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On a Generalization of Chatterjee's Fixed Point 
Theorem in b-metric Space 

  

Chhabi Dhungana1,Kshitiz Mangal Bajracharya2, Narayan Prasad Pahari2 , & Durgesh Ojha3 
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ojhadurgesh98@gmail.com3

Abstract: Banach’s Fixed Point Theorem (BFT)deals with the certain contraction mappings of a 
complete metric space into itself. It states sufficient conditions for the existence and uniqueness of a fixed 
point. In the study of fixed point theory, BCP has been extended and generalized in many different 
directions in usual metric spaces. One of those generalizations is a b-metric space. Such generalizations 
have resulted in generalizing some popular metric fixed point theorems in the context of a b-metric space. 
In 2013, Kir and Kiziltunc [8] attempted to generalize Chatterjee’s Fixed Point Theorem (CFPT) in the 
context of b-metric spaces. The proof of that generalization, however, had a minor flaw and an unstated 
assumption. This paper attempts to fix these issues by introducing new conditions. 

Keywords: Convergence, Compactness, Cauchy sequence, Metric space, b-Metric space. 

1. Introduction and Motivation: 

The concept of fixed point theories is one of the most important results in Functional Analysis. The 
famous fixed point result called Banach Contraction Principle(BCP) is generalized and improved in many 
directions. One usual way of studying the Banach contraction principle is to replace the metric space with 
certain generalized metric spaces. Some problems, particularly the problem of the convergence of 
measurable functions with respect to measure led Czerwik[6] to a generalization of metric space and 
introduced the concept of b-metric space. The concept of b-metric space was generalized in different 
directions, for instance, we refer to a few: Alamari and Ahamad [1], Bakhtin[2], Iqbal, Batool, Ege and 
Sen[7], Ojha and Pahari [10] and, Shoaib, and et al [12]. Several authors proved fixed-point results of 
single-valued and multi-valued operators in b-metric spaces. Also, Kumar, Mishra, and Mishra [9] studied 
common fixed point theorems in b-metric space. In the present article, we shall study on a generalization 
of Chatterjee's Fixed Point Theorem studied in [4]in b-metric space. 

Before proceeding with the main work, we shall define some important definitions, examples, and key 
results related to b-metric spaces, which are used in our further discussion.  

Definition 1.1 (b-metric space, Bakhtin [2]) Let X be any non-empty set and 𝑏𝑏𝑏 𝑏 𝑏𝑏 be some given real 
number. Let𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑𝑑  be a function which satisfies the following properties: 

(b1) For all𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥 (𝑥𝑥𝑥 𝑥𝑥)  ≥0   and  𝑑𝑑(𝑥𝑥𝑥 𝑥𝑥) = 0  ⇔ 𝑥𝑥 𝑥 𝑥𝑥 . 
(b2) For all 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥 (𝑥𝑥𝑥 𝑥𝑥) = 𝑑𝑑(𝑦𝑦𝑦𝑦𝑦 ). 
(b3) For all 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥 (𝑥𝑥𝑥 𝑥𝑥)  ≤ 𝑏𝑏[𝑑𝑑(𝑥𝑥𝑥 𝑥𝑥) + 𝑑𝑑(𝑦𝑦𝑦𝑦𝑦 )]. 



2

C. Dhungana, K.M. Bajracharya, N.P. Pahari and D. Ojha / On a Generalization of Chatterjee's . . .
C.Dhungana, K.M. Bajracharya, N.P. Pahari and D. Ojha / On a Generalization of Chatterjee's . . . 

 

2 
 

Then, we say that d is a b-metric defined on X and that X along with d forms a b-metric space and is 
denoted by the ordered pair (𝑋𝑋𝑋 𝑋𝑋).In some cases, if we need a distinction between b-metrics defined on 
different spaces, we write the space in its suffix. For example, we may write d as dX in the above 
discussion. We define b as a triangular constant and refer to (b3) as relaxed triangle inequality or b-
triangle inequality (Cobzas,[5]), and (Czerwik, [6]). 
The following are examples of b-metric spaces: 

Example 1.2. Every metric space is an example of a b-metric space because we have b = 1 validating the 
condition, (b3).

Example 1.3.(Bakhtin [2]) 
The set Lp(ℝ) where Lp(ℝ) = {{xn} ⊆ℝ :|xn|p<  ∞}  (with 0 < p < 1) together with the function  
d : Lp(ℝ) × Lp(ℝ)  [0, ∞) defined by   

d(x, y) =  (∑ |𝑥𝑥 𝑥 𝑥𝑥𝑥�
���

p)1/p 
where x = {xn}, y = {yn} ∈ Lp (ℝ) forms a b-metric with b =21/p. 
 
Example 1.4.(Bakhtin [2]) 

The space Lp[0, 1]  (where 0 < p < 1) of all real functions x(t),  t ∈ [0, 1] such that 
� |𝑥𝑥𝑥𝑥𝑥𝑥𝑥�

�
pdt <  ∞ forms a b-metric by defining  

d(x, y) =  (� |𝑥𝑥𝑥𝑥𝑥𝑥𝑥  𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥�
�

p )1/pdt for each  x,y ∈ Lp[0, 1], with b = 21/p. 
 

It is clear that definition of b-metric is an extension of usual metric space. Obviously, each metric    
space   is a b-metric space with b = 1. However, Czerwik [6] has shown that a b-metric on X need 
not be a metric on X. The following example illustrates this situation.  

Example 1.5. 

Let (X, d) be a metric space. Define ρ(x, y) = [d(x, y)]p , where p> 1 is a real number. Then we can 
verify that ρ forms a b-metric with b = 2p−1 . However, if (X, d) is a metric space, then (X, ρ) is not 
necessarily a metric space.  

Example 1.6 (Bota , Molnar, and Varga,[3]). Let X be a set with three elements. Let𝑋𝑋𝑋 𝑋 𝑋𝑋� ∪ 𝑋𝑋� such 
that X1 has two elements and 𝑋𝑋� ∩  𝑋𝑋� =  ∅. Define  𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑 by 

𝑑𝑑(𝑥𝑥𝑥 𝑥𝑥) = �
0,                                             𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
4,       𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   �    𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎

1 ,   𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   � ,𝑦𝑦𝑦𝑦𝑦𝑦    �   𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎
 

Then (X , d) is a b-metric space but not  a metric space.    
 

It is noted that the class of b-metric spaces is larger than the class of metric spaces. The following are the 
concepts related to sequences which we shall use in the main result. 

Definition 1.7(Bota ,Molnar, and Varga, [3]). Let (𝑋𝑋𝑋 𝑋𝑋𝑋𝑋be a b-metric space. A sequence(𝑥𝑥�)����  in X is 
said to converge to some 𝑥𝑥𝑥𝑥𝑥𝑥𝑥   if for every ε > 0 there exists a positive integer N such that 

𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛 𝑛𝑛(𝑥𝑥� , 𝑥𝑥) <  𝜀𝜀.  
It is denoted by lim

n 
  𝑥𝑥� = 𝑥𝑥. 

 

Since(𝑑𝑑(𝑥𝑥� , 𝑥𝑥𝑥)���� is a sequence of positive real numbers, this definition suggests the convergence of 
this  sequence to zero is a characterization of convergent sequence in b-metric space. This is analogical to 
a similar characterization in a metric space. 
 
Definition 1.8 (Bota , Molnar, and Varga, [3]). Let (𝑋𝑋𝑋 𝑋𝑋𝑋𝑋be a b-metric space. A sequence(𝑥𝑥�)����  in X is 
said to be a Cauchy sequence if  for every ε > 0 there exists a positive integer N such that 
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𝑚𝑚𝑚 𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚 𝑚 𝑚𝑚(𝑥𝑥� , 𝑥𝑥�) <  𝜀𝜀. 
Thus, just like in the case of metric spaces, we can equivalently say that (𝑥𝑥�)����  in X is a Cauchy 
sequence if 𝑑𝑑(𝑥𝑥� , 𝑥𝑥�) → 0  as 𝑚𝑚𝑚 𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚 
 
Definition 1.9 (Bota , Molnar, and Varga, [3]). If a b-metric space(𝑋𝑋𝑋𝑋𝑋𝑋𝑋 is such that every Cauchy 
sequence in space(𝑋𝑋𝑋𝑋𝑋𝑋𝑋  is convergent, then  it is complete b-metric space. 
 
Definition 1.10 (Cobzas, [5]). Let (𝑋𝑋𝑋𝑋𝑋𝑋𝑋  be a b-metric space. Then, d is said to be continuous if for any 
two convergent sequences (𝑥𝑥�)����  and(𝑦𝑦�)����  of points in X, we have 

lim
n 

 𝑑𝑑𝑑𝑑𝑑� , 𝑦𝑦�)  = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , where   lim
𝑛𝑛 

 𝑥𝑥� = 𝑥𝑥  and   lim
n 

  𝑦𝑦� = 𝑦𝑦.    

Definition 1.11 (Panthi,[11]). A point u is a fixed point of the function  f(x) if  f(u) = u. In other words, 
f(x)  has a root at u iff  g(x) = x  f(x)  has a fixed point at u. 
 

