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Abstract: Mathematical formulation for heat transfer in living tissue is different than an inert material,

and is a current growing research interest area for many researchers due to its wide applications in many

medical therapies and physiological studies. This interest stems from the rapid advancement of computa-

tional technology and advanced numerical mathematical techniques. The paper focuses on review on basic

formulations of bio-heat equation proposed so far by several authors in the living tissue and its some appli-

cations.
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1. Introduction

All living animals produce heat. This heat is either preserved in the body or trans-

mitted to the environment. Most of the animals like warm-blooded animals; the heat keeps

their internal body temperature constant irrespective of the atmospheric temperatures.

The process of keeping the body temperature constant with the change of the environment

temperature is called thermoregulation. Human body also keeps the internal body temper-

ature (core temperature) constant (≈ 37◦C) despite the normal variations of atmospheric

temperatures.

Skin of human body is not only a protective device but its application in the process of

body thermoregulation plays an important role in the physiological functions. The biological

tissues include the layers of skin, fat, muscle and bone. Moreover, the skin is composed

of two stratified layers: epidermis and dermis. Epidermis and dermis are further stratified

into five layers and two layers, respectively.

The internal body (muscle and bone) temperature of a normal human body remains

exactly constant within ±1◦F or (±0.6◦C) despite large fluctuations in environmental tem-

peratures. But skin and subcutaneous tissue temperature, in contrast to the core tempera-

ture rises and falls with the temperature of surroundings. Thus, we need the mathematical

model to understand the mechanism of heat transfer distribution in the layers of human

dermal part with the change of surrounding temperatures, and hence on living tissue. The

model study is also required for determining the heat flux that causes thermal pain in

human body.

It is well known that human eye is relatively a small organ and very complex opti-

cal system in the human body. It consists of several sub-domains with different material
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properties, usually have complex geometry. There is no barrier such as skin to protect the

eye against the absorption of an external thermal wave; the heat flux can readily interact

with the cornea. Invasive methods in measuring eye temperature are normally dangerous.

Therefore, heat transfer model with the use of computational methods is the requirement for

the temperature distribution study in normal human eye, and in the case of hyperthermia

treatment [9].

2. THERMAL MODEL DUE TO BLOOD PERFUSED TISSUE

Living tissue differ from non-biological materials primarily because of the presence

of vasculature. The large number and the architectural and dimensional variety of blood

vessels account for heat transfer process in the tissue. Thus blood perfusion in blood vessels

of living biological tissues is a key mechanism for regulating body temperature. Thus

heat flux due to blood flow in living tissues fundamentally differs from heat equation in

biological tissues than inert materials. Thus the effect of blood flow on heat transfer in

living tissue due to complex thermal interaction between the vasculature and tissue has

been a topic of current research interest for physiologists, physicians, biomedical engineers,

and mathematicians. So, heat transport in biological tissues, which is usually expressed by

the bioheat equation, is a complicated process since it involves thermal conduction in tissue,

convection, blood perfusion, and the metabolic heat generation [8]. The rate of change of

total heat (Q) in a tissue element with respect to time t can be symbolically expressed as

∂Q
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and hence

ρ c
∂T

∂t
= ∇ · (k∇T ) + qb + qm(2.2)

where ρ and c are respectively the density and specific heat of tissue element, k is the

thermal conductivity of tissue, qm is the metabolic heat generation rate per unit tissue

volume. The first term on right hand side of Eq. (2.2) is accounted due to Fouriers law of

conduction. qb =
∂Q
∂t

∣

∣

∣

∣

Perfusion

is the net rate of energy added by the blood per unit volume

of tissue, and T is the tissue temperature.

Several authors have developed mathematical models of bioheat transfer based on vas-

culature study, and blood flow in blood perfused tissue. Pennes [13] was the first to describe

quantitative mathematical relationship between blood and tissue for qb based on his exper-

imental results.

3. BIOHEAT EQUATION MODELS

Pennes bioheat equation model is considered to be the first describing the explicit heat

transfer model equation in living tissue. Many researchers questioned, examined and utilized

the underlying assumptions of Pennes theory. Further development by several investigators

on bioheat transfer equation is the extended and modified versions of the original work of

Pennes.
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3.1. The Pennes Bioheat Equation [1948]. The Pennes model [13] was initially devel-

oped for predicting heat transfer in human forearm based on his experimental results. He

proposed a bioheat model to describe the effect of blood perfusion and metabolic heat gener-

ation on heat transfer within a living tissue. Since the landmark paper by Pennes, his model

has been widely used by many researchers for the analysis of bioheat transfer phenomena in

living tissue, so now a days bioheat equation is also called Pennes bioheat equation after his

name. His bioheat equation model is based on the following four simplifying assumptions

[7]:

1. Equilibrium Site The principal heat exchange between blood and tissue takes

place in the capillary beds. The arterioles supplying blood to the capillaries and the

venule draining it out. Thus all pre-arteriole and post venule heat transfer between

blood and tissue is neglected.

