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Abstract: The abstract flow model is the generalization of network flow model which deals with the flow
paths (routes) satisfying the switching property. Contraflow model increases the flow value by reversing the
required arc directions from the sources to the sinks. In this paper, we integrate the concepts of abstract
flow and contraflow to introduce abstract earliest arrival transshipment contraflow model in multi-terminal
abstract network. The abstract contraflow on multi-terminal dynamic network is NP-Complete. We present
an efficient approximation algorithm to solve the problem. This approach satisfies the demand of sinks by

sending optimal flow at every possible time point and seeks to eliminate the crossing conflicts.
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1. INTRODUCTION

The first network flow model was developed in [6]. After the development of maximal static flow
and maximum dynamic flow models, Different researchers have studied several network flow problems for
evacuation planning. The maximum dynamic flow problem to shift maximal amount in a given time, the
earliest arrival flow problem to maximize the number of evacuees in every possible time, the quickest flow
problem for allocating the evacuees to a safer zone in minimum time, the lexicographically maximum dynamic
flow problem to send maximum number of evacuees in given priority order within the given time period,
are few examples. According to Hoffman [7], the abstract flow generalizes the concept of paths by replacing
the underlying network configuration. This tactic makes the use of switching property that eliminates the
crossing at intersections. The maximum weighted abstract flow model has been developed by Hoffman [7]
and solved by Martens and McCormick [12]. Kappmeier et al. [10] have investigated the maximum dynamic
abstract flow problem and its solution procedure. The existence of the lexicographically maximum abstract
flow problem for prioritized terminals has been shown in Kappmeier [9]. The earliest arrival abstract flow
introduced and solved in [9] maximize the dynamic abstract flow from the source to the sink at every possible
time. The abstract earliest arrival transshipment has been approximated for the fixed demands and supplies
in [9]. Zhao et al. [23] deliberate the important lane-based routing strategy for reducing the interruptions
that reduce (or eliminate) crossing and merging conflicts at nodes. Selecting and turning options at nodes

are limited to expand traffic flow away from a unsafe area in a lane-based routing plan.

The contraflow approach introduced in [11] is another emerging and widely accepted model for evacua-
tion planning. It increases the outbound road capacities by reversing the direction of roads towards the safe
destinations. They give programming formulation and presented a greedy heuristic and a bottleneck relief

heuristic for large scale evacuations that find high quality solution. They proved that problem of reducing
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the egress time on evacuation network is NP-hard. The first heuristic solves a minimum cost problem in the
time-expanded network in the given time period to record the total number of flow units that pass through
each arc during the evacuation time and flips the direction of each arc in favour of the direction of larger
flows. The use of contraflow approach is not only bounded in evacuation planning, it also can be used in
traffic arrangements and to reduce road accidents. Several mathematical models, heuristics, optimization
and simulation techniques taking into account of macroscopic and microscopic behavioural characteristics
deal with contraflow for this transportation network, however a suitable contraflow solution is still lacking

due to very high computational costs.

The maximum dynamic contraflow problem has been introduced in [20] and solved with polynomial time
algorithm for two terminal general network. The maximum dynamic contraflow problem on multi-terminal
network is N'P-complete, [20]. Authors in [3, 17, 16] presented the earliest arrival, quickest transshipment
and lex-maximum dynamic contraflow problems in both discrete and continuous time settings. The earliest
arrival contraflow on series-parallel network can be solved in strongly polynomial time but the procedures
on general networks is pseudo-polynomial. The quickest transshipment contraflow problem has been solved
in polynomial time. For the given priority ordering, the lex-maximum dynamic contraflow problem is solved
in polynomial time for multi-terminal network. For the fixed supplies and demands, the earliest arrival
transshipment contraflow has been introduced in [18, 16] in discrete and continuous times. They solved the
problems in multi-source and single-sink network as well as single-source and multi-sink network. In both
cases, their algorithms have polynomial time complexity. Moreover, they presented approximation algorithms
to compute the approximate earliest arrival transshipment contraflow for multi-terminal networks, [18, 19].
Moreover, authors in [19] introduced the abstract contraflow approach with path reversal capability. They
presented a polynomial time algorithm to solve the abstract maximum dynamic contraflow in continuous
time setting. Authors in [15] investigated quickest contraflow problems with constant and load dependent
transit times. Various network flow models have been extended to the partial contraflow models in [14].
They have also presented solution procedures for different partial contraflow problems. For more details, we
refer to [2].