2. A Critical Study of Kir and Kiziltunc's Generalization of Chatterjee's Fixed Point 
Theorem (CFPT) 

 
Kir and Kiziltunc[8] gave generalizations of Banach Fixed Point Theorem (BFPT), Kannan Fixed Point 
Theorem (KFPT) and Chatterjee's Fixed Point Theorem (CFPT). These theorems have been listed 
respectively as Theorem 2.1, Theorem 2.2 and Theorem 2.3 below, in the same order as they appear in 
Kir and Kiziltunc[8].The theorems have been restructured here in order to make them consistent with the 
notations that we have used in this paper. 
 

Theorem 2.1 (Kir and Kiziltunc,[8]). Let (𝑋𝑋𝑋𝑋𝑋𝑋𝑋 be a complete b-metric space with a triangular constant 
𝑏𝑏𝑏� 1. Let 𝑇𝑇𝑇 𝑇𝑇𝑋𝑋𝑋𝑋𝑋be a function then there exists 𝜆𝜆 𝜆 𝜆such that 𝜆𝜆 𝜆 𝜆𝜆𝜆𝜆𝜆  and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏  which also 
satisfies 

𝑑𝑑(𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇) ≤ 𝜆𝜆𝜆𝜆𝜆(𝑥𝑥𝑥𝑥𝑥 ) ,    ∀ 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   . 
Then, T has a unique fixed point. 
 
Theorem 2.2 (Kir and Kiziltunc,[8]).Let (𝑋𝑋𝑋𝑋𝑋𝑋𝑋 be a complete b-metric space with a triangular constant 

𝑏𝑏𝑏� 1. Let 𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇  be a function for which there exists 𝜆𝜆 𝜆 𝜆such that 𝜆𝜆𝜆 𝜆𝜆



  

1
2 which also satisfies 

𝑑𝑑(𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇) ≤ 𝜆𝜆𝜆[𝑑𝑑(𝑥𝑥𝑥𝑥𝑥 𝑥𝑥) + 𝑑𝑑(𝑦𝑦𝑦𝑦𝑦 𝑦𝑦)] ,   ∀ 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   . 
Then, T has a unique fixed point. 
 
Theorem 2.3 (Kir and Kiziltunc,[8]).Let (𝑋𝑋𝑋𝑋𝑋𝑋𝑋 be a complete b-metric space with a triangular constant 

𝑏𝑏𝑏� 1. Let 𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇  be a function for which there exists 𝜆𝜆 𝜆 𝜆𝜆𝜆𝜆𝜆𝜆such that 𝑏𝑏𝑏𝑏𝑏𝑏 



  

1
2 which also 

satisfies 
𝑑𝑑(𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇) ≤ 𝜆𝜆𝜆𝜆𝜆𝜆(𝑥𝑥𝑥𝑥𝑥𝑥𝑥 ) + 𝑑𝑑(𝑦𝑦𝑦𝑦𝑦𝑦𝑦 )]    ∀ 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   . 

Then, T has a unique fixed point. 
 
These theorems had one more condition, which was actually a hint to construct a Cauchy sequence for the 
proof, rather than a condition that was needed to construct a proof. It was to choose any 𝑥𝑥�  ∈ 𝑋𝑋𝑋and 
construct a sequence (𝑥𝑥�)����  by 𝑥𝑥� =  𝑇𝑇�𝑥𝑥� . This sequence is then shown to be a Cauchy sequence 
using the conditions in the theorems. This construction has not been overlooked in this paper.  
 
The proof of the third theorem had a flaw and the proof of (𝑥𝑥�)���� being a Cauchy sequence has some 
unstated assumptions as below. 

a) The flaw is that the step marked in their proof has been obtained by assuming the 
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continuity of the b-metric d. The theorem doesn't state that condition and it has been illustrated by 
Cobzas[5] that a b-metric is not necessarily continuous. 
 

b) The proof of (𝑥𝑥�)����  being a Cauchy sequence is said to be followed by using a similar method 
as used in the proof of Theorem 2.1 and Theorem 2.2 .Theorem 2.2 suggests the method similar 
to that of Theorem 2.1. So, basically the authors want us to use the procedure as used in Theorem 
2.1. But while doing so, we obtain 
 

𝑑𝑑(𝑥𝑥� , 𝑥𝑥�)  ≤ 𝑏𝑏𝑏𝑏�[1 + (𝑏𝑏𝑏𝑏) + (𝑏𝑏𝑏𝑏)� + ⋯ + (𝑏𝑏𝑏𝑏)�����] 𝑑𝑑𝑑𝑑𝑑� , 𝑥𝑥�)  
 

The authors have assumed that 𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏, which leads to the conclusion that the geometric series 
on the right was convergent and therefore the sequence was Cauchy.  
 

Here, k= ��
���� . But ,if we have 𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏 �

��? In such a case, we have 

𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏�𝜆𝜆
1 − 𝑏𝑏𝑏𝑏 =  

(400 × �
��)

(1 − �
�)

=  20
3 > 1 . 

In this case, the convergence of the said geometric sequence will not follow at all. The authors have not 
considered or mentioned such possibilities, which makes the proof incomplete.  
 
Here, we wish to alter the conditions prescribed by Theorem 2.3 so that the new conditions would 
generalize Chatterjee's Fixed Point Theorem studied in [4] to a b-metric space and has no such 
questionable assumptions and flaws. 
 
3. Main Result 
 
After critically analyzing the proof of Theorem 2.3, it was found that to fix the flaw of continuity of d, we 
need the assumption of continuity of d. And, to obtain a Cauchy sequence as we wished, it sufficed to 

take 𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏If  𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏, then it was found that we can drop the original condition that 𝑏𝑏𝑏𝑏 𝑏



  

1
2 . The 

necessary “corrections" were found to be trivial. This is stated and proved formally in Theorem 3.1. 
 
Theorem 3.1.Let (𝑋𝑋𝑋𝑋𝑋𝑋𝑋 be a complete b-metric space with a continuous b-metric d and a triangular 

constant 𝑏𝑏𝑏� 1.  Let 𝑇𝑇𝑇 𝑇𝑇 𝑇 𝑇𝑇𝑇be a function for which there exists 𝜆𝜆𝜆𝜆𝜆  such that 0<  ���
���� < 1 which 

also satisfies 
𝑑𝑑(𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇) ≤  𝜆𝜆𝜆𝜆𝜆𝜆(𝑥𝑥𝑥𝑥𝑥𝑥𝑥 ) + 𝑑𝑑(𝑦𝑦𝑦𝑦𝑦𝑦𝑦 )]    ∀ 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   . 

Then, T has a unique fixed point. 
 
Proof. Let the given condition hold.  

Since0<  ���
���� < 1 and 𝑏𝑏�𝜆𝜆𝜆𝜆  , it follows that 1 − 𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏 

Consequently, we get 

  0<  𝑏𝑏𝑏𝑏
1 − 𝑏𝑏𝑏𝑏 < 𝑏𝑏�𝜆𝜆

1 − 𝑏𝑏𝑏𝑏 < 1  
 
To construct a Cauchy sequence, let 𝑠𝑠𝑠𝑠𝑠𝑠𝑠  be arbitrary. Define a sequence (𝑥𝑥�)����   by  𝑥𝑥� =  𝑇𝑇� 𝑠𝑠 
so that, in general we get 𝑥𝑥��� =  𝑇𝑇𝑇𝑇�. This sequence will be shown to be a Cauchy sequence. Let 𝑛𝑛𝑛𝑛  𝑛𝑛 
Then   
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                                𝑑𝑑(𝑥𝑥� , 𝑥𝑥���)  =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑��� , 𝑇𝑇𝑇𝑇�) 
 ≤  𝜆𝜆𝜆𝜆𝜆𝜆(𝑥𝑥��� , 𝑇𝑇𝑇𝑇�) + 𝑑𝑑𝑑𝑑𝑑� , 𝑇𝑇𝑇𝑇���)]  

                    =  𝜆𝜆𝜆𝜆𝜆(𝑥𝑥��� , 𝑇𝑇𝑇𝑇�)                          [∵  𝑥𝑥� =  𝑇𝑇𝑇𝑇���] 
                    =  𝜆𝜆𝜆𝜆𝜆(𝑥𝑥��� , 𝑥𝑥���)                       [∵  𝑥𝑥��� =  𝑇𝑇𝑇𝑇�] 

                                                             ≤  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥��� , 𝑥𝑥�) + 𝑑𝑑𝑑𝑑𝑑� , 𝑥𝑥���)] 
which implies that 

(1 − 𝑏𝑏𝑏𝑏) 𝑑𝑑(𝑥𝑥� , 𝑥𝑥���) ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏��� , 𝑥𝑥�) 
and therefore, 

𝑑𝑑(𝑥𝑥� , 𝑥𝑥���) ≤ 𝑘𝑘𝑘𝑘𝑘𝑘𝑘��� , 𝑥𝑥�) 
where,𝑘𝑘 𝑘 ��

���� ,  because 1 − 𝑏𝑏𝑏𝑏 𝑏 𝑏. Using this relation recursively, we get 
𝑑𝑑(𝑥𝑥� , 𝑥𝑥���) ≤ 𝑘𝑘�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �) 

 
Now, let 𝑚𝑚𝑚 𝑚𝑚𝑚 𝑚 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚  𝑚𝑚 and for 0 <  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  , it follows that 

𝑑𝑑(𝑥𝑥� , 𝑥𝑥�)   ≤  𝑏𝑏𝑏𝑏𝑏(𝑥𝑥� , 𝑥𝑥���) + 𝑑𝑑𝑑𝑑𝑑��� ,  𝑥𝑥�)] 
                 ≤  𝑏𝑏𝑏𝑏𝑏�𝑑𝑑(𝑠𝑠𝑠𝑠𝑠𝑠 �) + 𝑑𝑑𝑑𝑑𝑑��� ,  𝑥𝑥�)] 
                 =  𝑏𝑏𝑏𝑏�𝑑𝑑(𝑠𝑠𝑠𝑠𝑠𝑠 �) + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏��� ,  𝑥𝑥�) 