2. Blood Perfusion The flow of blood in the capillaries is assumed to be isotropic.

This neglects the effect of blood flow directionality.

3. Vascular Architecture Larger blood vessels in the vicinity of capillary beds play

no role in the energy exchange between tissue and capillary blood. Thus the Pennes

model does not consider the local vascular geometry.

4. Blood Temperature Blood is assumed to reach the arterioles supplying the cap-

illary beds at the body core temperature. It instantaneously exchanges energy and

equilibrates with the local tissue temperature.

Based on these assumptions, Pennes modeled blood effect as an isotropic heat source or

sink. The net heat transferred from the blood to the tissue, qb, was proportional to blood

flow rate and the difference between the arteriole blood temperature, Ta, entering the tissue

and the venous blood temperature, Tv, leaving the tissue

qb = ω ρb cb (Ta − Tv)(3.1)

Since the temperature of the venous blood leaving the tissue depends on the degree of

thermal equilibration it undergoes with the surrounding tissue, Pennes introduced a thermal

equilibration parameter, λ, to account for this effect, which is assumed to be uniform

throughout the tissue:

Tv = T + λ (Ta − T )(3.2)

Substituting in Eq.(3.1)

qb = ω ρb cb (1− λ)(T − Ta)(3.3)

Pennes assumed 0 ≤ λ ≤ 1, although he considered λ = 0, that is, complete thermal

equilibration, the venous blood leaving the tissue is T , the tissue temperature. For λ = 1,

the venous blood leaves the tissue at a temperature equal to the entering arterial blood

temperature. At this point, the Pennes derivation assumes that Ta is uniform throughout

the tissue at some body core temperature, Ta0, which Pennes set equal to the mean brachial

artery temperature in his experimental subjects, and λ is close to zero everywhere in the
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muscle layer, thus yielding the familiar Pennes perfusion heat source term

qb = ω ρb cb (Ta0 − T )(3.4)

Thus following Pennes suggestion, the thermal energy balance equation for perfused tissue

is expressed in the following form

ρ c
∂T

∂t
= ∇ · (K∇T ) + ω ρb cb (Ta0 − T ) + qm(3.5)

Pennes performed a series of experimental studies to validate his model. Validations

have shown that the results of Pennes bioheat model are in reasonable agreement with the

experimental data. Despite reasonable agreement with experimental data, there exist some

shortcomings in his model due to its inherent simplicity. The shortcomings of Pennes model

come from the basic assumptions that are introduced in this model. These shortcomings

can be listed as follows [7]

1. Thermal equilibration does not occur in the capillaries, as Pennes assumed. Instead

it takes place pre-arteriole and post-venule vessels having diameters ranging from

70− 500µm.

2. Directionality of blood perfusion is an important factor in the interchange of energy

between vessels and tissue. The Pennes equation does not account for this effect.

3. Pennes equation does not consider the local vascular geometry. Thus significant fea-

tures of the circulatory system are not accounted for. This includes energy exchange

with large vessels, countercurrent heat transfer between artery-vein pairs and vessel

branching and diminution.

4. The arterial temperature varies continuously from the deep body temperature of the

aorta to the secondary arteries supplying the arterioles, and similarly for the venous

return. Thus, contrary to Pennes assumption, pre-arteriole blood temperature is

not equal to body core temperature and vein return temperature is not equal to the

local tissue temperature, T . Both approximations overestimate the effect of blood

perfusion on local tissue temperature.

3.2. W Perl Model [1962]. Perl [14] model does not outline the inherent shortcomings in

Pennes model but developed the bioheat equation based on his experimental results using

local heat clearance method. Perl heat transfer model associates Ficks perfusion principle

with the heat conduction and a metabolic term to give partial differential equations for the

distribution in space and time of heat in living perfused tissue. He assumed that the rate of

heat change in tissue element due to blood perfusion is based on Ficks law of perfusion “ the

rate of change of a quantity Q of a substance in an organ due to perfusion equals the rate

of inflow of substance via arterial blood minus rate of outflow of substance via the venous

blood”. The rate of inflow of substance is the product of concentration of substance Ca in

the arterial blood and the rate of inflow Fa of arterial blood. Thus

∂Q

∂t

∣

∣

∣

∣

Perfusion

= FaCa − FvCv(3.6)

where Fv the rate of blood flow in venous blood vessels, and Cv is the concentration of

substance in venous blood.
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Eq. (3.6) is applied to a volume of tissues, %V , which is not too large and not too

small. To fix ideas, the volume element %V is visualized as a cube containing 104 cells,

which for a cell size of 20 micron has a volume of 0.08mm3 and an edge length 0.43mm.