The lane based contraflow and crossing elimination strategies at intersections is solved by the authors
[22]. As introduced in [23], a network optimization model is to integrate these problems. The study
[21], formulates the bi-level lane-based network optimization and simulation model, where the upper level
optimizes the network evacuation performance subject to the contraflow and crossing-elimination constraints,
and the lower level simulates dynamic evacuation flows. The multi-model integrated contraflow contains
non-contraflow to shorten the strategy setup time, full-lane contraflow to minimize the evacuation network
capacity and bus contraflow to realize the transit cycle operation. A more realistic contraflow problem with

evacuation priorities and the setup time has been considered, (see in [2]).

The notations and prior works in network flows are presented in Section 2. The abstract flow and
abstract contraflow models with their solution algorithms have been discussed in Section 3. The earliest
arrival abstract contraflow model on multi-terminal abstract network has been introduced in Section 4. Also,

the 2- value approximation algorithm for the problem is proposed . Section 5 concludes the paper.

2. DENOTATIONS AND BASic MODELS

2.1. Abstract Network Flows. Consider a multi-terminal evacuation network N = (E,I',b,7,5,D,T)
where E and T represent the sets of elements and paths, respectively. Let b : E — Z* be the capacity
function and 7 : E — Z7 be the transit time function. The given non-negative time horizon T is symbolized
by T = {0,1,---,T} in discrete time setting, whereas it is denoted by 7" = {[0,1),---,[T,T + 1)} in
continuous time setting. For every path 7 € I' there is a linear order <, of elements and the set of such
paths I' satisfies the switching property in abstract network setting. A switching property requires that
for each 71,72 € I" and e € 41 N 72, there exist paths 71 Xev2 C{a € 11 :a <y, e} U{a € 12 : a >4,
e} and v2 Xe 71 C{a € 12 :a <y, e} U{a € 71 : a >4, e}. The before and after parts from e of the path
v excluding e are denoted by (y,e) = {p € v : p <, e} and (e,y) = {p € v : p >, e}, respectively. Let
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f: T — R™ be the flow function. The generalized weighted maximum abstract flow problem formulated

in [7] optimizes the value of Equation 2.1 satisfying Constraints 2.2 and 2.3.

(2.1) max > w(v)(7)

~er
(2.2) S f(y) < be,Ve€E
(2.3) | fv) = 0,Vyerl

The weight function w : I' — RT generalize the maximum abstract flow problem by specifying
the reward per unit of flow sent along each path. The choice of the weighted function w is restricted to
supermodular functions, i.e., w(v1 Xe¥2) +w(y2 Xey1) > w(v1)+w(72) for every v1,72 € I' and e € y1 N2, as
the general problem is A"P-hard. The generalized minimum weight abstract cut is the dual of the generalized

maximum weighted abstract flow problem, [7], which can be formulated as:

(2.4) min Z bey(e)

(2.5) D> oyle) > w(y), Vyer,
(2.6) yle) > 0,VecFE

where a value y(e) is assigned to every element e € E covering every path according to its weight.

The consideration of time factor transforms the abstract low model into dynamic abstract flow model.
The dynamic abstract flow problems can be transformed into static network by constructing the corre-
sponding time expended networks. The time expanded network can violate the switching property. So,
Kappmeier et al. [10] introduced the holdover of flow at intermediate nodes to construct an abstract time
expanded network. Suppose ¢ : I' — {1,2,--- ,T} be waiting times for every elements of I. Then the flow
enters to e € y at time quv_w (oq + 7¢) + Te as it travelling along v waits o4 time units before passing
through e. The set v° = {e* € ET|e € 7, Equ_.e
intermediate waiting and satisfy ¢" <, e* if and only if ¢ <, e. Such paths arrived within T" is denoted
by [ = {1’ |y €T,0 € {1,2,-- , T}F, > ceqtoe + 7} < T} The set (Er,I'7) represents the abstract time
expanded network of (E,T").