                                                                 ≤  𝑏𝑏𝑏𝑏�𝑑𝑑(𝑠𝑠𝑠𝑠𝑠𝑠 �) + 𝑏𝑏�𝑘𝑘���𝑑𝑑(𝑠𝑠𝑠𝑠𝑠𝑠 �) + 𝑏𝑏�𝑑𝑑𝑑𝑑𝑑��� ,  𝑥𝑥�) 
⋮ 

                                                                 ≤  𝑏𝑏𝑏𝑏�[1 + (𝑏𝑏𝑏𝑏) + (𝑏𝑏𝑏𝑏)� + ⋯ + (𝑏𝑏𝑏𝑏)�����] 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �) 

                                                      =  𝑏𝑏𝑏𝑏� ���(��)���

��(��) �  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �) 

                                                                ≤  𝑏𝑏𝑏𝑏� � �
��(��)�  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �) 

 
So, (𝑥𝑥�)����  is a Cauchy sequence since  𝑑𝑑(𝑥𝑥� , 𝑥𝑥�)  0 as  𝑚𝑚𝑚𝑚 𝑚𝑚𝑚 𝑚 𝑚. 
Thus, by completeness of X, there exists 𝑥𝑥𝑥� 𝑋𝑋 such that lim

n 
 𝑥𝑥� = 𝑥𝑥.Now, we show that x is a fixed 

point of T.  For 𝑛𝑛𝑛� ℕ, we have 
𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ���)  +  𝑑𝑑𝑑𝑑𝑑��� , 𝑇𝑇𝑇𝑇𝑇𝑇 

   =  𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑥 𝑥𝑥���) +  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� , 𝑇𝑇𝑇𝑇𝑇𝑇 
              ≤  𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑥 𝑥𝑥���) +  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑥𝑥𝑥 𝑥𝑥�) + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� , 𝑇𝑇𝑇𝑇𝑇 

                          =  𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑥 𝑥𝑥���) +  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑥 𝑥𝑥���) + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� , 𝑇𝑇𝑇𝑇𝑇 
 
Due to the continuity of d, we get 

𝑑𝑑(𝑥𝑥� , 𝑇𝑇𝑇𝑇) → 𝑑𝑑(𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥) as 𝑛𝑛𝑛𝑛𝑛𝑛  𝑛 
So taking limits as 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  in  above inequality, we get 

𝑑𝑑(𝑥𝑥𝑥𝑥𝑥 𝑥𝑥) ≤  𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑥𝑥𝑥 𝑥𝑥). 
Now, as 1 −  𝑏𝑏𝑏𝑏𝑏 𝑏 𝑏 , we have   

𝑑𝑑(𝑥𝑥𝑥𝑥𝑥 𝑥𝑥) ≤  𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑥𝑥𝑥 𝑥𝑥) 
⇒ (1 − 𝑏𝑏𝑏𝑏)𝑑𝑑(𝑥𝑥𝑥𝑥𝑥 𝑥𝑥) ≤ 0 
⇒ 𝑑𝑑(𝑥𝑥𝑥𝑥𝑥 𝑥𝑥) ≤ 0 
⇒ 𝑑𝑑(𝑥𝑥𝑥𝑥𝑥 𝑥𝑥) = 0. 

Therefore, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  , which makes x a fixed point of T. 
 

To establish the uniqueness, let y be a different fixed point than x so that we have 𝑦𝑦𝑦𝑦𝑦𝑦𝑦  𝑦𝑦. As  𝑥𝑥𝑥 𝑥 𝑥𝑥, 
we have𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑    Since x and y are fixed points of T, we have 

𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  
So, we obtain  
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𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑 𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑 
≤  𝜆𝜆𝜆𝜆𝜆𝜆𝜆(𝑥𝑥𝑥𝑥𝑥𝑥𝑥 ) + 𝑑𝑑(𝑦𝑦𝑦𝑦𝑦𝑦𝑦 )] 

    ≤  2𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆  
Now, as 0 < ��

���� < 1.  
It follows that  𝑏𝑏𝑏𝑏𝑏𝑏   𝑏 𝑏𝑏𝑏𝑏𝑏𝑏and so, 2𝑏𝑏𝑏𝑏𝑏𝑏  . 

Since  𝑏𝑏𝑏� 1, it follows that 2𝜆𝜆 𝜆𝜆𝜆𝜆 𝜆𝜆 𝜆𝜆 .  
Therefore, the last inequality reduces to 𝑑𝑑(𝑥𝑥𝑥𝑥𝑥 ) <  𝑑𝑑(𝑥𝑥𝑥𝑥𝑥 ).This is absurd. Hence, x is a unique fixed 
point of T. 
 
Conclusion 

In this paper, we have introduced some existing properties of b-metric space as the usual notion of a 
metric space. Besides this, we have studied a generalization of Chatterjee's Fixed Point Theorem in b-
metric space. In fact, this result can be used for further research work in fixed point theory in Metric 
space and extends many other authors' existing works. 
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previous years. The reasons could include deteriorating quality of schooling, increased opportunities 
abroad, or other competing fields attracting talent. Nonetheless, the data signals the need for 
interventions to boost interest in engineering and bolster high school teaching and resources. 
Addressing these gaps proactively through counselling, upgraded curriculum, teacher training, etc. 
can help reverse the concerning enrolment patterns. More effective high school preparation will 
translate into increased applicants and better performance. 

This paper aims to bridge the existing knowledge gap between high school and engineering 
education by developing predictive models based on high school academic records. The scope 
includes students applying for engineering programs at the Institute of Engineering under Tribhuvan 
University. The objectives are to predict entrance exam scores and admission probability using 
machine learning techniques. The research questions are: 1) How accurately can high school 
performance predict engineering entrance outcomes? 2) What are the capabilities of different machine 
learning models for this predictive task? Machine learning techniques like logistic regression and 
LSTM networks are applied to high school and entrance datasets to uncover patterns and trends that 
can enable data-driven decision-making around admissions. 

Data mining, also known as knowledge discovery in databases (KDD), employs a multitude 
of techniques and algorithms to extract valuable insights from vast datasets. When applied to the 
educational domain, termed as "educational data mining," these techniques can unveil patterns and 
correlations previously unseen. Algorithms such as decision trees, neural networks, linear regression, 
and random forests are particularly adept at predicting outcomes based on historical data, enabling 
educational stakeholders to anticipate student performance trends and act proactively. 

For instance, a student's performance in high school, analysed holistically across various 
parameters-grade-wise and subject-wise results, demographics, school type, and more-can serve as a 
predictive indicator of their potential success in higher education. Especially in contexts where high 
school graduates aspire for competitive admissions in tertiary institutions, such predictive models can 
be invaluable. As a case in point, for admissions to engineering programs under Tribhuvan University, 
students are assessed through a rigorous computer-based entrance examination by the Institute of 
Engineering, which evaluates proficiency in subjects like Mathematics, Physics, Chemistry, and 
English, all grounded in the high school curriculum. Thus, a student's high school academic record 
becomes a significant predictor of their entrance score and subsequent success in the program. 

This paper aims to bridge the existing knowledge gap between high school and engineering 
education by developing a predictive model based on high school academic records. Such a model can 
assist in identifying students at risk, guiding admission decisions, and formulating strategies to ensure 
every student's optimal academic progression. 

2. Background Study 

Predicting student entrance scores based on prior academic performance utilizes information 
extraction. Analysing student data, including exam scores, enables institutions to develop predictive 
models for identifying students needing extra support. Educational data mining explores predictive models 
for academic performance using machine learning techniques (Chen et al.,[2]). Educational institutions are 
amassing extensive datasets encompassing student activities, attendance patterns, geographical locations, 
family backgrounds, and more. Nevertheless, this wealth of data typically gets harnessed for generating 
basic queries and conventional reports that seldom reach the appropriate individuals in a timely manner to 
enable informed decision-making (Kabakchieva, [8]). Dien et al. study deep learning methods for student 
performance prediction, considering data preprocessing strategies (Dien et al., [4]). In Nepal, research 
explores hyper-parameter tuning for student grade prediction using neural networks (Rimal et al., [14]). 
GPA prediction employs Boruta algorithm and random forest with single and multiple-layer models. 
Artificial neural networks forecast student performance. Educational data mining evaluates classification 
algorithms for student success prediction(Gochhait & Rimal, [7]; Meghji et al., [10]; Naser et al., [11]). 
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where g(t) is trend, s(t) is seasonality, h(t) is holidays, and e(t) is noiseKey estimated parameters as,  
slope k = 0.01304175, intercept m = 1.02369371,noise sigma_obs = 0.00457194. 

 

Prophet automatically detected change points in the time series and modelled trend nonlinearity.It 
incorporated uncertainty estimates in its forecasts. The effects of holidays were captured using additional 
delta parameters in the model. Regularization helped avoid overfitting the training data. Overall, the three 
complementary models provided insights into exam outcomes, score patterns, and temporal trends. 