The substance of interest can enter and leave the volume element by perfusion, and is given

by

∂(%Q)

∂t

∣

∣

∣

∣

Perfusion

= (%Fa)Ca − (%Fv)Cv(3.7)

where %Q is the amount of substance in the volume element %V due to perfusion, %Fa

is the total rate of blood flow in all the arterioles intersecting the surface of %V measured

as the sum of the rates of flow in the individual arterioles. Similar definition is applied for

%Fv. Dividing both sides of Eq. (3.7) by %V , we get

∂

∂t

(

%Q

%V

)

=

(

%Fa

%V

)

Ca −

(

%Fv

%V

)

Cv(3.8)

Thus

∂C

∂t

∣

∣

∣

∣

Perfusion

= φaCa − φv Cv(3.9)

where C = "Q
"V is the tissue concentration of substance which is a function of position and

time, φa = "Fa

"V is arteriole blood perfusion rate, and φv = "Fv

"V is the venule blood perfusion

rate. In case of heat flow, the concentration is thermal energy per unit volume, i.e., the

product of density, specific heat and rate of change of temperature. Hence, for heat flow,

Eq. (3.9) becomes

qb = ρ c
∂T

∂t

∣

∣

∣

∣

Perfusion

= ρbCb(φa Ta − φv Tv)(3.10)

Then the bioheat equation due to Perl is given by

ρ c
∂T

∂t
= ∇ · (K∇T ) + ρb cb φ (Ta − Tv) + qm(3.11)

In the model if it is assumed that the temperature of venous blood exit from capillaries

equals local tissue temperature, T , or Tv = T , and φa = φv = φ. Then the Perl bioheat

transfer equation reduces into Pennes bioheat equation

ρ c
∂T

∂t
= ∇ · (K∇T )− ρb cb φ (T − Ta) + qm(3.12)

3.3. Wulff Continuum Model [1974]. Due to the simplicity of the Pennes model, many

investigators have looked into the validity of the assumptions used to develop the Pennes

bioheat equation, in particular the thermal contribution of the flowing blood. Wulff [21]

study was the first questioned for the assumptions of the Pennes model for thermal contri-

bution of the flowing blood. Wulff assumed that the heat transfer between flowing blood

and tissue should be modeled to be proportional to the temperature difference between

these two media rather than between the two bloodstream temperature (i.e., the tempera-

ture of the blood entering and leaving the tissue.). Thus, Wulff suggested that the blood

flow contribution must be modeled by a directional term of the form ρb cb Uh · ∇T rather
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than the scalar perfusion term ω ρb cb (Ta0 − T ) suggested by Pennes, where Uh is the local

mean blood velocity. Then the simplified bioheat equation due to Wulff is given by

ρ c
∂T

∂t
= ∇ · (K∇T )− ρb cb Uh ·∇T + qm(3.13)

The main challenge in solving this bioheat equation is in the evaluation of the local blood

mass flux ρb Uh.

3.4. Chen and Holmes Model [1980]. The modeling work of Chen and Holmes is a

microvascular model similar to Wulff. The Chen and Holmes [2] model assumes that the

total tissue control volume δV is composed of the solid-tissue subvolume (Vs) and blood

subvolume (Vb). Using a simplified volume-averaging technique, the energy balance equa-

tions for both the solid tissue space and vascular spaces can be written as follows:

Solid Phase:

δVs ρs cs
∂Ts

∂t
= δQks + δQbs + δQm(3.14)

where ρs and cs are the solid tissue density and specific heat, respectively, δQks is the

conductive heat gain, δQbs is the heat gain from the blood subvolume, and δQm is the

metabolic heating. The energy balance equation for the vascular space is similar to Eq.

(3.14) except with an additional term associated with the bulk fluid flow in this space.

Fluid Phase:

δVb ρb cb
∂Tb

∂t
= δQkb − δQbs

∫

S

ρb cb T 'u · dS(3.15)

Where ρb and cb are the blood density and specific heat, respectively, δQkb is the conductive

contribution, and the integral term in Eq. (3.15) denotes the energy transfer by convection

as the blood flows across the surface area S at velocity 'u.

Addition of Eq. (3.14) to Eq. (3.15), and dividing by δV results in

ρ c
∂T

∂t
= qk + qp + qm(3.16)

where ρ and c are

ρ = (1− φb)ρs + φbρb and c =
1

ρ
[(1− φb)ρscs + φb ρb cb](3.17)

where φb =
δVb
δV is the porosity of tissue where blood flows, and T is the local mean tissue

temperature expressed as

T =
1

ρ c
[(1− φb) ρs cs Ts + φb ρb cb Tb](3.18)

Note that tissue temperature T is approximately equal to Ts for φb << 1, that is, if φb

approaches zero. The quantity qk denotes the heat transfer by conduction per unit volume,

qp is the perfusion energy generated per unit volume, and qm is the metabolic heat generation
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per unit volume. The total heat transfer by conduction per unit volume, qk, is assumed to

be

qk =
Qks +Qkb

δV
= ∇ · (keff∇T )(3.19)

where keff represents the thermal transport associated with molecular energy of the com-

bined tissue and vascular spaces known as effective thermal conductivity. The effective

thermal conductivity is given as

keff = φb kb + (1− φb)ks(3.20)

Since φb = δVb
δV ≈ δVb

δVs
<< 1, it follows that keff is independent of blood flow and equal to

the conductivity of the solid tissue, that is, keff = ks.