(0q + 7¢q) + Te = K} represents temporal paths with

Suppose fayn : I'T — R4 be the dynamic abstract flow. The feasible dynamic abstract flow satisfies the
capacity of every element at every point of time. The maximum dynamic abstract flow problem maximizes

the total flow value respecting the given restrictions, [10].

(2.7) max 3 fuyn ()

Yt €T
(2’8) Z fdyn(')’t) < be,Vee E, 0T
"/161—‘%:(&,9)6'“
(29) fdyn('Yt) Z 07 V% € Fg"

The dynamic cut is Cayn = {(e,0) € Er : a(e) < 6 < a(e) + g(e)}, where § is static weighted abstract dual
integral optimal solution with weight w(v) and a(e) := minyer >° ¢ oy (T(7) + 4(7))-

Suppose v,,7, € I' are two paths with a common element e € v, N,. The abstract network is terminal
respecting, if all paths v € 4, | _U~,,_ satisfy first(y) = first (7,) and last (y) = last(v,). Let d* : E — Q
be supplies for source elements and let d~ : E — @+ be demands for sink elements. An abstract flow satisfies
given supplies and demands if Z’yEF:e:ﬁI‘St(’y) fy = d} and Z%F:E: last () fv = d. holds for source and

sink elements, respectively. It is possible that an element is a source and a sink both.

Let f be an abstract flow in (Er,I'7:). For any t € {1,2,--- ,T}, consider the set of temporal paths
? ={veTll>X . {oc+ 7} <t} Define the flow with value |fayn|t = > cp« fy that arrives until time ¢.
An earliest arrival abstract flow problem is to find a maximum flow such that it holds |fayn|e > [fi,n| for

all ¢, where | féyn| is the value of a maximum dynamic abstract flow with time horizon t.
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2.2. Contraflow Reconfiguration. The core concept behind the contraflow technique is to improve the
outbound capacity by adopting the path reversals toward the sinks keeping the same travel time in the
network. As a result the flow value is increased and egress time is degreased. Let I' = {77 W} be the set of
all paths in contraflow abstract network N with capacities (%) = min{b. : e € 7'} and b(¥) = min{b. : e €
7} We define the undirected auxiliary network N by adding the capacities on the corresponding two-way
paths and keeping the transit time (if any) fixed. The set of elements and paths are denoted by E and f‘,
where é € E and 5 € I'. Then the capacity function is defined as b(3) = min{bz : & € 4} while the travel
times (if any) on paths remains the same. The auxiliary network resulting from path reversal holds order of
elements for each 4 € I and T satisfies the switching property. Thus, the auxiliary network of the abstract

evacuation network is also an abstract network.

3. ABSTRACT CONTRAFLOW PROBLEMS

In this section, we discuss abstract flow, contraflow and abstract contraflow problems with their solution
status from different literatures. The contraflow approach makes use of path reversals in abstract network

at time zero without any switching costs.

Example 3.1. Let E = {s,a,b,z} and ' = {W,%,%,ﬁ,%,%,%,%} with 37 = {s,a,z}; ¥ = {s,a,b,z};
o= {s,b,z};’%> = {s,b,a,z}; 5= {z,a,s}; 3 = {z,b,a,d};% = {z,b,s} and = {z,a,b,s} and
capacities 4, 2,2,2,3,3,4 and 2, respectively. We forget the direction of paths and reformulate it by adding
the capacities of paths between the terminals. Set of paths in abstract auxiliary network is I = {Y1, 92,73,V }
(cf. Figure 1). After contraflow reconfiguration, the path set becomes I'r = {’7{,’72}7 *73>, ’%)} with improved
capacities 7,2,6 and 3 for ’71) 7'75 ,’%)7 and ’ﬁ , respectively. Set of paths in abstract auxiliary network is

T = {1,72,73, 71,75, 76 } (cf. Figure 1).

FIGURE 1. Abstract evacuation, auxiliary and reconfigured networks, respectively.

