flow from the

sources to the sinks for the fixed integer time horizon T . Lexicographically maximum (lex-

max) flow problem with many sources and many sinks was introduced and many efficient

algorithms were presented from different aspects in [19, 20, 21]. In such a problem, the

terminals (sources and/or sinks) are ordered with certain priority for a lex-max flow re-

specting the priority, considering the set of sources and sinks be prioritized as s1, s2, . . . , sk

and y1, y2, . . . , yk, respectively, as a prioritized network. Such a lex-max flow is not nec-

essarily a maximum flow and vice versa, however, they are equivalent for two-terminal

networks [10].

In the quickest transshipment problem, a given number of evacuees has to be shifted

in minimum time. Such problem have been studied by the help of the lex-max dynamic

flow problem applying the minimum cost flow computations as a tool, in such a prioritized

network. For a given time T and an ordered set of multi-terminals, the lex-max dynamic flow

problem finds a feasible flow that lexicographically maximizes the flow leaving each terminal
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in the prioritized network. Hoppe and Tardos [13] deals with a chain decomposable flows

in such a network.

A chain flow γ = 〈ν, π〉 is a static flow of values ν ≥ 0 along the path π in a network

N = (G, u, τ, S, Z). The length of chain flow τ(γ) also represents total length of path τ(π).

Given the time horizon T no less than τ(γ), any chain flow γ induces a dynamic flow by

sending ν units of flow along the path π at every time step until T − τ(γ). A proper chain

flow starts and ends at terminals. A multiset of proper chain flows, Γ = {γ1, γ1, . . . , γk}
is a chain decomposition of static flows f if

∑k
i=1 γi = f . It becomes a standard chain

decomposition of f if all chain flows in it use edges in the same direction as of f . A flow

decomposition with zero flows on all cycles is the path decomposition. One may assume

that there is no flow along any cycle as the opposite flows along all cycles could be canceled.

In the non-standard chain decomposition, the chain flows may use oppositely directed

flows on edges. It may use a residual edge with negative transit times. For e = (i, j), a

unit of flow sent from i at time θ reaches j at time θ + τe is nothing other than sending

a negative unit of flow from j at time θ + τe to reach i at time θ. Let γ′1 be the another

chain that flows through (j, i), then that cancels the chain flow γ1 along (i, j). The chain

decomposable flows do not violate capacity constraints. Moreover, the non-standard chain

decomposition induces the dynamic flows.

Starting with zero flow, the lex-max flow algorithm computes the successive layers of

minimum cost static flows in the residual network of the previous layers and adds stan-

dard chains to the existing one. It takes k times the complexity of minimum cost flow

computations, for a given time T .

Theorem 2.1. [13] A k-terminal lex-max dynamic flow problem can be solved in polynomial-

time complexity with O(k.g(mn)), where O(g(mn)) is required for one minimum cost flow

computation on a network with n nodes and m edges.

2.2. Arc reversal network. The arc reversal is an approach that modifies the orientation

of arcs in the network to increase outbound flow with reduced time on the evacuation. It

is an effective and widely accepted approach for the optimal use of available road network

in evacuation management that increases the outward road capacities from the disastrous

areas towards the safe destination.

Let the reversal of an arc e = (i, j) be e′ = (j, i), then the transformed network of N
consists of the modified arc capacities and constant transit times as,

ue = ue + ue′ and τe =

{
τe, if e ∈ A
τe′ , otherwise

(2.1)

where an edge e ∈ A in a transformed network, if e ∨ e′ ∈ A in N . The remaining

graph structure and data are unaltered. For the solution status of a problem, we have

Theorem 2.2. [28] The maximum static s− z flow problem with arc reversals is polyno-

mially solvable.
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Proof. The maximum static s− z flow problem on arc reversal in the transformed network

can be solved by decomposing the obtained flow into paths and cycles, and by deleting the

latter one assuming that the arcs on either direction will never be used in the optimal flow.

An arc e′ = (j, i) ∈ A is reversed if and only if the flow on (i, j) is greater than ue(i, j), or

if there is a nonnegative flow along (i, j) /∈ A and the resulting flow is maximum with arc

reversal. Such a flow is feasible and optimal too with polynomial-time complexity. �

And a similar result follows in a multi-terminal network by a simple reduction.

Theorem 2.3. [28] The maximum static flow problem on the arc reversal network with

multiple sources and sinks is polynomially solvable.