4. Results and Discussion 

The analysis demonstrated the capability of machine learning techniques for predictive modelling 
of engineering entrance exam outcomes. Correlation analysis using heatmaps revealed entrance scores are 
positively associated with high school grades. Heatmap showed entrance exam scores correlated positively 
with SEE (0.43) and PCL (0.39) results. Entrance math score had very strong correlation (0.89) with final 
entrance score, while PCL math correlation was weaker (0.19).Logistic regression achieved high accuracy 
of 97% in classifying pass versus fail status, as evidenced by ROC curve, precision and recall metrics. 
LSTM networks attained reasonable accuracy levels between 65-85% for forecasting entrance scores on a 
yearly basis, though performance declined in later years likely due to irrelevant training data and potential 
COVID-19 impacts. 

Facebook Prophet excelled at forecasting decreasing temporal trends in both the entrance score 
threshold and average scores of admitted candidates based on historical data. Prophet model accurately 
forecasted decreasing trend in entrance score thresholds, from 52 in 2017 to 38 in 2022.Prophet also 
predicted declining trend in average scores of eligible candidates, from 69.60 in 2017 to 61.71 in 2022.For 
threshold forecasting, Prophet model achieved MAE of 3.279, MSE of 13.820, and RMSE of 3.717.For 
average score forecasting, Prophet model obtained MAE of 2.694, MSE of 8.484, and RMSE of 
2.912.Prophet obtained mean absolute errors around 3 for threshold and 2.7 for average score predictions. 
Overall, the complementarity of logistic regression, LSTM and Prophet models provided insights into 
student outcomes, complex score patterns, and changing trends to support data-driven decision making 
around admissions. 
Logistic Regression 

Table 1. Confusion matrix for performance of Logistic Regression model 

 Predicted (Yes) Predicted (No) 
Actual (Yes) TP=1495 FN=40 
Actual (No) FP=27 TN=780 

 

Figure 3 AUC ROC curve for performance of Logistic Regression 
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Figure 4. Iteration wise precision and accuracy curve for performance of Logistic Regression 

Figure 4 depicts precision over training iterations for the logistic regression model, showing a 
high precision consistently maintained between 0.97-0.99. This highlights the model's capability for 
accurate positive predictions throughout the training process. A flat accuracy line of 0.97 across 
iterations, indicating an unchanging high accuracy rapidly attained within the first few iterations, 
without improvement from extended training. 

LSTM 

Table 2 Actual and predicted (using LSTM) values of entrance score for randomly selected students 

SN Actual Entrance Score (A) Predicted Entrance Score (P) Ratio = P/A 
1 103 77.88 0.756 
2 61.9 51.28 0.828 
3 79.5 62.6 0.787 
4 46.5 44.04 0.947 
5 89 73.65 0.827 
6 113.5 98.07 0.864 
7 129 98.97 0.767 
8 99.5 84.15 0.845 

 

 

Figure 5 Plot of actual and predicted values of entrance score from table 2 
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Figure 5 plots the actual versus predicted entrance scores for 8 sample students to demonstrate the 

LSTM model's score forecasting capability. The predicted scores align fairly closely to the actual values, 

with some minor variability. This indicates the LSTM network can reasonably predict entrance exam 

performance for individual students based on their academic history, though some variance persists 

between actual and predicted scores. 

 

Figure 6 Prediction Plot: Prediction Values & actual values using LSTM 

Figure 6 visually evaluates the trained LSTM model's overall predictive accuracy on the test set 
through a regression plot. The tight fit of predicted scores to the ideal y = x line and high R-squared of 0.89 
highlight excellent correlation between true and predicted outcomes. This shows the LSTM model attains 
strong predictive capabilities, able to generalize well to new unseen data. 

 

Prophet 

Table 3 Historical records of year wise Threshold Score and Average Score of Eligible Applicants 

Year 2017 2018 2019 2020 2021 2022 

No of Applicants 12309 11184 NA 12708 11037 9404 
No of Eligible Candidates 6377 6335 NA 6725 6879 6722 
Entrance Threshold Score 52 49 NA 46 42 38 
Average Score of Eligible Candidates 69.60 68.42 NA 65.98 64.52 61.71 

 

Figure 7 Trend of Entrance Threshold Score as forecasted by Prophet Model 
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independent parameter that is not associated with senescence. In human populations, issues connected 
with overestimation in observed death rates at senescence in mortality trajectories aroused the study of 
continuous parsimonious parametric mortality models which are responsible for the unobserved 
heterogeneity and consequently, the cohort population is then partitioned into strata in accordance with an 
observed measure of insured’s exposure to the risk of death. However, in Dragan(2022), we have 
observed that the methods of generating mortality tables were initially developed for cohorts whose 
members have varying characteristics in connection with longevity measures. 
 

Numerical Computation of the  1, 2GM  Parameters 

In Debon, Montes and Sala (2005); Debon, Montes and Sala (2005), the  1, 2GM is defined as 

x
x GH             (1) 

Let  e  and HG ee loglog  , 0   and 0  

The right hand side must be multiplied by  1  throughout by definition of the force of mortality 

  x
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 log log log log xe x
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logeK  ; taking  K  as the constant of integration 
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where elog , is the constant of integration.  

 log log log log log
X Xx H x H

e x e e e el             (9) 

Now, equating both sides, we have 
Xx Hx

sxsx
Hx

x dsll   




0

      (10) 

Note that the age of the insured is chronological. We can take four of such age with equal intervals at the 
points  0, , 2 , 3x x s x s x s    to have four systems of simultaneous equations 
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Similarly, 
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Taking logarithms of the two equations above, we have 
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Materials and Methods 
 
Let  log 1e i    be the force of interest where i  is the valuation interest rate 
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 
0

1 x
t

x x t
x

T a v l dta
l



  E        (83) 

 
0

x
t

x t xa e P dt


          (84) 

 1

0

x tx
H Ht t

xa e dt 


          (85) 

     
1

x t
x t x t x

x

Ht t
H H H Ht t t t t

t x H

eP e e e


       



 

         (86) 

      1 exp log logx t
x t

x x

t xHt t e eH Ht t t
t x H H

H H t eeP e e


 
   

 

 
 


     (87) 

Observe that log logt
e eH t HtH e e         (88) 

        log
1 exp log logx t e

x t

x x

t H xHt t e eH Ht t t
t x H H

e H g t ee gP e e


 
 

 

 
 

 
    (89) 

   log

0

exp log loge

x

t H xx
e e

x
H

e H t e
a dt

 



  
       (90) 

Let log
loge

e

t H t
H

            (91) 

When 0t  , 0   

When t x  ,    log log x
e ex H H         (92) 

 

log log
loge e

e

d dH d Hdt dt
dt H
           (93) 

  log

0

exp log log
log

log

x
e

x

x
e eH

e
x H

e

e H e
H da

H

  





 

   
      (94) 



26

Ogungbenle G. Michael, Ihedioha S. Abahia & Ogungbenle O. Gladys / The Gradshteyn and Ryzhik’s Integral …Ogungbenle G. Michael, Ihedioha S. Abahia & Ogungbenle O. Gladys / The Gradshteyn and Ryzhik’s Integral  … 

26 
 

    
 log

0

1 exp log log
loglog

x
e

x

H
x

x e eH
ee

a e H e d
HH

   




 
     

 
  (95) 

    
 log

0

log1 exp log
loglog

x
e

x

H
x e

x eH
ee

ea H e d
HH


   




  

       
   (96) 

Following Gradshteyn and Ryzhik (n.d, pp. 356, formula,  147 37ETI )   (97) 

   
0

exp ,Ye Y dY     


            (98) 

Where  .  is the gamma function 

a ib   , 1i    and 0a  and Rea        (99) 

    
 log

0

log1 exp log
loglog

x
e

x

H
x e

x eH
ee

ea H e d
HH


   




  

          
   (100) 

 

 
 

 
 

0

log

0

log

logexp log
log

logexp log
log

logexp log
log

x
e

x
e

x e
e

e

H
x e

e
e

x e
e

eH

eH e d
H

eH e d
H

eH e d
H










  

  

  





 



 

  
          

   
             
 

                







    (101) 

 

Consequently, 

 

 
 

  

0

log

logexp log
log

logexp log
log

log

x
e

x

x e
e

e

x e
e

eH
x

H
e

eH e d
H

eH e d
H

a
H







  

  





 

 

   
            

 
              




                          (101) 

  
 

 
 

0

log

logexp log
log1

log logexp log
log

x

x
e

x e
e

e
x

H
xe e

e
eH

eH e d
H

a
H eH e d

H







  

   


 

 

   
            

  
              




 (102) 



27

Nepal Journal of Mathematical Sciences (NJMS), Vol. 4, No. 2, 2023 (August): 17-30Nepal Journal of Mathematical Sciences (NJMS),  Vol. 4, No. 2  , 2023 (August): 17-30
  

27 
 

 

   

1
0

log
log

logexp log
log

loglog , log
log

e

e

x e
e

e

x xeH
e e

e

eJ H e d
H

eH H
H




 

  

 

 

   
 

  
           

                


   (103) 

 
 

2
log

logexp log
logx

e

x e
e

eH

eJ H e d
H


   



   
          

     (104) 

 

Let log x
e H             (105) 

Let log x
e H            (106) 

d d            (107) 

When    ,     and when log x
e H  , 0   

Therefore,    log
2

0

logexp log log
log

x
e Hx xe

e e
e

eJ H e H d
H


   


 

   
           
  (108) 

  log
2

0

log logexp log log
log log

x
e Hx xe e

e e
e e

e eJ H e e H d
H H

 
    


