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Abstract: In this paper, we mainly study hyperbolic semigroups from which we get non-empty escaping sets

and Eremenko’s conjecture remains valid. We prove that if each generator of bounded type transcendental

semigroups is hyperbolic, then the semigroups are themselves hyperbolic and all components of escaping sets

are unbounded.
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1. Introduction

Throughout this paper, we denote the complex plane by C and the set of integers greater

than zero by N. We assume the function f : C → C is transcendental entire function unless

otherwise stated. For any n ∈ N, fn always denotes the nth iterates of f . The escaping

set of f is defined by

I(f) = {z ∈ C : fn(z) → ∞ as n → ∞}

and any point z ∈ I(S) is called an escaping point. For a transcendental entire function f ,

the escaping set I(f) was first studied by A. Eremenko [2]. He showed that

(1) I(f) $= ∅,

(2) the boundary of this set is a Julia set J(f) (that is, J(f) = ∂I(f)),

(3) I(f) ∩ J(f) $= ∅, and

(4) I(f) has no bounded component.

Furthermore,

5. I(fn) = I(f) for all n ∈ N.

6. I(f) is completely invariant under f .
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In view of the statement (4), he posed a question:

Is every component of I(f) unbounded ?

This question is considered as an important open problem of transcendental dynamics, and

nowadays, it is famous as Eremenko’s conjecture. Note that the complement of the Julia

set J(f) in C is the Fatou set F (f). A connected maximal open subset of F (f) is called

Fatou component.

For any holomorphic function f , we call

C(f) = {z ∈ C : f ′(z) = 0}

(where f ′ represents derivative of f with respect to z) by the set of critical points and

CV (f) = {w ∈ C : w = f(z) such that f ′(z) = 0 for some z}

by the set of critical values. The set AV (f) consisting of all w ∈ C such that there exists a

curve Γ : [0,∞) → C so that Γ(t) → ∞ and f(Γ(t)) → w as t → ∞ is the set of asymptotic

values of f and

SV (f) = (CV (f) ∪AV (f))

is the set of singular values of f . If SV (f) is finite, then f is said to be of finite type. If

SV (f) is bounded, then f is said to be of bounded type. The sets

S = {f : f is of finite type}

and

B = {f : f is of bounded type}

are respectively known as Speiser class and Eremenko-Lyubich class.

The main concern of this paper is to study of escaping sets of transcendental semigroups.

So, we start our formal study from the notion of transcendental semigroups. The set Hol(C)

denotes a set of all holomorphic functions of C. If f ∈ Hol(C), then f is either a polynomial

or a transcendental entire function. The composite of two entire functions is an entire

function. So, this fact makes the set Hol(C) a semigroup with semigroup operation being

the functional composition.

Definition 1.1 (Transcendental semigroup). Let A = {fi : i ∈ N} ⊂ Hol(C) be a set of

transcendental entire functions fi : C → C. A transcendental semigroup S is a semigroup

generated by the set A with semigroup operation being the functional composition. We

denote this semigroup by

S = 〈f1, f2, f3, · · · , fn, · · · 〉 or simply by S = 〈fi〉.

Here, each f ∈ S is a transcendental entire function and S is closed under functional

composition. Thus f ∈ S is constructed through a composition of the finite number of

functions fik , (where ik ∈ {1, 2, 3, . . . ,m} for some m ∈ N). That is,

f = fi1 ◦ fi2 ◦ fi3 ◦ · · · ◦ fim .
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A semigroup S generated by finitely many functions fi, (i = 1, 2, 3, . . . , n) is called

finitely generated transcendental semigroup and write

S = 〈f1, f2, . . . , fn〉.

If S is generated by only one transcendental entire function f , then S is calledcyclic or

trivial transcendental semigroup and write

S = 〈f〉

In this case, each g ∈ S can be written as g = fn, where fn is the nth iterates of f with

itself. The transcendental semigroup S is abelian if

fi ◦ fj = fj ◦ fi

for all generators fi and fj of S.

We say that a family F of holomorphic functions is a normal family in C if every

sequence (fi) ⊆ F has a subsequence (fik) which is uniformly convergent or divergent on

all compact subsets of C. If there is a neighborhood U of a point z ∈ C such that F is a

normal family in U , then we say that F is normal at z. If F is a semigroup S such that it

is normal family in a neighborhood U of a point z ∈ C, we say S is normal at z. We say

that a function f is iteratively divergent at z ∈ C if fn(z) → ∞ as n → ∞. A semigroup S

is iteratively divergent at z if

fn(z) → ∞ as n → ∞

for all f ∈ S. A semigroup S is said to be iteratively bounded at z if there is an element

f ∈ S which is not iteratively divergent at z.