Proof. As the general maximum static flow problem on arc reversal can be reduced to the

respective s∗ − z∗ flow problem, providing the super-source s∗ and super-sink z∗. Here, s∗

is connected to each s ∈ S having arc capacities equal to their respective surplus and z∗ to

each z ∈ Z having arc capacities equal their respective deficits. Hence, the respective static

version of the maximum flow problem with arc reversal with multiple sources and multiple

sinks is also polynomially solvable. �

The similar situation exists regarding the maximum dynamic flow problem on arc

reversal in two-terminal networks, though in general, we have,

Theorem 2.4. [28] The maximum dynamic flow problem in a multi-terminal network on

arc reversal is NP-complete.

Such NP-completeness in a multi-terminal network is so due to the conflict with revert-

ing the intermediate arcs, [28]. Hence, numerous heuristics and metaheuristics have been

presented and implemented for the solutions of different types of evacuation planning prob-

lems by arc reversal approach, [26]. Instead of full arc reversal, arcs are better to reverse up

to the necessary capacity only, as the partial arc reversal. Such an approach has presented

lucidly with different models, algorithms, and solution strategies by Pyakurel et al. [25, 24].

In recent work, authors in [4], have integrated it with the earliest arrival transshipment and

the flows in zero transit times as,

Theorem 2.5. [4] The earliest arrival evacuee problem having zero transit times with

partial arc reversal capability follows the principle of temporally repeated flows and can be

solved in polynomial-time complexity.

Proof. The flow that reached to each of the pickup locations at zero transit times determines

the maximum number of evacuees at every possible time instance from the beginning, as

in [29]. So, it follows the principle of temporally repeated flows on the transformed network

which is equivalent to the solution with arc reversals capability on the original network, as

in [27]. Hence, it can be solved in polynomial-time complexity. �

For the limited resources it is not possible to select all arc reversals as demanded by

the optimal arc reversal strategy, as each arc reversal is associated with certain operating

costs. To address such issues, its budget constraint version is investigated in [9]. They have

solved such a problem in a time-expanded network so it is pseudo-polynomial.
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Theorem 2.6. [9] The maximum dynamic flow problem with budget constraint switching

cost can be solved optimally in pseudo-polynomial-time.

2.3. Integrated evacuation network. Depending upon nature and needs, different net-

works can be embedded to have an integrated network. For example, the authors in [14]

had presented an integrated contraflow network for multimodal evacuation. They integrate

the non-contraflow, the full-lane-contraflow, and the bus-contraflow networks to shorten the

strategy set up time, to maximize the evacuation network capacity, and to realize the transit

cycle operation, respectively. Adhikari et al. [4] have presented an integrated evacuation

strategy in an embedded network topology, N = N1 ∪ N2, where N1 consists of directed

two-way network respecting the partial arc reversal capability for the collection of evacuees.

By treating such supplies as the sources, the available set of transit-vehicles at the depot

are assigned to transverse the evacuees in the dominant routing to the sinks in N2. In such

an approach, evacuees are collected at the pickup locations from the sources in the earliest

arrival flow pattern at zero transit times and then they are assigned to the transit-vehicles

in the embedded network with minimum clearance time.

Theorem 2.7. [4] The transit-vehicle assignment algorithm for an integrated evacuation

network gives the dominating solution for the transit-vehicle assignment problem with min-

imum clearance time.

3. Collection of evacuees at pickup locations

The collection of evacuees at pickup locations can be categorized to follow different ar-

rival patterns. But two of the prominent BEPP formulations as in [12] and [5] have assumed

the evacuees to be at the pickup locations with no specific arrival patterns. Such a problem

is extended to an RBEPP by assuming that the number of evacuees is not known exactly

but a set of estimates for the number of evacuees at each source is given [11]. Evacuees have

gathered themselves at different pickup locations relative to the population density of the

transit-dependent people nearby them in [23] with no specific arrival patterns. A constant

arrival rate of evacuees has been considered by the authors in [22]. Such an assumption is

still unrealistic as the true arrival process is probabilistic. A linear programming mathemat-

ical model using binary variables was developed in [16] to select the most suitable location

and the number of bus stops.