  


                             

 (109) 

    2
0

log logexp log log
log log

x x e e
e e

e e

e eJ H H e x H d
H H

 
    

  
                  

     
 (110) 

    2
0

logexp log log
log

e
e e

e

eJ H e e x d
H


    

 
              

   
  (111) 

 2
0

logexp log log
log

xe
e e

e

eJ H e d
H


    

 
            

   
    (112) 

   
2

0

logexp log log
log

xe
e e

e

eJ H e e d
H


   

 
            

   
    (113) 

   2
0

logexp log
log

e
e

e

eJ H e x d
H


    

 
            

   
    (114) 

   2
0

logexp log
log

x e
e

e

eJ e H e d
H


    

 
            

   
    (115) 



28

Ogungbenle G. Michael, Ihedioha S. Abahia & Ogungbenle O. Gladys / The Gradshteyn and Ryzhik’s Integral …Ogungbenle G. Michael, Ihedioha S. Abahia & Ogungbenle O. Gladys / The Gradshteyn and Ryzhik’s Integral  … 

28 
 

   

     

2
0

log
log

logexp log
log

loglog , log
log

e

e

x e
e

e

e
x eH

e e
e

eJ e H e d
H

ee H H
H




 

 


  

 


 
  

  
     
 

           
   

  
            


  (116) 

    1 2
1

log
xx

H
e

a J J
H 

          (117) 

  
   

     

log
log

log
log

loglog , log
log1

log loglog , log
log

e

e

x
e

e

e
x xeH

e e
e

x
H e

e x eH
e e

e

eH H
H

a
H ee H H

H





 

 


 

  





    
 

  
     
 

                      
                 

(118) 

  
   

     

log
log

log
log

loglog , log
log1

log loglog , log
log

e

e

x
e

e

e
x xeH

e e
e

x
H e

e x eH
e e

e

eH H
H

a
H ee H H

H





 

 


 

  





    
 

       
 

                    
               

 (119) 
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Discussion of results 
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  (128) 

Conclusion 
 
Life annuity plays an important role in defined benefits schemes under defined contribution pension plans 
and hence it represents a modified version of a defined benefit structure. Consequently, it lends itself as a 
good alternative measure to defined benefits schemes to assist retirees in earning income streams 
provided the annuitant survives. This paper contributes to this field by providing an analytical technique 
for computing the fully continuous life annuities and continuous life insurance under the framework of 
mortality rate intensity defining the trend of human mortality. The development of actuarially robust 
analytical computation of fully continuous life annuities and fully continuous life insurance has 
continually posed core challenges for actuaries and life offices. In insured populations having reasonably 
good track records of death statistics, there seems to be disturbances in the function of a low number of 
events representing limitations in the information on the survival data at different ages. The applicable 
pricing assumptions available in life insurance especially in annuity-linked securities take into account 
changes in demographic statistics and mortality changes. The mathematical technique through the 
Gamma function is used to evaluate attempts to model and generate mortality rate intensities further 
employed in computing pension and death benefits. The continuous life annuities in a probabilistic 
mortality model aptly defines the actuarial present value of the underlying death density function such 
that the analytically closed form solution for the annuity integral contains special function in the form 
Gamma, upper Incomplete Gamma, and Lower Incomplete Gamma function. In particular, the lower 
Incomplete Gamma function was constructed with series representation to allow approximations of first-
order and second-order basis when the initial level of mortality is infinitesimally small. 
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Abstract: The Elzaki Transform Homotopy Perturbation Method (ETHPM), a modified computational 
technique, is used in this article to solve the time-fractional reaction-diffusion equation that emerges in 
porous media. Herein fractional-order derivatives are considered in Caputo sense. To show how simple 
and effective the suggested method is, some specific and understandable examples are provided. The 
numerical results produced by the suggested technique show that the method is accurate and easy to use. 
The graphical illustrations of the approximate solutions to the porous media equation for different 
particular cases are the key characteristics of the current research. The solution obtained is very useful 
and significant to analyze the many physical phenomena.  

Keywords: Fractional calculus, Elzaki Transform Homotopy Perturbation Method (ETHPM),   
                     Fractional reaction-diffusion equations  

1. Introduction 

Numerous problems in the real world have been solved using the theory and fundamental concepts of 
fractional calculus. As an extension of the conventional integer-order differential equations, fractional-
order differential equations are being utilized more often to describe problems in the domains of 
engineering, mechanics, fluid flow, biology, and physics. Fractional partial differential equations (FPDEs) 
are widely used in science and engineering, and as a result, research on FPDEs has grown significantly 
over the past several decades. The theory of fractional partial differential equations can be used to more 
accurately and systematically translate real-world problems. A novel automated brain segmentation 
technique for magnetic resonance imaging was developed by Ahlgren et al. [1] employing fractional 
signal modeling of a spoiled gradient-recalled echo (SPGR) sequence acquired at different flip angles. 
Sun et al. [2] presented fractional and fractal derivative models for temporary anomalous diffusion. Here, 
four models are thoroughly compared with one another. In order to solve the time-fractional Navier-
Stokes equation in a tube, Kumar et al. [3] devised a unique homotopy perturbation transform method. 
Murio [4] suggested an implicit unconditionally stable numerical strategy to address the one-dimensional 
linear time-fractional diffusion issue. The fractional-order diffusion equations were solved by Shah et al. 
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[5] using the Natural transform decomposition technique. The best approach for q-homotopy analysis was 
used by Darzi et al. [6] to solve partial differential equations with time-fractional derivatives. A space-
time fractional order non-linear Cahn-Hilliard issue was resolved by Pandey et al. [7] using an operational 
matrix approach and Laguerre polynomials. Pandey et al. [8] recommended an effective Laguerre 
collocation technique to generate the approximate order non-linear reaction-advection-diffusion 
equations. The first basic solutions of general fractional-order diffusion equations within the negative 
Prabhakar kernel were taken into consideration by Yang et al. [9]. The symmetry analysis approach to 
determine the symmetry of the time-fractional diffusion equation has been covered by Liu et al. [10].  

As a chemical moves from a zone of high concentration to one of low concentration, the diffusion process 
takes place. The dynamics of density profiles during the diffusion of a material are depicted by the 
diffusion type equation, which is a partial differential equation [11]. Fractional reaction-diffusion 
equations may be used to describe both shallow water waves in seas and ion-acoustic waves in plasma. 

The present study deals with the following time- fraction reaction-diffusion equation which arises in 
porous media [12] 

��

��� χ(ζ, τ) = D ���
���� χ(ζ, τ) − ςχ� ���

���� χ�(ζ, τ) + kχ(1 − χ) + f(ζ, τ) ,                                                      (1) 

Where 0 ≤ ζ ≤ 1, 0 ≤ τ ≤ 1,  0 < 𝜌𝜌 𝜌𝜌 , α� > 1, α� ≥ 2; with IC 

χ(ζ, 0) = χ�(ζ).                                                                                                                                           (2) 

Here, 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) is a state variable and describes the concentration of a substance/solute profile, D denotes 
the diffusion coefficient, average velocity of fluid is denoted by ς > 0, 𝑘𝑘 denotes the reaction coefficient 
and 𝑚𝑚𝑚 𝑚𝑚 are integers. 

Here we will be applying ETHPM to find the approximate numerical solution of time-fractional reaction-
diffusion equation (1)-(2). The correctness and effectiveness of the provided technique are demonstrated 
by the three test examples. 

2. Basic definitions of fractional calculus and Elzaki Transform 

In this section, we present some basic definitions of fractional calculus that will be incorporated into this 
study, as follows [13-15].  

Definition 1. A real function  𝑓𝑓𝑓𝑓𝑓𝑓 , 𝑡𝑡𝑡𝑡   is said to be in the space 𝐶𝐶� if 𝜇𝜇 𝜇 𝜇𝜇𝜇 there exists a real number 
𝑝𝑝 𝑝𝑝𝑝  and the function 𝑓𝑓�(𝑡𝑡𝑡𝑡𝑡𝑡  𝑡𝑡𝑡 𝑡𝑡 such that 𝑓𝑓(𝑡𝑡) = 𝑡𝑡�𝑓𝑓�(𝑡𝑡). Moreover, if  

𝑓𝑓(�) ∈ 𝐶𝐶�, then 𝑓𝑓𝑓𝑓𝑓𝑓 is said to be in the space 𝐶𝐶��,𝑛𝑛𝑛  𝑛𝑛𝑛  

Definition 2. The Riemann-Liouville fractional integral of order 𝛼𝛼 𝛼𝛼  for a function 𝑓𝑓𝑓𝑓𝑓𝑓 is defined as  

I�𝑓𝑓(𝑡𝑡) =
⎩
⎨
⎧ 1

Γ(α) �(𝑡𝑡𝑡𝑡𝑡  )���𝑓𝑓(𝜏𝜏)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
�

�
     𝑓𝑓(𝑡𝑡),                                                 𝛼𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼

 

Where Γ(∙) denotes the Gamma function. 
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Definition 3. The Riemann-Liouville fractional derivative of order 𝛼𝛼 𝛼 𝛼 for a function 𝑓𝑓𝑓𝑓𝑓𝑓 is defined as  

 D�𝑓𝑓(𝑡𝑡) = ��

��� 𝐼𝐼���𝑓𝑓(𝑡𝑡),  

                = 𝐼𝐼��� ��

��� 𝑓𝑓(𝑡𝑡),      𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛𝑛 𝑛 𝑛 𝑛 𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛                                                                  

Definition 4. The Caputo fractional derivative of order 𝛼𝛼 𝛼 𝛼 is defined as   

D�𝑓𝑓(𝑡𝑡) = �
���(�)

���  ,                                        𝛼𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼  
�

�𝑓���𝑓 � �𝑓�𝑓(�)
(���)����� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑        �

�
                                                  

where 𝑛𝑛 is an integer, 𝑡𝑡𝑡𝑡   and 𝑓𝑓(𝑡𝑡) ∈ 𝐶𝐶��. 