Chen and Holmes found that the blood temperatures of the pre-capillary arterioles,

capillaries, and venules were essentially equal to the solid tissue temperatures. In other

words, the equilibration between blood and tissue has already occurred before the capillary,

not only in the capillary previously suggested by Pennes. They suggested that perfusion

heating term in a control volume is based on the blood flow rates and the blood tempera-

tures. Thus the perfusion term is expressed as

qp =
1

δV

∫

S

ρb cb T 'u · dS ≡ ρb cb ωb(T
∗
a − T )− ρb cb 'up ·∇T +∇ · kp∇T(3.21)

where ωb is the perfusion rate at the local of vessel branching, T ∗
a is the blood temperature,

'up is the directionality of volumetric blood flow rate per unit area, and kp denotes the

perfusion conductivity.

Therefore, the bioheat equation based on the Chen and Holmes model can be written

as

ρ c
∂T

∂t
= ∇ · (keff∇T ) + ρb cb ωb(T

∗
a − T )− ρb cb 'up ·∇T +∇ · kp∇T + qm(3.22)

Chen and Holmes model represents a significant improvement over Pennes equation. But

its application requires detailed knowledge of the vascular network and blood perfusion.

This makes it difficult to use.

3.5. Weinbaum and Jiji Model [1985]. Weinbaum and Jiji [19] have developed a math-

ematical model of bioheat transfer as an alternative to the Pennes bioheat equation. Their

objections to the Pennes model include the lack of directionality in the isotropic perfusion

term and the neglect of the influence of larger blood vessels embedded in the perfused tis-

sue on the tissue blood heat transfer. In addition, Weinbaum and colleagues criticize the

Pennes model for not accounting for the characteristic geometry of the blood vessel arrange-

ment, that is, the branching, tapered diameter ultra structure of the paired, countercurrent

arteries and veins as they gradually branch into arteriole, venules, and capillary beds.

Weinbaum and Jiji (WJ) discussed in some limiting case in their Weinbaum, Jiji and

Lemon (WJL) [20] model that includes three heat transfer equations for the artery, vein,

and tissue, that contains only the tissue temperature and its spatial derivatives resulting

too complex model and difficult for solving for the coupling boundary value problem. In
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order to obtain simplified new bioheat equation, Weinbaum and Jiji made the following two

major assumptions in addition the assumptions made on their WJL model:

1. The vascularization of tissues behaves as an anisotropic heat transfer mechanism.

2. The mean tissue temperature T is approximated by the average of the local artery,

Ta, and vein, Tv, temperatures. That is

T =
Ta + Tv

2
(3.23)

3. Rate of energey loss by radial conduction through tissue per unit length of vessel at

artery wall, qa, is mostly conducted to the corresponding vein:

qa ≈ qv ≈ σ k (Ta − Tv)(3.24)

The shape factor σ is associated with the resistance to heat transfer between two

parallel vessels embedded in an infinite medium. For the case of vessels of radius a, at

uniform surface temperatures with center to center spacing l, the shape factor is given by

σ =
π

cosh−1(l/2a)
(3.25)

Based on the above assumptions, application of conservation of mass for the artery and

vein and conservation of energy for the artery, vein and tissue in the control volume, give

the simplified bioheat equation

ρ c
∂T

∂t
= ∇ · (keff∇T ) + qm(3.26)

where keff is the effective conductivity defined as

keff = k
[

1 + Pe2 V (ξ)
]

(3.27)

where ξ is a dimensionless distance and it defines as x/L and L is the tissue layer thickness.

Also, V (ξ) is dimensionless vascular geometry function and it can be calculated if the

vascular data are available. Furthermore, Pe is the inlet peclet number which is defined as

Pe =
2ρb cb a0 u0

kb
(3.28)

where a0 and u0 are the vessel radius and blood velocity respectively, at the inlet to the

tissue layer at x = 0.

The main limitations of the Weinbaum-Jiji bioheat equation are associated with the

importance of the countercurrent heat exchange. It was derived to describe heat transfer

in peripheral tissue only, where its fundamental assumptions are most applicable. In tissue

area containing a big blood vessel (> 200µm), the assumption that most of the heat leaving

the artery is required by its countercurrent vein could be violated, thus, it is not an accurate

model to predict the temperature field. Furthermore, unlike the Pennes bioheat equation,

which requires only the value of local blood perfusion rate, the WJ bioheat model requires

many detailed anatomical and vascular data such as the vessel number density, size, and

artery-vein spacing for each vessel generation, as well as the blood perfusion rate. These

anatomical data are normally not available for most blood vessels in the thermally significant

range [22].
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3.6. Nakayama, Sano and Yoshikawa Model [2010]. This model is also known as vol-

ume averaging model for bioheat transfer model. Nakayam, Sano and Yoshikawa [12] (NSY)

presented a rigorous mathematical development based on volume averaging theory estab-

lished in the field of fluid-saturated porous media to derive a general set of bioheat transfer

equations for the arterial blood phase, venous blood phase and tissue phase. Further, these

three equations were combined together to form a single energy equation in terms of tis-

sue temperature alone. The resulting energy equation turns out to be remarkably simple

due to define the effective thermal conductivity tensor, which accounts not only for the

countercurrent heat exchange mechanism but also for the thermal dispersion mechanism.