Like in iteration theory of a single transcendental entire function, the Fatou set, Julia

set and escaping set in the settings of transcendental semigroups are defined as follows:

Definition 1.2 (Fatou set, Julia set and escaping set). Let S be a transcendental

semigroup. The Fatou set of S is defined by

F (S) = {z ∈ C : S is normal at z} ,

and the Julia set J(S) of S is the complement of F (S). The escaping set of S is defined by

I(S) = {z ∈ C : S is iteratively divergent at z}

We call each point of the set I(S) by an escaping point.

If S = 〈f〉, then the Fatou set, Julia set and escaping set are respectively denoted by

F (f), J(f) and I(f). So, Definition 1.2 generalizes the Fatou set, Julia set and escaping set

of a single transcendental entire function. For simplicity, we call the dynamics of S = 〈f〉

by classical transcendental dynamics and the dynamics of S = 〈fi〉 for at least i = 1, 2 by

transcendental semigroup dynamics.



48 BISHNU HARI SUBEDI, AJAYA SINGH

2. Some Fundamental Features of Escaping Set

The following immediate relation between I(S) and I(f) for any f ∈ S will be clear

from the Definition 1.2 of escaping sets.

Theorem 2.1. I(S) ⊂ I(f) for all f ∈ S and hence I(S) ⊂
⋂

f∈S I(f).

Proof. Let z ∈ I(S), then fn(z) → ∞ as n → ∞ for all f ∈ S. By which we mean z ∈ I(f)

for any f ∈ S. This immediately follows the second inclusion. !

We dealt this Theorem 2.1 in the case of a transcendental semigroup S even though it

holds for polynomial semigroups. Note that the above same type of relation (Theorem 2.1)

holds between F (S) and F (f). However opposite relation holds between the sets J(S) and

J(f). Poon [9, Theorem 4.1, Theorem 4.2] proved that the Julia set J(S) is perfect and

J(S) =
⋃

f∈S J(f) for any transcendental semigroup S. From Theorem 2.1, we can say that

the escaping set may be empty. For example, the escaping set of the semigroup S = 〈f, g〉

generated by functions f(z) = ez and g(z) = e−z is empty (that is, the particular function

h = g ◦ fk ∈ S (say) is iteratively bounded at any z ∈ I(f)). Note that I(f) $= ∅ in classical

iteration theory ([2, Theorem 1]). Dinesh Kumar and Sanjay Kumar [5, Theorem 2.5] have

also mentioned the following transcendental semigroup S, where I(S) is an empty set.

Proposition 2.1. The transcendental entire semigroup S = 〈f1, f2〉 generated by two

functions f1 and f2 from respectively two parameter families {e−z+γ + c where γ, c ∈

C and Re(γ) < 0, Re(c) ≥ 1} and {ez+µ + d, where µ, d ∈ C and Re(µ) < 0, Re(d) ≤ −1}

of functions has empty escaping set I(S).

There are several classes transcendental semigroups whose escaping sets are non-empty.

The following examples [8, Examples 3.2 and 3.3] and [5, Examples 2.6 and 2.7] are evident.

Example 2.1. Let S = 〈f, g〉, where f(z) = ez+λ and g(z) = ez+λ+2πi for all λ ∈ C−{0}.

Then I(S) = I(f) $= ∅.

Example 2.2. Let S = 〈f, g〉, where f(z) = λ sin z and g(z) = λ sin z+2π for all 0 < |λ| <

1. Then I(S) = I(f) $= ∅.

Example 2.3. Let S = 〈f, g〉, where f(z) = eλz and g(z) = esλz+2πi/λ for all λ ∈ C−{0}

and s ∈ N. Then I(S) = I(f) $= ∅.

Example 2.4. Let S = 〈f, g〉, where f(z) = λ sin z for all λ ∈ C− {0} and g(z) = fn + 2π

for all n ∈ N. Then I(S) = I(f) $= ∅.

From all of these examples, we can get non-empty escaping sets. Dinesh Kumar and

Sanjay Kumar [5, Theorem 3.4] generalized these examples to the following result.

Proposition 2.2. Let S = 〈f, g〉 be a transcendental semigroup generated by periodic func-

tion f with period p and another function g defined by g = fn+p, n ∈ N. Then I(S) = I(f).
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In the case of non-empty escaping set I(S), Eremenko’s result [2], ∂I(f) = J(f) of

classical transcendental dynamics can be generalized to semigroup dynamics. The following

results is due to Dinesh Kumar and Sanjay Kumar [5, Lemma 4.2 and Theorem 4.3] which

gives the generalized answer in semigroup settings.