The maximum abstract flow problem is introduced in [7] and an efficient algorithm for the problem
has been presented in [13]. Based on the same algorithm, the maximum abstract contraflow algorithm
has been developed in [19] for the path reversal maximum abstract contraflow. The maximum abstract
contraflow doubles the flow value after contraflow reconfiguration if every element in a minimum abstract
cut has symmetric capacity, [19]. Kappmeier et al. [10] extended the abstract flow problem into maximum
dynamic abstract flow problem and provided efficient solution procedure to solve the problem. To provide the
solution procedure for the problem they have transformed the dynamic network into static by constructing
time expanded network. For each interval, a copy of the element set E , the element set Er:=E x T will
be constructed. The time expanded network is constructed by Er = {(¢,0)|é € E,0 € {1,2,---,T}}. The
time expanded network of the dynamic abstract network is shown in Figure 2 where the numbers on the

network represent transit time of the elements.

The abstract path system is allowed to be asymmetric with respect to the path capacities but the
transit times are symmetric. In auxiliary network only capacities of the paths change but the transit times
remain the same. As the abstract cut Cayn contains an element of every temporally repeated paths, the

capacity constraints are satisfied at each point of time. Thus for a subset Cuyn C E7, the set v N Cayr, is



ABSTRACT EARLIEST ARRIVAL TRANSSHIPMENT 5

nonempty to each ¢ € I'r, [10]. This implies that 3° . fayn () < 32 6)eCy,, Ve The number of paths

created by applying the time expansion is linear in 7" and thus exponential in the size of input.

Example 3.2. The time expanded network of an auxiliary network can destroy the switching property. Let
(E, f‘) be an auxiliary network with I' = {792, +%,7*} and E = {s,a,b,z}, where v* = (s; a; b; 2), v* =
(s; by a; 2), v¥* = (s; a; 2), ¥* = (s; b; 2) together with their reversals. The set ' satisfies the
switching and order properties. For T' = 4, we have I'r = {'yé,w%,'yg,'yf,73,7?,73,73,7{1,73} with 7§ =
{(5,0), (a,1,),(b,2), (2,3)} and % = {(s,1), (b,2), (a,3), (2,4)}. But time expansion of given network does

not contain v5 X (5,2) 7i (cf. Figure 2).

Internal waiting should be allowed to construct abstract time expanded network. According to [10], the
waiting has no influence on the optimality and the temporally repeated optimal solutions can be obtained
even if waiting is allowed internally on time expanded network. Based on this idea, an efficient algorithm for
the maximum dynamic abstract contraflow problem has been developed in [4]. The existence lexicographi-
cally maximum abstract flow and a polynomial time algorithm for the problem is given by Kappmeier [9].
In his model, the order of terminals has to fulfill compatible property if more than one terminal node is
contained in a path. The existence of earliest arrival abstract flow described by Kappmeier [9] generalizes
the earliest arrival flow and maximizes the dynamic abstract flow at each possible time point. For the
lexicographically maximum abstract contraflow and earliest arrival abstract contraflow problems with their

algorithms, we refer to [4].

FIGURE 2. Dynamic abstract network and time expanded network, respectively.

4. ABSTRACT EARLIEST ARRIVAL TRANSSHIPMENT CONTRAFLOW

We study abstract earliest arrival contraflow problem on multi-terminal network. Clearly, the abstract
earliest arrival contraflow cannot be obtained for multiple sinks. But the flow value can be approximated
by adding supplies and demands for source and sink elements, respectively. Based on the results of [9, 17]
on contraflow and abstract flow, we introduce abstract earliest arrival contraflow Problem 4.1 and propose
an approximation Algorithm 4.3 to solve it. Recall that, the abstract contraflow transshipment having the

earliest arrival property do not exist.