The cumulative percentage of total evacuees loaded in the evacuation network by time

θ since the start of the evacuation can be estimated as [15],

ξ(θ) =
1

1 + exp[−α(θ − h)]
.(3.1)

Here, α is the loading rate of evacuees representing the response of the public to the

disaster. The parameter h is the half loading time, represented by the mid-position of such

curve. Let ξi(θk) and ξi(θk−1) be the cumulative percentage of the evacuees arrival at the

pickup location i at the end of time interval k and k− 1, respectively. Let δi be the number

of evacuees arriving at pickup location i during the evacuation time frame and θk is the
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end of the evacuation time interval at k and Q be the maximal passenger capacity of the

vehicle. Let dki be the number of demand of vehicles at eack pickup locations i during

the time interval k, then the number of evacuees arriving at pickup location i during the

evacuation time frame is,

δi =
dki ×Q

ξi(θk)− ξi(θk−1)
.(3.2)

The flow of evacuees from the disaster zone s ∈ S to the pickup locations p ∈ P over

time is a non-negative function f on A × R+, for given time T = {0, 1, . . . , T} satisfying

the flow conservation and capacity constraints (3.3-3.5). The inequality flow conservation

constraints allow waiting for flow at intermediate nodes. However, the flow conservation

constraints force that flows entering an intermediate node must leave it again immediately.

T∑
σ=τe

∑
e∈Ain

i

f(e, σ − τe)−
T∑
σ=0

∑
e∈Aout

i

f(e, σ) = 0, ∀ i 6∈ {S, P},(3.3)

θ∑
σ=τe

∑
e∈Ain

i

f(e, σ − τe)−
θ∑

σ=0

∑
e∈Aout

i

f(e, σ) ≥ 0, ∀i 6∈ {S, P}, θ ∈ T,(3.4)

0 ≤ f(e, θ) ≤ ue, ∀ e ∈ A, θ ∈ T.(3.5)

Here, Aouti = {e = (i, j) ∈ A} and Aini = {e′ = (j, i) ∈ A} are the sets of outgoing and

incoming arcs, respectively for the node i ∈ V . For s, the flow value be νf (s) > 0, and for p

it becomes νf (p) < 0, whereas
∑

i∈V νf (i) = 0. If the supply and demand on such terminals

be fixed for all i ∈ {s, p}, then the earliest arrival evacuee problem maximizes value(νf , θ)

for all θ ∈ T, as in Equation (3.6) satisfying the constraints (3.3-3.5).

(νf , θ) =
θ∑

σ=0

∑
e∈Aout

s

f(e, σ) =
θ∑

σ=τe

∑
e∈Ain

p

f(e, σ − τe).(3.6)

Let ν(P, θ) stands for the flow amount out of source s that reaches to the pickup

location P at time θ ∈ Z+ with zero transit times, then the total flow amount out of s that

reached to P for all time up to θ′ ∈ Z+, with τe = 0, is given by

|νf |θ′ =
θ′∑
θ=1

|ν(P, θ)|.(3.7)

For the given time bound T , the value in Equation 3.7 becomes

|νf | =
T∑
θ=1

|ν(P, θ)|.(3.8)



8 ISWAR MANI ADHIKARI, TANKA NATH DHAMALA

3.1. Transshipment problems. When preparing for an evacuation, it is uncertain how

much time that will take to enact it. So, it is preferential to plan for the transversal of a

maximum number of evacuees reaching safety not only at the ultimate clearance time but

also in each possible time unit, i.e. with the maximum possible value of the value(νf , θ)

for all θ ∈ T, as in Equation (3.6). It is offered by the earliest arrival flows. On the other

hand, the quickest transshipment problem is to find the minimum clearance time to send a

given amount of flow from multiple sources to multiple sinks. Each of the earliest arrival

transshipment additionally optimizes the amount of flow leaving the network at all times

and is therefore the quickest transshipment. But not necessarily the converse, as illustrated

in Example 3.1. Moreover, the earliest arrival transshipment does not necessarily exist in

the networks with multiple sinks, but the quickest transshipments do.

s1 v1

s2

v2

v3

p

(1, 1)
(1, 1)

(1, 1)

(1, 1)

(2, 1)

(1, 1)

Figure 1. An instance of a dynamic evacuation network.

Example 3.1. Consider a dynamic network N having (ue, τe) be the capacity and transit

time for e ∈ A as in Figure 1. For s1 and s2 be the sources, and p be the pickup location,

let ν(s1) = ν(s2) = 3 and ν(p) = −6.

Consider two different flow patterns with their respective time, path assignments, flow

value, and the total flow in different columns, as in Table 1 and Table 2. Here, Table 1

represents a quickest transshipment that is not an earliest arrival transshipment. But,

Table 2 represents an earliest arrival transshipment which is also a quickest transshipment.

Table 1. A quickest transshipment which is not an earliest arrival transshipment.