Definition 5. The Elzaki transform of 𝑓𝑓(𝑡𝑡) is defined [16] as  

𝐸𝐸[𝑓𝑓(𝑡𝑡)] = 𝐸𝐸[𝑓𝑓(𝑡𝑡), 𝑣𝑣] = 𝑇𝑇(𝑣𝑣) = 𝑣𝑣 � 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓��
��

� 𝑑𝑑𝑑𝑑𝑑 𝑑𝑑� < 𝑣𝑣 𝑣𝑣𝑣 �, 𝑘𝑘�,𝑘𝑘� >0 , 0≤𝑡𝑡𝑡    𝑡,                     (3)   

where  𝑓𝑓(𝑡𝑡) is taken from the set A, which is defined as  

A = �𝑓𝑓(𝑡𝑡);  ∃ 𝑀𝑀𝑀𝑀𝑀 � >0 , 𝑗𝑗 𝑗𝑗𝑗  𝑗𝑗 |𝑓𝑓𝑓𝑓𝑓𝑓|  < 𝑀𝑀𝑀𝑀
|�|
��, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (−1)� � [𝛼, 𝑡𝑓�,                                 (4) 

here, constant M must be a finite number, 𝑘𝑘� and 𝑘𝑘� may be finite or infinite. 

Using duality of Laplace [17], Elzaki transform of the Caputo fractional derivative (given in definition 4) 
of order 𝛼𝛼 𝛼 𝛼, can be obtained [18] and get as 

𝐸𝐸[𝐷𝐷�𝑓𝑓(𝑡𝑡), 𝑣𝑣] = �(�)
�� − ∑ 𝑣𝑣�����𝑓𝑓(�)(0),        𝑛𝑛 𝑛 𝑛 𝑛 𝑛𝑛 𝑛 𝑛𝑛𝑛������                                                          (5) 

In Eq. (5), 𝑇𝑇(𝑣𝑣) is the Elzaki transform of the function 𝑓𝑓(𝑡𝑡). 

Elzaki transform has many useful and important properties like linear property, scale property, shifting 
property, duality with Laplace transform ,and so forth. Further detail and properties about this transform 
can be found in [16-19]. 

3. Elzaki Transform Homotopy Perturbation Method 

To illustrate the basic idea of this method, we consider a general form of nonlinear, non-homogeneous 
partial differential equation as follows: 

𝐷𝐷��𝑢𝑢(𝑥𝑥𝑥𝑥𝑥 ) = 𝐿𝐿𝐿𝐿(𝑥𝑥𝑥𝑥𝑥 ) + 𝑁𝑁𝑁𝑁(𝑥𝑥𝑥𝑥𝑥 ) + 𝑓𝑓(𝑥𝑥𝑥𝑥𝑥 ), 𝛼𝛼 𝛼 𝛼𝛼                                                                                (6)               

With the following initial conditions 

 𝐷𝐷��𝑢𝑢(𝑥𝑥𝑥𝑥 ) = 𝑔𝑔� , 𝑘𝑘𝑘𝑘𝑘   𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘    ��𝑢𝑢(𝑥𝑥𝑥𝑥 ) = 0, and 𝑛𝑛 𝑛 ⌊𝛼𝛼⌋                                                            (7)                             

In eq. (6),  𝐷𝐷�� denotes without loss of generality the Caputo fractional derivative operator, L represents a 
linear differential operator, 𝑁𝑁 stands for nonlinear differential operator and 𝑓𝑓(𝑥𝑥𝑥𝑥𝑥 ) is a known function. 

Taking Elzaki transform on both sides of eq. (6), to get   
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 𝐸𝐸[𝐷𝐷��𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥)] = 𝐸𝐸[𝐿𝐿𝐿𝐿(𝑥𝑥𝑥 𝑥𝑥)] + 𝐸𝐸[𝑁𝑁𝑁𝑁(𝑥𝑥𝑥 𝑥𝑥)] + 𝐸𝐸𝐸𝐸𝐸(𝑥𝑥𝑥 𝑥𝑥)],                                                          (8)                             

Using the differentiation property of Elzaki transform[16-19] and above initial conditions, we have 

𝐸𝐸[𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥)] =  𝑣𝑣�𝐸𝐸[𝐿𝐿𝐿𝐿(𝑥𝑥𝑥 𝑥𝑥)] + 𝑣𝑣�𝐸𝐸[𝑁𝑁𝑁𝑁(𝑥𝑥𝑥 𝑥𝑥)] +  𝑔𝑔(𝑥𝑥𝑥 𝑥𝑥)                                                                        (9)                            

Applying the inverse Elzaki transform on both sides of eq. (9), we obtain 

𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥) =  𝐺𝐺(𝑥𝑥𝑥 𝑥𝑥) + 𝐸𝐸���𝑣𝑣�𝐸𝐸[𝐿𝐿𝐿𝐿(𝑥𝑥𝑥 𝑥𝑥)] + 𝑣𝑣�𝐸𝐸[𝑁𝑁𝑁𝑁(𝑥𝑥𝑥 𝑥𝑥)]�                                                                   (10)              

Where 𝐺𝐺(𝑥𝑥𝑥 𝑥𝑥) represents the term arising from the known function 𝑓𝑓(𝑥𝑥𝑥 𝑥𝑥) and the prescribed initial 
condition. 

Now, we implement the homotopy perturbation method, (see [20-22]) 

𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥) =  ∑ 𝑝𝑝�𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥𝑥����                                                                                                                       (11)                            

And the nonlinear term can be decomposed as  

𝑁𝑁𝑁𝑁𝑁(𝑥𝑥𝑥 𝑥𝑥)] =  ∑ 𝑝𝑝�𝐻𝐻�(𝑢𝑢𝑢����                                                                                                                    (12)                            

Where 𝐻𝐻�(𝑢𝑢𝑢 are He’s polynomials (see, [23-24]) and given by 

𝐻𝐻�(𝑢𝑢� , 𝑢𝑢�, … , 𝑢𝑢� ) = �
��

��

��� �𝑁𝑁�∑ 𝑝𝑝�𝑢𝑢����� �����  ,     𝑛𝑛 𝑛 𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛                                                          (13)                         

Substituting equations (11) and (12) in equation (10), we get  

 ∑ 𝑝𝑝�𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥𝑥���� =  𝐺𝐺(𝑥𝑥𝑥 𝑥𝑥) + 𝑝𝑝�𝐸𝐸��[𝑣𝑣�𝐸𝐸(𝐿𝐿 ∑ 𝑝𝑝�𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥) +���� ∑ 𝑝𝑝�𝐻𝐻�(𝑢𝑢𝑢���� )]�.                          (14)                      

This is the coupling of the Elzaki transform and the Homotopy perturbation method using He’s 
polynomials. Comparing the coefficients of like powers of 𝑝𝑝 in eq. (14) on both sides, we obtain the 
following approximations as 

 𝑝𝑝�: 𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥) = 𝐺𝐺(𝑥𝑥𝑥 𝑥𝑥) 

 𝑝𝑝�: 𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥) = 𝐸𝐸���𝑣𝑣�𝐸𝐸[𝐿𝐿𝐿𝐿�(𝑥𝑥𝑥 𝑥𝑥) + 𝐻𝐻�(𝑢𝑢𝑢]� 

 𝑝𝑝�: 𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥) = 𝐸𝐸���𝑣𝑣�𝐸𝐸[𝐿𝐿𝐿𝐿�(𝑥𝑥𝑥 𝑥𝑥) + 𝐻𝐻�(𝑢𝑢𝑢]� 

 𝑝𝑝�: 𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥) = 𝐸𝐸���𝑣𝑣�𝐸𝐸[𝐿𝐿𝐿𝐿�(𝑥𝑥𝑥 𝑥𝑥) + 𝐻𝐻�(𝑢𝑢𝑢]� 
………………………………………………………………….. 
 
 𝑝𝑝�: 𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥) = 𝐸𝐸���𝑣𝑣�𝐸𝐸[𝐿𝐿𝐿𝐿���(𝑥𝑥𝑥 𝑥𝑥) + 𝐻𝐻���(𝑢𝑢𝑢]�.                                                                          

Similarly, we can find rest of the terms and hence, we obtain the desired series solution. Thus, we 

approximate the analytical solution 𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥) as   

 𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥) = lim��� ∑ 𝑢𝑢�(𝑥𝑥𝑥 𝑥𝑥)���� .                                                                                                          (15)                              

The series solution (15) converges very fast in a very few terms. 
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4. Solution of the time-fractional Reaction-Diffusion Equations 

In this part of the article, we have solved some fractional order one-dimensional non-linear partial 
differential equations  that originate in porous media by using ETHPM as mentioned in section 3.   

Example 1. The following non-linear fractional order PDE has many uses in rotating flow of liquid in a 
tube, waves in plasma, etc.  