Problem 4.1. Let N = (G,b,7,S,D,T) be an abstract network, where G = (E,T"). The multi-terminal
abstract earliest arrival contraflow problem is to find an abstract earliest arrival flow with path reversals

capability that satisfies the supplies and demands at terminals.
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Example 4.1. Consider an abstract network with elements E = {s,a, b, ¢, z1, 22} and paths T' = {37, 72, 5,, %, },
’73 = {s,a,¢c, 21}, 72) = {s,a,b, 22}, ‘E = {z1,¢,a,s} and ‘E = {22,b,a,s}. Suppose di = 12,d,, =4,d,, =
8,ds = 0,dp = 0,andd. = 0 be the balance vectors. Construct auxiliary network with r = {17}
v, ={3,a,¢,7} and 4, = {3,a,b, 72} which is shown in Figure 3.

Besides the given feasible transshipment at time 5 there is a feasible transshipment which sends 4 units
of flow on path 4, at time 4, 4 units of flow on path 4, at time 5 and another 4 units of flow on path 74,
at time 6. Here, 4 units of flow arrive at time 4 because 4, has 3 transit time, another 4 units arrive at
time 5 through path 4, and next 4 units arrive at time 6 through path 4,. This solution sends 4 units of
flows earlier, but needs more time to send the last 4 units of flows. Hence, no earliest arrival transshipment

contraflow exists in the abstract network and the new solution is a 2-value-approximate flow.

(2,0) (4,0) 4,0 8,0
\——7(;4,.()) 8,1 10,2
(8,0)
(8,0) 8,1 16,0

FIGURE 3. Multi-terminal abstract evacuation network and network after

contraflow reconfiguration, respectively.

The proposed algorithm works on extended path system having two restrictions such that every sub-
paths should preserve orders and no flow can exceed the demands and supplies, [9], as constructed below.
Let (E7,I'%) be the abstract time expanded network for some time horizon 7. We introduce additional
super source elements s*, super sink elements z* and counting elements z.. The time-expanded ground set
is defined as: Ef = BErU{s; :s € S}uU{z;:2€ DYU{el :e € D,0 € {1,2,---,T}}. We extend each
original temporal path 77 = (e1,e2, - ,en) € I'T by the corresponding super terminals and a counting
element. Let s = e; = first(y) and 2® = e, = last(7) be the first and last element of v, , respectively. The
extended path 7*7 = (s*,e1,ea, - ,en, 2%, 2*) contains three more elements, the super source as new first
element, the super sink as last element and the counting element left of the super sink. The set of extended

paths I'}7 consists of all extended paths v*7 with internal waiting at intermediate elements.

Example 4.2. Figure 4 is the extended time expanded network derived from the Figure 2.

The primal dual pair (f,y) satisfies . ye = wy — A for each v € I and ye(be — >__, fe) = 0 for each
e € E, where X € @ is a given variable. These are the relaxed optimality conditions for weighted abstract
flow and weighted abstract cut, where \ specifies deviated solutions from the optimum solution. The set of
restricted elements is denoted by R = {e € E : y. > 0} C E. A solution of the restricted abstract maximum
flow problem is a maximum flow f under the condition that the flow through restricted elements remains
unchanged. The LP formulation of restricted maximum abstract flow and restricted minimum abstract cut

problems presented by Kappmeier [9] are the following.

(4.1) maXZ ()

~er

(4.2) Y S £ b, VeeE
yeT:e€y

(4.3) S f(y) = be,VeeR
yET:e€y

(4.4) f(v) > 0,¥yel
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eck
(4.6) Dl > w(y),VyeT
ecy
(4.7) le > 0,Vec€ E\R, where [, is the length of e

Let f° be an abstract dynamic flow in the abstract time expanded network with extended paths
(A*T,F*TU) for a time horizon i. All paths use a counting element 2 for some 6 € {1,2,---,i}. Let
() =2 yiz0¢ fo be the value of flow through the counting element. Define a new abstract time expanded
network by specifying new capacities b,, where b, = b, for all elements e that are not counting elements.
The capacity of counting elements is restricted to the flow value through them, i. e., we set b;e = v(zf) for
all counting elements z¢ in the time-expanded network. All paths use exactly one of the countcing elements
and they are all saturated. Thus, flow f* remains feasible in the abstract time expanded network with the

new capacities b.. Define a feasible dual solution by setting

b., eis a counting element
ye{ & for alle € FE.