Under appropriate conditions, the bioheat equation reduces to earlier developed models

from Pennes to WJ.

For the development of energy equation, the authors [12] made the following assump-

tions:

1. Local anatomical tissue structure is treated as a fluid saturated porous media of

three phases arterial blood phase, venous blood phase and solid tissue phase.

2. The control volume V is large enough to include a sufficient number of thermally sig-

nificant arterial and venous vessels (40−300µm) and at the same time small enough

to define volume average quantities locally within the peripheral tissue towards the

skin surface.

3. The thermally significant arteries and veins are paired such that the countercurrent

heat transfer takes place.

Let Vf be the volume space occupied by fluid (blood) in a control volume

(i) Volume average of a variable φ is defined as

〈

f
〉

=
1

V

∫

Vf

φ dV(3.29)

(ii) Intrinsic average of variable φ is defined as

〈

φ
〉f

=
1

Vf

∫

Vf

φ dV(3.30)

From above, 〈φ〉 = ε 〈φ〉f , where ε =
Vf

V is the local porosity, that is, the volume fraction

of the vascular space. If εa, εv and εs are respectively the local porosity for arterial blood,

venous blood and tissue, then εa+ εv + εs = 1. If
〈

φ̃
〉

is a deviation in variable φ, then [16]

φ = 〈φ〉f + φ̃(3.31)

and

(i) 〈φ1 φ2〉
f = 〈φ1〉

f 〈φ2〉
f +

〈

φ̃1φ̃2

〉f

(ii)

〈

∂φ

∂xi

〉

=
∂ 〈φ〉

∂xi
+

1

V

∫

int

φ ηi dA =
1

ε

∂ 〈φ〉

∂xi
+

1

Vf

∫

int

φ ηi dA

(iii)

〈

∂φ

∂t

〉

=
∂ 〈φ〉

∂t
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where Af represents control surface element within the vascular space, Aint represents the

interface between the blood and solid matrix within the local control volume, and ηi is the

unit vector pointing outward from the blood side to tissue matrix side.

The microscopic energy equation for blood phase and tissue phase are:

(a) For the fluid (blood) phase

ρf cf

(

∂Tf

∂t
+ 'u ·∇Tf

)

= ∇ · (kf∇Tf )(3.32)

(b) For the solid matrix (tissue) phase

ρs cs
∂Ts

∂t
= ∇ · (ks∇Ts) + qm(3.33)

where 'u is fluid velocity, ρf , cf , kf are respectively the fluid density, fluid specific heat and

fluid thermal conductivity. ρs, cs, ks are corresponding to solid.

The volume averaging of blood and tissue phases are

(a) For the fluid (blood) phase

〈

ρf cf
∂T

∂t

〉

+

〈

ρf cf
∂

∂xj
ujT

〉

=

〈

∂

∂xj

(

kf
∂T

∂xj

)〉

(3.34)

(b) For the tissue phase

〈

ρs cs
∂T

∂t

〉

+

〈

∂

∂xj

(

kf
∂T

∂xj

)〉

+ εs qm(3.35)

After some manipulation, the volume averaging for the arterial blood, venous blood and

tissue phases are [12]

(a) For arterial blood phase

ρf cf εa
∂ 〈T 〉a

∂t
+ ρf cf

∂εa 〈uj〉
a 〈T 〉a

∂xj
(3.36)

=
∂

∂xj

(

kf εa
〈∂T 〉a

∂xj
+

kf
V

∫

int a

T ηjdA− ρfcf εa
〈

ũj T̃
〉a

)

+
kf
V

∫

int a

∂T

∂xj
ηjdA+

ρfcf
V

∫

int a

ujTηj dA

(b) For venous blooe phase

ρf cf εv
∂ 〈T 〉v

∂t
+ ρf cf

∂εv 〈uj〉
v 〈T 〉v

∂xj
(3.37)

=
∂

∂xj

(

kf εv
〈∂T 〉v

∂xj
+

kf
V

∫

int v

T ηjdA− ρfcf εa
〈

ũj T̃
〉v

)

+
kf
V

∫

int v

∂T

∂xj
ηjdA+

ρfcf
V

∫

int v

ujTηj dA
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(c) For tissue phase

ρs cs εs
∂ 〈T 〉s

∂t
(3.38)

=
∂

∂xj

(

ksεs
〈∂T 〉s

∂xj
−

ks
V

∫

int a + int v

T ηjdA− ρfcf εa
〈

ũj T̃
〉a

)

−
kf
V

∫

int a + int v

∂T

∂xj
ηjdA−

ρfcf
V

∫

int a

ujTηj dA+ εs qm

Combining the three energy equations under the local thermal equilibrium condition, that

is, 〈T 〉a = 〈T 〉v = 〈T 〉s = 〈T 〉, the general bioheat equation for the countercurrent blood

flow due to NSY reduces to [12]

[2εa ρf cf + (1− 2εa)ρs cs]
∂ 〈T 〉s

∂t
(3.39)

=
∂

∂xj

[

(2εa kf + (1− 2εa)ks)δjk +
17(εa ρf cf )2 u2B lj lk

7aa ha

]

∂ 〈T 〉s

∂xk

+(1− 2εa)qm

where aa is the specific surface area and ha is the interfacial heat transfer coefficient, and

〈ui〉
a = hB li with li is the local unit vector along the arterial blood vessel axis, and δjk is

a Dirac delta function.