Time unit Path assignment flow value Total flow reached

3 s1 − v1 − v2 − p 1

s2 − v2 − v3 − p 1 2

4 s1 − v1 − v2 − p 1

s2 − v2 − v3 − p 1 4

5 s1 − v1 − v2 − p 1

s2 − v2 − v3 − p 1 6

4. Bus based evacuation planning problem

In large cities of the developing countries, many people depend on transit-vehicles, say

buses. They are to be given a special attention due to their ages, language ineffciencies,

different health problems, or other physical disabilities. The great loss of people in disasters

is due to a lack of proper planning of transit-vehicles rather than the disaster itself. It was
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Table 2. An earliest arrival transshipment which is also a quickest transshipment.

Time unit Path assignment flow value Total flow reached

2 s2 − v2 − p 1 1

3 s2 − v2 − p 1

s1 − v1 − v2 − p 1 3

4 s2 − v2 − p 1

s1 − v1 − v2 − p 1 5

5 s1 − v1 − v2 − p 1 6

noticed that, the great loss of people on Hurricane Katrina was due to the lack of proper

planning for the transit-based evacuees an mentioned in [18]. In an integrated evacuation

network, the formulation of a prominent BEPP and its dominant assignment plays a vital

role. Based on the BEPP formulation by [5], one of the prominent version of BEPP has

been considered by [12] as follows:

Let (τij)i∈P, j∈Z be a matrix of source-sink travel times. Let the vectors τdi, (li)i∈P ,

and (µj)j∈Z be the depot-source travel times, number of evacuees, and sink capacities, re-

spectively. Then the BEPP is to find a tour plan to minimize the maximum travel times

overall buses such that all the evacuees be transported to the sinks.

For this, it is assumed that the number of evacuees at every source node be known

in terms of the integral multiples of the busloads and is so for the sink. For the solution

of such BEPP, the branch and bound algorithms with four upper bounds and three lower

bounds for time, three branching rules to minimize the number of branches and two tree

reduction strategies to avoid the equivalent branches have been presented by Goerigk et

al. in [12]. Upper bounds have been constructed in polynomial-time complexity by four

heuristic algorithms. Among the lower bounds, the first one is based on the estimation of

the travel times from sources to sinks and from sinks to sources, respectively. The second

lower bound is based on the fact that lower bound for the maximum travel time is the

average travel time. The third one is about the simplification of model formulation.

For i ∈ P and j ∈ Z, consider τij , τdi, li and µj be as in such BEPP as formulated

in [12]. For k ∈ R, is there a tour plan with Tmax ≤ k? Regarding its complexity, we have,

Theorem 4.1. [11] The decision version of BEPP is NP-complete, even if τdi = 0 and

τij = τi′j for all i, i′ ∈ P and j ∈ Z.

Proof. The BEPP is reduced to the scheduling problem of scheduling n-jobs on P -parallel

machines, which is NP-hard, as mentioned in [11]. Such a scheduling problem with maxi-

mum completion time, Cmax ≤ k for a given k has a yes-instance if and only if the respective

bus routing plan of BEPP with Tmax ≤ k has a yes-instance. As both the completion time

and the feasibility of the given solution can be checked polynomially, the decision version

of BEPP is NP-complete. �

4.1. BEPP in a diminished evacuation network. Consider a BEPP for a dimin-

ished evacuation network close to the real scenario which is equivalent to the third lower
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bound, [12] as about the simplification of model formulation. Here, sinks are far away from

the dangerous zone. The bus depot is in a closed environment to the disaster zone with

B be the set of available buses. So, let the super pickup node with the bus depot be Y0

with the evacuees ξy0 . Assume the capacity of each bus be 1. The movement between Z is

ignored. The set of tours of the buses cannot be changed anymore after they start to move

and are connected. The maximum number of trips for the evacuation process is given by

ξy0 . The nonnegative travel cost of τ0j on each edge e = (0, j) ∈ E are taken symmetric.