0, otherwise

The flow f and dual values y are feasible in the larger abstract time expanded network (E;,,,I';7;) for
a time horizon increased by 1. The algorithm by Martens and McCormick [12] has been applied to augment
flow without removing flow on the counting elements in the process of finding restricted maximum abstract
flow. In the classical setting, the Triple - Optimization - Theorem, [8] states that an earliest arrival flow is
equal to a minimum cost flow where the costs equal the transit times. The same idea has been applied in
abstract flow model and defined rewards such that they reflect the arrival time. A path that arrives earlier
has the higher reward. Paths arriving in the first time step, i. e., paths with zero travel time, have a reward
of T. The reward decreases linearly with the arrival time and paths arriving at time 7" have a reward of 1.
Let v*7 be a path in the abstract time expanded network for time horizon T', € be the arrival time of v*7.

Then the reward is defined as w(y*?) =T — 6 + 1 which is supermodular.

Algorithm 4.3. Approximate Abstract Earliest Arrival Contraflow Algorithm

(1) Given an abstract network N = (G, b, 7,T, S, D) with demands d~ and supplies d.

(2) Construct abstract auziliary network, N = (é, T, S, D) with new capacity and transit time func-
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(3) Solve the problem in the auziliary network using the greedy abstract value-approzimate earliest
arrival flow algorithm, [9] as follows:
(a) Seti=1 and compute an abstract flow f* in (Ef,T5%). Define A = 1.
(b) Let (E:H, f:il) be the abstract time expanded network with extended paths for time horizon
i + 1. Define path weights w(3*°) =T — 0 + 1. The updated capacities and dual values are
given by

0 . 0y .
v(2e if € =wv(z.) 1s a counting element .
b’é—{ (z), if (z) I for allé € Brpy,

be, otherwise

for allée e B

w(*7) = A, if € is a counting element on path 3*7 € (E~f+1,f‘:il)
0, otherwise

(¢) Compute an abstract flow f”l mn (E,-*_H, f:il) applying the restricted abstract mazimum flow
minimum cut algorithm by Martens and McCormick [12].
(d) If i1 satisfies all balances, return flow value z*T'. Else, set i =i+ 1 and continue with 3b.
(4) A path 5 €T is reversed if and only if the flow along 7 € T is greater than b(7) or there is a
non negative flow along path 7 ¢r.

Theorem 4.4. An approximate optimal solution for Problem 4.1 can be obtained by Algorithm 4.3.

Proof. The Steps 2 and 3 are feasible by definition. Step 4 is well defined; i.e. not both paths 7 and &
have to be switched at a time. This is ensured by the solution of the abstract flow in auxiliary network, [9].
Switching property cancels cycle flows [19], so that there is flow along 7 or <7 but not in both directions at
the same time. Hence, the resulting flow from Step 4 is a feasible flow with path reversals in given evacuation
network N = (G,b,7,T,S, D).

Let ]\77’2 = (EN;, f‘;;) be the corresponding extended abstract time expanded network of N = (C:’, be, T, S, f))
with intermediate waiting, [10], where T be a significantly large time horizon. Step 3 provides the 2-value-
approximate abstract earliest arrival flow in the extended abstract time expanded network of auxiliary
abstract network which is an optimal flow for auxiliary network, [9]. The path capacity is increased by
adding the capacity of both directions between the terminals and either direction of path is allowed with
modified network. A 2-value approximate earliest arrival flow with path reversal in N = (G,b,7,T, S, D) is
also a feasible solution to the earliest arrival flow problem in the auxiliary network N = (G, be, T, S, D). As
the amount of flow sent from S to D in Step 3 is not changed in Step 4, the resulting flow is the 2-value

approximate solution for Problem 4.1. ]

5. CONCLUSION

In this paper, we discuss abstract flow, contraflow and abstract contraflow models from various papers.
Integrating abstract earliest arrival flow and contraflow, we introduced abstract earliest arrival contraflow
approach with discrete time settings on multi-terminal abstract network for the first time. A 2-value approx-
imate algorithm has been proposed for the problem assuming fixed demands and supplies on sources and
sinks, respectively. Our results increase the flow values at every possible time by reducing crossing conflicts

with arc reversals toward the safe destinations in evacuation planning.
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