Proposition 2.3. Let S be a transcendental entire semigroup such that I(S) $= ∅. Then

(1) int(I(S)) ⊂ F (S) and ext(I(S)) ⊂ F (S), where int and ext respectively denote

the interior and exterior of I(S).

(2) ∂I(S) = J(S), where ∂I(S) denotes the boundary of I(S).

This last statement is equivalent to J(S) ⊂ I(S). If I(S) $= ∅, then we [11, Theorem

4.6] proved the following result which is a generalization of Eremenko’s result I(f)∩J(f) $= ∅

[2, Theorem 2] of classical transcendental dynamics to holomorphic semigroup dynamics.

Theorem 2.2. Let S be a transcendental semigroup such that F (S) has a multiply connected

component. Then I(S) ∩ J(S) $= ∅

Eremenko and Lyubich [3] proved that if transcendental function f ∈ B, then I(f) ⊂

J(f), and J(f) = I(f). Dinesh Kumar and Sanjay Kumar [5, Theorem 4.5] generalized

these results to a finitely generated transcendental semigroup of bounded type as shown

below.

Proposition 2.4. For every finitely generated transcendental semigroup S = 〈f1, f2, . . . , fn〉

in which each generator fi is of bounded type, then I(S) ⊂ J(S) and J(S) = I(S).

Proof. Eremenko and Lyubich’s result [3] shows that I(f) ⊂ J(f) for each f ∈ S of bounded

type. Poon’s result shows [9, Theorem 4.2] that J(S) =
⋃

f∈S J(f). Therefore, (from

Definition 1.2 of escaping set and theorem 2.1) for every f ∈ S, we can write,

I(S) ⊂ I(f) ⊂ J(f) ⊂ J(S).

The next part follows from the facts J(S) ⊂ I(S) and I(S) ⊂ J(S). !

3. Escaping sets of Hyperbolic Semigroups

The definitions of critical values, asymptotic values and singular values as well as post

singularities of transcendental entire functions can be generalized to arbitrary setting of

transcendental semigroups.

Definition 3.1 (Critical point, critical value, asymptotic value and singular value).

A point z ∈ C is called critical point of S if it is a critical point of some g ∈ S. A point

w ∈ C is called a critical value of S if it is a critical value of some g ∈ S. A point w ∈ C is

called an asymptotic value of S if it is an asymptotic value of some g ∈ S. A point w ∈ C is

called a singular value of S if it is a singular value of some g ∈ S. For a semigroup S, if all

g ∈ S belongs to S or B, we call S a semigroup of class S or B ( finite or bounded type).
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Definition 3.2 (Post singularly bounded (or finite) semigroup). A transcendental

semigroup S is said to be post-singularly bounded (post-singularly finite) if each g ∈ S

is post-singularly bounded (or post-singularly finite). Post singular set of post singularly

bounded semigroup S is the set

P (S) =
⋃

f∈S

fn(SV (f))

Definition 3.3 (Hyperbolic semigroup). An transcendental entire function f is said to

be hyperbolic if the post-singular set P (f) is a compact subset of F (f). A transcendental

semigroup S is said to be hyperbolic if each g ∈ S is hyperbolic (that is, if P (S) is a compact

subset of F (S)).

Note that if transcendental semigroup S is hyperbolic, then each f ∈ S is hyperbolic.

However, the converse may not true. The fact P (fk) = P (f) for all k ∈ N shows that fk is

hyperbolic if f is hyperbolic. The following result has been shown by Dinesh Kumar and

Sanjay Kumar [5, Theorem 3.16] where Eremenko’s conjecture holds.

Proposition 3.1. Let f ∈ B periodic with period p and hyperbolic. Let g = fn+ p, n ∈ N.

Then S = 〈f, g〉 is hyperbolic and all components of I(S) are unbounded.

Example 3.1. f(z) = eλz is hyperbolic entire function for each λ ∈ (0, 1e ). The semigroup

S = 〈f, g〉 where g = fm + p, and p = 2πi
λ is hyperbolic transcendental semigroup.

We generalize Proposition 3.1 to finitely generated hyperbolic semigroups by adding

some extra conditions. This result will be the good source of non-empty escaping set

transcendental semigroup where, the Eremenko’s conjecture holds in semigroup setting.

Theorem 3.1. Let S = 〈f1, f2, . . . , fn〉 is an abelian bounded type transcendental semigroup

in which each fi is hyperbolic for i = 1, 2, . . . , n. Then semigroup S is hyperbolic and all

components of I(S) are unbounded.

Lemma 3.1. Let f and g be transcendental entire functions. Then SV (f ◦ g) ⊂ SV (f) ∪

f(SV (g)).