Let the sinks z ∈ Z be at a distance of τ0j from Y0, where ybj denotes a tour that the bus b

drives from the source to sink j ∈ Z and back from the sink j ∈ Z to the source. Let Tmax

be the duration of evacuation overall buses, then the problem becomes,

minimize Tmax(4.1)

such that Tmax ≥
∑
j∈Z

τ0jy
b
j ∀ b ∈ B,(4.2)

∑
b∈B

∑
j∈Z

ybj ≥ ξy0 ,(4.3)

∑
b∈B

ybj ≤ µj , ∀j ∈ Z,(4.4)

ybj ∈ {0, 1}, b ∈ B, j ∈ Z.(4.5)

Constraint (4.2) requires Tmax to be greater than or equal to the maximal travel cost

incurred by all buses and is to be minimized on Constraint (4.1). Constraints (4.3) and (4.4)

are the bus and shelter capacity constraints, respectively, which ensure that all evacuees are

transported and shelter capacities are respected. Constraint (4.5) represents whether the

bus b travels from source to sink j ( or travels back from the sink j to the source).

For the solution status and the proof of its decision version, similar to Theorem 4.1 as

mentioned earlier, we have,

Theorem 4.2. The decision version of the BEPP in a diminished evacuation network is

NP-complete.

For the upper bound of the evacuation duration on the BEPP as in [12], four different

heuristics algorithms were presented, three with the precomputed tourlists and the fourth

without any precomputed tourlists. In the fourth algorithm, the assignment of transit-

vehicles begins with the best possibility to bring one evacuee back from the sink to the

source and is continued iteratively, respecting the sink capacity constraints. It dominates

the rest in evacuation duration and is equivalent to the nearest sink approach as in [4]. So,

we prefer it as the dominating vehicle assignment for the network as in Example 4.4.

Observation 4.3. Let ξy0 and µ(zi) be the number of evacuees at the super pickup node Y0

and the sink capacities, respectively. Consider τk = min{τ01, τ02, . . . , τ0n} as the nearest sink

zk in the network. Let the extended sink capacity to the nearest sink be µ(zk) ≥
∑n

j=1 µ(zi).

Then such evacuation network s−Z be reduced to an s−z network with the minimum possible

evacuation duration. For this, the estimated evacuation duration becomes (2ξy0 − 1)τk.
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Y0 z1

z2z3

z4

z5 z6

1

23

4
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Figure 2. An instance of a bus-based evacuation problem in a diminished network.

Example 4.4. Consider a diminimshed evacuation network as in Figure 2. Let ξy0 = 26

with µ(zi) = {7, 6, 5, 4, 3, 2} for i = {1, 2, . . . , 6}. Their respective transit times τ0j from Y0

are shown along with the figure.

Then the tour plan for |B| = 1 is given by 14τ01 + 12τ02 + 10τ03 + 8τ04 + 6τ05 + τ06

with Tmax = 137. But if |B| ≥ 26, then Tmax = 7. For 1 < |B| < 26, consider |B| = 13, as

an arbitrary. Then the tour plan becomes 2τ01 + 2τ02, 2τ01 + 2τ04, 2τ02 + 2τ04, 2τ02 + 2τ05

and 2τ02 + τ07 for the buses {B1, B2, B3, B4, B5}, {B6, B7}, {B8, B9}, {B10, B11, B12} and

{B13}, respectively. For this, the effective Tmax = 14.

If this s−Z network is replaced by an s− z network having sufficient sink capacity at

z1 as requested by the given demand, then the tour plan for |B| = 1 be reduced to 51τ01

with Tmax = 51. But for |B| = 13, the respective Tmax = 3. However, for |B| ≥ 26, it

becomes 1. This is why a single sink having sufficient capacity is more appropriate for the

transit-based evacuation planning problem.

5. Conclusions

Proper planning of transit-vehicles within an integrated evacuation network might be

helpful to reduce the massive loss of the people and the socio-economic damage during

different disasters. It is beneficial for their normalcy. Planning a bus-based evacuation is

an extremely rich problem. In general, a challenging task.

We have presented a compact overview concerning different solution strategies and the

optimization approaches for the transit-based evacuation planning problem in an integrated

network topology. Flow maximization and/or time minimization on the transshipments are

highly affected by the arrival and assignment pattern of the evacuees. However, depending

upon the optimization objectives and the nature of the network topology, it needs several

extensions and should be investigated further.

Regardless of many directions of evacuation strategies, we have restricted mainly to

the computationally acceptable research domain on the network flow optimization for the

transit-based evacuation system in an integrated network topology. Most of the problems

in this category are NP-hard in nature and demand the various computational techniques

with acceptable approximations. Such NP-hard transit-dependent models and the solution

strategies demanded by them have rarely been considered in the literature however most of

the evacuation regions rely on transit-vehicles. In a real evacuation scenario, an optimizer

has to address the characteristics of the diversified and heterogeneous vehicles including

different commodities that are rather complicated from their computational aspects.
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