4. Applications

Despite the inherent shortcomings in Pennes bioheat equation model, many researchers

prefer to use Pennes bioheat equation due to its computational simplicity, and its ease to

handle in the skin layers, in the layers of human eye and whole body with variable physical

and physiological parameters.

There are several applications of bioheat transfer equations. For example, in the ex-

istence of thermal gradient between fetal and maternal tissue [10], presence of the global

system mobile (GSM) electromagnetic fields in the environment due to causing cellular

phones base stations that has adverse health effect [15], hyperthermia treatment for Tumor,

cryosurgery, body thermal regulation, frostbite, skin burns, response to environment con-

ditions and thermal stresses, and determination of thermal dose during thermal therapy,

thermal sensation during hot and cold touch material, laser treatment, temperature varia-

tion in tumor region, thermal distribution models in human eye, comparison of temperature

distribution in human male and femal body etc.

4.1. Temperature Distribution Model in Peripheral Layers of Human Body at

Stagnant Air. The function of the thermoregulatory system of a homoithermic organism

is to maintain a constant body temperature under different environmental conditions. This

involves mechanism and adaptations that prevent excessive heat loss or that produce heat

in environments colder than the body core temperature, and mechanism and adaptation

that prevent excessive heat gain or that remove heat in environments warmer than the body

core temperature. These mechanism and adaptation involved in thermoregulation act to

balance thermal inputs and thermal losses.
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The following assumptions have been made for model construction [4]:

1. Only three layers of dermal parts epidermis, dermis and subcutaneous tissue have

been considered, and their thicknesses are measured from skin surface towards body

core.

2. Metabolic heat generation rate, thermal conductivity and blood perfusion rate in

subcutaneous tissue are considered to be constant; corresponding parameters are

considered to the dependent on thickness; thermal conductivity is considered to be

constant in epidermis and metabolic heat generation and blood perfusion rate are

considered to be zero in epidermis.

3. The field variable (temperature) at each layer is considered to be a quadratic poly-

nomial.

4. Pennes bioheat equation has been used for the model simulation.

5. No air flow is considered.

The boundary conditions are:

1. Temperature at the interface of subcutaneous tissue and body core is 37◦C.

2. The heat transfer at the skin surface occurs due to convection, radiation and sweat

evaporation, that is,

−k
∂T

∂η

∣

∣

∣

∣

at skin surface

= h(T − T∞) + LE(4.1)

where h (cal/cm2−min◦C) is the combined heat transfer coefficient due to convec-

tion and radiation, T∞(◦C) is the atmospheric temperature, L(cal/g) is the latent

heat and E (g/cm2 −min) is the sweat evaporation rate.

Figure 1. Transient temperature distribution at T∞ = 15◦C and E = 0.
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Figure 2. Transient temperature distribution at T∞ = 33◦C and E =

0.48× 10−3, 0.96× 10−3.

Figure 3. 2D temperature distribution at T∞ = 33◦C and E = 0.48× 10−3.

For numerical results, the following values of parameters are considered:

Thickness(cm):

Epidermis : 0.10; Dermis : 0.30; Subcutaneous tissue : 0.50

Thermal conductivity (cal/cm−min◦C):

Epidermis : 0.030;
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Figure 4. 2D temperature distribution at T∞ = 33◦C and E = 0.96× 10−3.

Dermis : as a linear function of thermal conductivities of epidermis and subcutaneous

tissue;

Subcutaneous tissue : 0.0.060

Blood perfusion: M = ω ρb cb(cm/cm3 −min◦C)

Epidermis : 0;

Dermis : as a linear function of M of subcutaneous tissue;

Subcutaneous tissue : 0.0315

Metabolic heat generation rate (cal/cm2 −min◦C)

Epidermis : 0;

Dermis : as a linear function of metabolic rate of subcutaneous tissue;

Subcutaneous tissue : 0.0.060

Heat transfer coefficient (cal/cm2 −min ◦ C)

h = 0.009

Latent heat (cal/g)

L = 579

The Rayleigh-Ritz finite element method together with Crank-Nicolson has been used to

obtain the temperature distribution profiles in the layers of dermal parts. The temperature

distribution profiles at a depth of 0.05, 0.25, 0.45 cm measured from outer skin surface in case

of one dimension at 15◦C and 33◦C are shown respectively in Figure 1 and Figure 2. Figure

3 and Figure 4 present the steady state temperature distribution model for two dimensional

discretized skin layers (Figure 5) at 33◦C with evaporation rates 0.48×10−3gm/cm3−min

and 0.96 × 10−3gm/cm3 −min. The graphs in Figures 1- 4 shows that there is significant

effect of evaporation rate in temperature distribution in the layers of dermal part.