��

��� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) + �
�� ���(�𝜁�)

� � − ��

����� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) = 0 ,    𝜏𝜏 𝜏 𝜏𝜏𝜏 𝜏 𝜏𝜏 𝜏 𝜏𝜏𝜏  𝜏 𝜏𝜏 𝜏 𝜏                                    (16)                      

with IC 

𝜒𝜒(𝜁𝜁𝜁 𝜁) = 𝜁𝜁.                                                                                                                                           (17)           

On putting 𝜌𝜌𝜌𝜌𝜌   then exact solution of (16) is 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) = �
���. 

Applying the Elzaki transform on (16), get as 

𝐸𝐸 � ��

��� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁)� + 𝐸𝐸 � �
�� ���(�𝜁�)

� � − ��

����� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁)� = 0,                                                                       

By using the results of Elzaki transform and simultaneously using IC (17), we get  

𝐸𝐸[𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁)] − 𝑣𝑣�𝜁𝜁 𝜁𝜁𝜁 �𝐸𝐸 � �
�� ���(�𝜁�)

� � − ��

����� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁)� = 0,                                                               (18)    

Employing inverse Elzaki transform on (18), it yields 

𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) =  𝜁𝜁 𝜁𝜁𝜁 �� �𝑣𝑣�𝐸𝐸 � �
�� ���(�𝜁�)

� � − ��

����� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁)�� = 0,                                                            (19)    

Again incorporating the homotopy perturbation method, (see [20, 21, 22]) 

𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) =  ∑ 𝑝𝑝�𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁𝜁∞���                                                                                                                  (20)          

And the decomposition of nonlinear term as  

𝑁𝑁𝑁𝑁𝑁(𝜁𝜁𝜁 𝜁𝜁)] =  ∑ 𝑝𝑝�𝐻𝐻�(𝜒𝜒𝜒∞���                                                                                                               (21)          

Substituting (20) and (21), in (19), it reduces to  

 ∑ 𝑝𝑝�𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁𝜁∞��� =   𝜁𝜁 𝜁𝜁𝜁  �𝐸𝐸�� �𝑣𝑣�𝐸𝐸 �∑ 𝑝𝑝�𝐻𝐻�(𝜒𝜒𝜒∞��� − ��(∑ ����(�𝜁�)∞��� )
����� ��� ,                             (22)         

Where 𝐻𝐻�(𝜒𝜒𝜒 are He’s polynomials (see, [23, 24]). Some He’s polynomials factors are  

 𝐻𝐻�(𝜒𝜒) = �
�� ����(�𝜁�)

� � 

𝐻𝐻�(𝜒𝜒) = �
�� �𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)�  

𝐻𝐻�(𝜒𝜒) = �
�� �𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) + ���(�𝜁�)

� �  

………………………………………………………………….. 
 
Comparing the coefficients of like powers of 𝑝𝑝 in eq. (22), its yields 
𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = 𝜁𝜁𝜁𝜁  
𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = −𝐸𝐸�� �𝑣𝑣�𝐸𝐸 � �

�� ����(�𝜁�)
� � − ��

����� 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)��,  
On little simplification, we get  
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𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = − ���

�(���) ,  

𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = −𝐸𝐸�� �𝑣𝑣�𝐸𝐸 � �
�� �𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)� − ��

����� 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)��,  
On putting previously obtained value and after that little simplification, get as 

𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = �����

�(����) ,   

Similarly 

𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = −𝐸𝐸�� �𝑣𝑣�𝐸𝐸 � �
�� �𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) + ���(�𝜁�)

� � − ��

����� 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)��,  
On putting previously obtained value and after that little simplification, get as 

𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = −𝜁𝜁 �4 + �(����)
��(���)��� ���

�(����) ,  
………………………………………………………………….. 
 
Using the same procedure, we can extract more values, and by substituting the aforementioned values in 
(15), we get an approximate solution in the form of a series 
𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) = 𝜁𝜁 𝜁 ���

�(���) + �����

�(����) − 𝜁𝜁 �4 + �(����)
��(���)��� ���

�(����)+….                                                         (23)         

Putting 𝜌𝜌 𝜌 𝜌 in (23), we get 

𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) = 𝜁𝜁 𝜁 𝜁𝜁𝜁𝜁 𝜁 𝜁𝜁𝜁𝜁� − 𝜁𝜁𝜁𝜁� + ⋯.                                                                                                   (24)     

This is identical to exact solution  

𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) = �
���.                                                                                                                                      (25)      

Example 2. Taking a non-linear fractional order PDE which is a specific occurrence(non-conservative 
case 𝒌𝒌 𝒌 𝒌𝒌𝒌 of our concern equation i.e. (1).  

On putting D = ς = 𝛼𝛼� = 𝑘𝑘 𝑘𝑘  and 𝛼𝛼� = 1.5  in (1), it reduces into  

��

��� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) = ��.�

���.� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) − �
�� �𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)� + �𝜌 − 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁)�𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁),                                                    (26)   

with the initial condition 𝜒𝜒(𝜁𝜁𝜁 𝜁) = 𝜁𝜁�. Jointly with this IC the exact solution of (26) is 

 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) = 𝜁𝜁� + 𝜏𝜏�.      
On using the computational technique (given in section 3) as applied for getting the solution of Example 
1, obtain the coefficients of power of 𝑝𝑝 as below 

  𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = 𝜁𝜁�, 

  𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = ����
√� + 𝜁𝜁� − 4𝜁𝜁� − 𝜁𝜁�� ��

�(���) , 

  𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = ����
√� − ��

√� 𝜁𝜁
�
� − ��

�√� 𝜁𝜁
�
� + 𝜁𝜁� − 12𝜁𝜁� + 37𝜁𝜁� + 20𝜁𝜁� + 6𝜁𝜁�� ���

�(����) ,     

      ………………………………………………………………….. 
 
Similar obtain further values; on putting these obtained values in (15), get solution of (26), in series form  
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𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) = 𝜁𝜁� + 𝜏𝜏� − ����√� + 𝜁𝜁� − 4𝜁𝜁� − 𝜁𝜁�� ��
�(���) + ����√� − ��

√� 𝜁𝜁
�
� − ��

�√� 𝜁𝜁
�
� + 𝜁𝜁� − 12𝜁𝜁� + 37𝜁𝜁� +

20𝜁𝜁� + 6𝜁𝜁�� ���
�(����) + ⋯.                                                                                                                   (27) 

Example 3. Taking a non-linear fractional order PDE which is a specific occurrence(conservative case 
𝒌𝒌 𝒌 𝒌𝒌𝒌 of our concern equation i.e. (1).  

On putting D = ς = 𝛼𝛼� = 1 and 𝛼𝛼� = 1.5, 𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘 𝑘𝑘𝑘  𝑘𝑘 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 
��
��� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) =

��.�
���.� 𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) −

�
�� �𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁)�𝜁                                                                                           (28) 

With the initial condition 𝜒𝜒(𝜁𝜁𝜁 𝜁) = 𝜁𝜁 𝜁 𝜁𝜁�.  

On using the computational technique (given in section 3) as applied for solution of Example 1, get the 
coefficients of power of 𝑝𝑝 as  

 𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = 𝜁𝜁 𝜁 𝜁𝜁�, 

 𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = �− ���
√� − 2𝜁𝜁 𝜁𝜁 𝜁𝜁� − 4𝜁𝜁�� ��

�(���) , 

 𝑝𝑝�: 𝜒𝜒�(𝜁𝜁𝜁 𝜁𝜁) = ���√��𝜁𝜁 −
��
√� 𝜁𝜁

�
� + 4𝜁𝜁 𝜁𝜁𝜁 𝜁𝜁� + 80𝜁𝜁� − 40𝜁𝜁�� ���

�(����) ,    
………………………………………………………………….. 
 
Similar obtain further values; on putting these obtained values in (15), get solution of (28), in series form 

𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) = 𝜁𝜁 𝜁 𝜁𝜁� + �− ���
√� − 2𝜁𝜁 𝜁𝜁 𝜁𝜁� − 4𝜁𝜁�� ��

�(���) 

                                               +���√� �𝜁𝜁 −
��
√� 𝜁𝜁

�
� + 4𝜁𝜁 𝜁𝜁𝜁 𝜁𝜁� + 80𝜁𝜁� − 40𝜁𝜁�� ���

�(����) + ⋯.           (29) 

 
5. Graphical Analysis of the Approximate Results 

In this section we are presenting some graphical analysis of the obtained approximate results as 

 
Fig. 1: The surface shows the ETHPM solution 
𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) for Example 1, when 𝜌𝜌 𝜌𝜌𝜌𝜌  

Fig. 2: The surface shows the ETHPM solution 
𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) for Example 1, when 𝜌𝜌 𝜌𝜌𝜌𝜌  
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Fig. 3: The surface shows the ETHPM solution 

𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) for Example 1, when 𝜌𝜌 𝜌 𝜌 

Fig. 4: The surface shows the ETHPM solution 

𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) for Example 2, when 𝜌𝜌 𝜌 𝜌 

 

 

 

Fig. 5: The surface shows the ETHPM solution 

𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) for Example 3, when 𝜌𝜌 𝜌 𝜌𝜌𝜌 

 

 

 

 

 

Fig. 6: The surface shows the ETHPM solution 

𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) for Example 3, when 𝜌𝜌 𝜌 𝜌𝜌𝜌 
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Fig. 7: The surface shows the ETHPM solution 
𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) for Example 3, when 𝜌𝜌 𝜌 𝜌 
 

 
 

Fig. 8: The behavior of Solute concentration 
𝜒𝜒(𝜁𝜁𝜁 𝜁𝜁) vs. 𝜁𝜁 at 𝜏𝜏𝜏𝜏𝜏   for different values of 𝜌𝜌 for 
Example 3 

It has been observed from all graphs that the fractional order is better to describe the solution of the time-
fractional Reaction-Diffusion Equations, and give a free hand to adjust and control accordingly. 
 