Proof. See for instance [1, Lemma 2]. !

Lemma 3.2. Let f and g are permutable transcendental entire functions. Then fm(SV (g)) ⊂

SV (g) and gm(SV (f)) ⊂ SV (f) for all m ∈ N.

Proof. We first prove that f(SV (g)) ⊂ SV (g). Then we use induction to prove fm(SV (g)) ⊂

SV (g).

Let w ∈ f(SV (g)). Then w = f(z) for some z ∈ SV (g). In this case, z is either a

critical value or an asymptotic value of function g.

First let us suppose that z is a critical value of g. Then z = g(u) with g
′

(u) = 0. Since

f and g are permutable functions, so

w = f(z) = f(g(u)) = (f ◦ g)(u) = (g ◦ f)(u).
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Also,

(f ◦ g)
′

(u) = f
′

(g(u))g
′

(u) = 0.

This shows that u is a critical point of f ◦ g = g ◦ f and w is a critical value of f ◦ g = g ◦ f .

By permutability of f and g, we can write

f
′

(g(u))g
′

(u) = g
′

(f(u))f
′

(u) = 0

for any critical point u of f ◦ g. Since g
′

(u) = 0, then either f
′

(u) = 0 ⇒ u is a critical

point of f or g
′

(f(u)) = 0 ⇒ f(u) is a critical point of g. This shows that w = g(f(u)) is a

critical value of g. Therefore, w ∈ SV (g).

Next, suppose that z is an asymptotic value of function g. We have to prove that

w = f(z) is also asymptotic value of g. Then there exists a curve γ : [0,∞) → C such

that γ(t) → ∞ and g(γ(t)) → z. So, f(g(γ(t))) → f(z) = w as t → ∞ along γ. Since

f ◦ g = g ◦ f , so

f(g(γ(t))) → f(z) = w ⇒ g(f(γ(t))) → f(z) = w

as t → ∞ along γ. This shows w is an asymptotic value of g. This proves our assertion.

Assume that fk(SV (g)) ⊂ SV (g) for some k ∈ N with k ≤ m. Then

fk+1(SV (g)) = f(fk(SV (g))) ⊂ f(SV (g)) ⊂ SV (g)

Therefore, by induction, for all m ∈ N, we must have fm(SV (g)) ⊂ SV (g). The next part

gm(SV (f)) ⊂ SV (f) can be proved similarly as above.

!

Lemma 3.3. Let f and g are two permutable hyperbolic transcendental entire functions.

Then f ◦ g is also hyperbolic.

Proof. We have to prove that P (f ◦ g) is a compact subset of the Fatou set F (f ◦ g). From

[7, Lemma 3.2], we can write F (f ◦ g) ⊂ F (f) ∩ F (g). This shows that F (f ◦ g) is a subset

of F (f) and F (g). So this Lemma will be proved if we prove P (f ◦ g) is a compact subset

of F (f) ∪ F (g). By the definition of post singular set of transcendental entire function, we

can write

P (f ◦ g) =
⋃

m≥0

(f ◦ g)m(SV (f ◦ g))

=
⋃

m≥0

fm(gm(SV (f ◦ g))) (by using permutabilty of f and g)

⊂
⋃

m≥0

fm(gm(SV (f) ∪ f(SV (g))) (by Lemma 3.1)

=
⋃

m≥0

fm(gm(SV (f))) ∪ gm(fm+1(SV (g)))

⊂
⋃

m≥0

fm(SV (f))) ∪
⋃

m≥0

gm(SV (g))) (by Lemma 3.2)

= P (f) ∪ P (g)
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Since f and g are hyperbolic, so P (f) and P (g) are compact subset of F (f) and F (g).

Therefore, the set P (f) ∪ P (g) must be compact subset of F (f) ∪ F (g). !

Proof of the Theorem 3.1. Any f ∈ S can be written as

f = fi1 ◦ fi2 ◦ fi3 ◦ · · · ◦ fim .

By permutability of each fi, we can rearrange fij and ultimately represented by

f = f t1
1 ◦ f t2

2 ◦ . . . ◦ f tn
n

where each tk ≥ 0 is an integer for k = 1, 2, . . . , n. Lemma 3.3 can be applied repeatably to

show each of f t1
1 , f t2

2 , . . . , f tn
n is hyperbolic. Again by repeated application of same lemma,

we can say that

f = f t1
1 ◦ f t2

2 ◦ . . . ◦ f tn
n

is itself hyperbolic and so the semigroup S is hyperbolic. Next part follows from [12,

Theorem 3.3] by the assumption of this theorem. !
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