BIOHEAT TRANSFER EQUATION IN LIVING TISSUE AND SOME APPLICATIONS 25

Figure 5. Discretization of skin layers.

4.2. Temperature Distribution Model in Human Eye. The following assumptions

have been made by the authors [3] for model construction:

1. One dimensional temperature distribution model along papillary axis is considered.

2. The eye is modeled considering six major components cornea, aqueous humor, lens,

vitreous humor, retina (with choroid) and sclera (Figure 6).

3. The effect of blood perfusion and metabolism is observed in retinal region only.

4. Pennes bioheat equation is used for model simulation.

5. No air flow.

The boundary conditions are

1. In the back of eye, heat is transferred from blood in the ophthalmic artery to the

sclera:

−ks
∂T

∂η
= hbl(T − Tbl)(4.2)

where η the normal direction to the surface boundary, ks is the thermal conductivity

of sclera, hbl is the heat transfer coefficient between blood and eye, and Tbl is the

blood temperature.

2. At the cornea, heat loss from the eye occurs through convection, radiation, and tear

evaporation:

−ks
∂T

∂η
= h∞(T − T∞) + σ ε (T 4 − T 4

∞) + E∗(4.3)
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where h∞ represents the convection heat transfer coefficient between the cornea

and ambient environment, T∞ is the ambient room temperature, σ is the Stefan

Boltzman constant (5.67 × 10−8W/m2 −K4), is the emissivity of the cornea, and

E∗ is the evaporative heat loss.

The presence of nonlinear radiation term in the boundary condition (4.3) makes

the problem difficult to formulate. This difficulty can be resolved by introducing a

suitable iterative procedure.

3. The inner body core temperature Tb = 37◦C.

Figure 6. 1D discretization of human eye.

The variational finite element method with Crank Nicolson technique has been used to

simulate the result. For the simulation of the results the parameter value considered are

as follows: body core temperature Tb = 37◦C, evaporation rate E∗ = 40W/m2, ambient

convection coefficient hamb = 10W/m2−◦ C, blood convection coefficient hbl = 65W/m2−◦

C, blood density ρb = 1060Kg/m3, blood specific heat cb = 3594J/Kg −◦ C, initial guess

T 0
1 = 0, and tolerance δ = 0.0005.

Table 1. Thermo physiological properties and thickness of different parts

of human eye

Tissue Type Thermal conductivity Blood perfusion Metabolic rate Thickness

(W/m◦C) (Kg/m3) W/m3 mm

Cornea 0.580 0 0 0.50

Aqueous humor 0.578 0 0 3.04

Lens 0.400 0 0 4.00

Vitreous humor 0.594 0 0 16.01

Retina 0.565 35000 10000 0.50

Sclera 0.580 0 0 1.05
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The transient temperature distribution of several parts of human eye for t = 5000

seconds is presented in figure 7 and figure 8 below. The parameter values E∗ = 40W/m2,

and T∞ = 10◦C and 50◦C are used for analysis. It can be seen from figure 7 and 8 that

Figure 7. Temperature variation at T∞ = 10◦C.

Figure 8. Temperature variation at T∞ = 50◦C.

the anterior and posterior part of cornea, aqueous and lens temperatures begin to stabilize

around 1870 seconds (approximately 31.17 minutes) and 2740 seconds (approximately 45.67

minutes) respectively. In human eye, heat gain occurs through conduction, perfusion, me-

tabolism, blinking, tear flow, evaporation, and convection but heat loss occurs only through

conduction, evaporation, convection and radiation. More factors are involved in heating

eye components than cooling. Hence, eye is more vulnerable when it is exposed to high

temperatures (high ambient temperatures, hyperthermia treatment, laser surgery etc) than

low (low ambient temperatures, cryosurgery treatment etc). The temperature difference

obtained between anterior and posterior parts of cornea are 0.2◦C and 2.2◦C respectively
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at T∞ = 10◦C and T∞ = 50◦C. As well the temperature differences between anterior and

posterior parts of lens are 0.05◦C and 0.65◦C.

The corneal temperature distribution with and without blood perfusion and metabolism

in retina at T∞ = 10◦C and T∞ = 50◦C are shown in figure 9 and figure 10 below.

Figure 9. Temperature variation at T∞ = 10◦C.

Figure 10. Temperature variation at T∞ = 50◦C.

It can be observed from figures 9 and 10 that when corneal surface temperature is

attained steady state in both cases, the temperature differences with and without blood

perfusion and metabolism obtained are 0.23◦C and 0.06◦C respectively. Steady state corneal

surface temperature is reached earlier in case of having blood perfusion and metabolism in

retina. Accordingly, steady state corneal surface temperature is reached earlier at T∞ =

10◦C compared to that at T∞ = 50◦C. This is due to better heating mechanism than

cooling in eye.
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4.3. Burn Injury Model. Burn injury is a type of coagulative necrosis caused by heat

transferred from source to the human body. This injury may not be only due to accidental

burns but also due to prolonged exposure to hot industry or to sun and other situations.

Thus the amount of tissue destruction is based on temperature and time of exposure. Guy-

ton [6] mentioned that the average critical temperature for skin surface at which pain due

to burn starts is 45◦C. At this temperature pain receptors in human body skin trigger. The

human body feels uncomfortably hot if the skin surface temperature is 40◦C. On the basis

of the damage suffered by the tissue due to any of the above causes the burns are classified

as of first, second and third degree.

1. First degree burns: First degree burns involve minimal tissue damage and they

effect only on the upper layer of skin, i.e, on epidermis layer only. This injury occurs

if the steady temperature at skin surface rises about 45◦C [6].

2. Second degree burns: Second degree burns affect both the epidermis and layers

of dermis. The second degree burns occur if the steady temperature at skin surface

rises about 72◦C [17].

3. Third degree burns: Third degree burns damages all the layers of skin and subcu-

taneous tissue, i.e, this degree of burns damage epidermis, dermis and subcutaneous

tissue layers.

The total injury in the layers of dermal part can also be classified depending on damage

function, a non-dimensional number, based on Arrhenius integral

Ω(x, t) = A

∫ t

0

exp

[

−∆E

RT (x, t)

]

dt(4.4)

where A is frequency factor, ∆E is activation energy, R is universal gas constant and T

is absolute skin surface temperature. The quantity Ω identifies various injury thresholds.

The values of Ω equal to 0.53 and 1.0 represent respectively the injury threshold for first

and second degree burns [11] and 104 represents third degree burns [18]. The finite element

method is used to simulate the temperature distribution model using the finite element

discretization of two dimensional skin layers as shown in Figure 5 [5].

The figure 11 and figure 12 reveal that a temperature of 80◦C and 120◦C are respec-

tively the threshold source temperature for first degree and second degree burns. From the

figure 13, we observe that second degree burn occurs just before 12 minute if the applied

source temperature is 90◦C. The figure 14 presents that there is a complete damage of

dermal layer in few seconds (approximately 0.6 seconds) when applied source temperature

is 120◦C.

The simulated results in figure 10-14 are obtained using the same parameter values as

in temperature distribution model at stagnant air. Other parameter values are considered

as:

∆E = 6.3×108J/Kg−mol, R = 8.1336×103J/kg−mol−K and A = 18×1099/min
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Figure 11. Dermal temperature rise at T∞ = 80◦C.

Figure 12. Dermal temperature rise at T∞ = 120◦C.

4.4. Heat distribution in Tumor region. The temperature of the human body on the

skin and subcutaneous layers depend on the metabolic activity, the blood flow and the

temperature of the surroundings. Any abnormality in the tissue, such as the presence

of a tumor, alters the normal temperature on the layers of dermal part due to increased

metabolic activity of the tumor. Therefore, abnormal skin temperature profiles can be used

as indicators of the status of malignancy due to uncontrolled metabolic activities.
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Figure 13. Burn damage for T∞ = 90◦C.

Figure 14. Burn damage for T∞ = 120◦C.

The study explores the heat rise in the tumor region due to metabolic heat generation

and sensible and insensible perspiration that help in maintaining uniform body core tem-

perature. In the following model we have explored the temperature variation in the dermal

layers due to tumor. Then the Pennes bioheat equation for heat distribution in the layers
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Figure 15. Temperature variation in normal and tumor cases.

of dermal region can be modified as

ρ c
∂T

∂t
= ∇ · (K∇T ) + ρb cb ω (Ta − T ) + qm + qu(4.5)

where qu is heat generated by uncontrolled process of malignant Tumor. We assume that

tumor is situated in the layers of dermal region so it causes increase in metabolic activity,

and in the model it is assumed to be constant in each layers. Figure 15 represents the

variation of temperature profiles in skin layer with and without tumor. This variation is

due to metabolic rise in tumor cell.

4.5. Conclusion. Most of the investigators concerns are the application sides of bioheat

transfer in living tissue, and others are to develop bioheat equation only to overcome the

shortcomings in Pennes model arises due to blood perfusion. Due to the complexity of

vascular geometry, there are two theoretical approaches describing the effect of blood flow

in a biological system. (i) Continuum Model - In this approach the effect of blood flow in the

region of interest is averaged over a control volume, (ii) Vascular Model - In this approach

blood vessels are represented as tubes buried in tissue. Few investigators concerns are for

non-Fourier bioheat transfer model, and this kind of model is a new approach of research

for bioheat transfer.
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Volume averaging theory is also a field to study for formulation and application of

bioheat equation. But still it is hard to use. Only few researchers have attempted its

Pennes version for temperature distribution in human body.
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