6. Conclusion 

The major objective of this study is to demonstrate the usefulness of the combination of the homotopy 

perturbation technique and the novel integral transform "Elzaki transform" for obtaining both approximate and 

accurate solutions for nonlinear time-fractional reaction-diffusion equations. Graphs for different fractional 

order have been plotted to examine the various effects on solute concentration. The numerical result shows that 

the method used is very simple and straightforward to implement. Our findings provide interesting unifications 

and extensions of many results, hither to scattered in the literature. At the end, we can conclude that the 

ETHPM has nice refinement in all numerical methods and it can be used in solving many real world-problems. 
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Abstract: In this paper, we introduce and study a new vector valued sequence space l( X  Y, –, u– ,|| . ||) 
with its terms from a product normed space X  Y. Beside investigating the  linear space structure of 

l( X × Y, –, u–,|| . || ) with respect to  co-ordinatewise vector operations, our primarily interest is to 

explore the conditions in terms of   u– and  – so that a class l( X × Y, –, u–,|| . || ) is contained in or equal 
to another class of same kind . 
 

           Keywords: Sequence space, Generalized sequence space, Product-normed space. 

1.  Introduction and Preliminaries

So far, a large number of research projects have been carried out in mathematical structures 
built with real or complex numbers. In recent years, many researchers have investigated many 
results on vector valued sequence space defined on normed space. Many researchers are 
motivated towards further investigation and application on product-normed space. 

In this section, we give some definitions regarding to the product-normed linear space. 
Let X be a normed space over ÷ , the field of  complex numbers and   let  (X) denote  the linear 

space of all sequences  x–  = (xk  ) with xk   X , k   1 with  usual coordinate-wise operations .We shall 
denote  (÷) by  . Any subspace S of  is then called a sequence space. A vector valued sequence 
space or a generalized sequence space is a linear space consisting of sequences with their terms from a 
vector space. 

The various types  of vector and scalar valued single sequence spaces has been significantly 
developed by several workers for instances, Köthe (1970), Kamthan and Gupta (1980), Maddox  (1980), 
Ruckle  (1981), Malkowski and Rakocevic  (2004), Khan (2008), Kolk (2011), Pahari (2012), (2014), 
Srivastava and Pahari (2012) etc.  Recently, Ghimire and Pahari (2022),(2023) studied various types  of 
vector valued sequence spaces defined by Orlicz function.  Paudel and Pahari (2021),(2022) extended 
the work related to scalar valued single sequences in fuzzy metric space.  

Let (X, || . ||X) and  (Y, || . ||Y)  be Banach spaces over the field ÷ of complex numbers. Clearly the 
linear space structure of X and Y provides  the Cartesian product of X and Y given by  

X × Y = { < x, y > : x  X, y Y } 

  forms a normed linear space over ÷ under the algebraic operations 
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< x1, y1 > + < x2, y2 > = < x1 + x2, y1 + y2 >   and  < x, y > = < x, y > 

  with the  norm 

|| < x, y > || = max {|| x ||X, || y ||Y }, 

 where < x1, y1 >, < x2, y2 >,< x, y >  X × Y and  ÷ 

Moreover since (X, || . ||X) and  (Y, || . ||Y) are Banach spaces therefore  (X × Y, || < . , . > ||) is also a 
Banach space. 

 Sanchezl et al(2000), Castillo et al (2001) and Yilmaz et al(2004) and many others  have 
introduced and examined some properties of bilinear vector valued sequence spaces defined on product 
normed space which generalize many sequence spaces.  

2. The Space l ( X  Y, –, u–,|| . || ) 

    Let u– = (uk) and v– = (vk) be any sequences of strictly positive real numbers and – = (k) and – = (k) be 
sequences of non-zero complex numbers. 

We now introduce and study the following class of Normed space X × Y -valued sequences:  

l( X × Y, –, u–,|| . || ) = {u– = (< xk , yk >) : < xk , yk >  X × Y,   supk || k < xk , yk > ||uk < }. 

Further, when  k = 1 for all k, then l(X × Y,  –,  u–,|| . || ) will be denoted by l(X × Y, u– ,|| . ||) and 

when  uk = 1 for all k  then l(X ×Y, –, u–,|| . || ) will be denoted by l(X × Y, – ,|| . || ). 
 

In fact, this class is the generalization of the space introduced and studied by Srivastava and  Pahari 
(2012) to the product normed space. 
 

3. Main Results 

In this section  we shall derive the linear space structure of the class  l(X × Y, –, u–,|| . || ) over the 

field ÷ of complex numbers and thereby investigate conditions in terms of u–, v–, – and –  so that a class 
is contained in or equal to another class of same kind . 

As far as the linear space structure of l(X × Y, –, u–,|| . || ) over ÷ is concerned we throughout take 

the  co-ordinatewise vector operations i.e., for w–  = (< xk , yk >), z– = (< x'k , y'k >) in l(X × Y, –, u–,|| . || ) 
and  scalar , we have 

w– + z– = (< xk , yk >) + (< x'k , y'k  >) = (< xk + x'k, yk + y'k  >) 

                           and  u– = (< xk , yk  >) = (< xk , yk >). 

The zero element of the space will be denoted by 

– = (< 0, 0 >, < 0, 0 >, < 0, 0 >, .....). 

Further, by u– = (uk)  l, wemean supk uk <  

We see below that  supk uk <   is the necessary condition for linearity of the space. Moreover, we shall 
denote M = max (1, supk uk) and  A() = max(1, ||).  

Theorem 3.1:  l(X × Y, –, u–,|| . || )   forms a  linear space over ÷÷    if and only if  u– = (uk)  ll. 
Proof:  

 For the sufficiency, assume that u– = (uk) l and w–  = (< xk , yk >) and  
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   z– = (< x'k , y'k >)  l(X × Y, –, u–,|| . || ) . 
So that we have 

supk || k < xk , yk > ||uk    and  supk || k < x'k , y'k >||uk . 
Thus considering 

supk || k (< xk , yk > + < x'k , y'k >)||uk /M   supk  || k < xk , yk > ||uk /M   + supk || k < x'k , y'k >||uk /M 

and  we see that   

supk || k (< xk , yk > + < x'k , y'k >)||uk /M 

and hence  w– + z–  l(X × Y, –, u–,|| . || ).   

Similarly for any scalar , w–   l(X × Y, –, u–,|| . || ) since 

 supk || k < xk , yk >||uk /M  =  supk  ||uk /M  || k < xk , yk > ||uk /M 

                                  A()  supk  || k < xk , yk > ||uk /M  

  Conversely if u– = (uk)  l(X × Y, –, u–,|| . || )  then we can find a sequence (k(n)) of positive integers 

with  k(n) < k(n + 1), n  1  such that uk(n) > n for each n  1.  

Now taking < r, t >  X × Y , || < r, t > || = 1 we define a sequence w–  = (< xk , yk  >) by  

< xk , yk  >  =


 –1

k(n) n –rk(n) < r‚  t >‚ for k = k(n)‚ n  1  ‚ and
 < 0‚ 0 >‚ otherwise.

  

 where < r, t >  X × Y with || < r, t >|| = 1, then we have 

              supk || k < xk , yk > || uk     = supn || k(n) < xk(n), yk(n) > ||uk(n) 

                             = supn || n –rk(n)  < r, t > ||uk(n)   

                                                    =   supn  
1
n   = 1. 

    Thus  we easily see that w–   l (X × Y, –, u–,|| . || ) but on the other hand for k = k(n)‚ n  1 and for the 
scalar   = 2,we have 

supk || k ( < xk , yk > ) || uk     =  supk || k(n) (< x k(n) , y k(n) > )||uk(n) 

                                                        =  supn  |2|uk(n) || n –rk(n) < r, t > ||uk(n) 

                                                        =  supn  |2|uk(n) . 1n    

                                                         > supn 
2n

 n  1 

  This shows that w–   l (X × Y, –, u–,|| . || ). Hence l(X × Y, –, u– ,|| . || )  forms a linear space 

      if and only if u– = (uk)  l. 

Theorem 3.2:  For any  u– = (uk), l(X × Y, –, u– ,|| . || )  l(X × Y, –, u– ,|| . || )  if and only if 

lim infk 



k

 k

uk

  > 0. 

Proof : Suppose lim infk 



k

 k

uk

 > 0, and w–  = (< xk , yk >)  l(X × Y, –, u– ,|| . || ). Then there exists  

m > 0, such that  m|k|uk < |k|uk    for all sufficiently large values of k. Thus 
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supk  || k < xk , yk > || uk   supk  
1
m || k < xk , yk > || uk       <   

for all sufficiently large values of k, implies that w–   l(X × Y, –, u– ,|| . || ). Hence  

l(X × Y, –, u– ,|| . || )  l(X × Y, –, u– ,|| . || ). 

     Conversely, let  l(X × Y, –, u– ,|| . || )  l(X × Y, –, u–,|| . || )   but lim infk 



k

 k

uk

 = 0.  

Then we can find a sequence (k(n)) of positive integers with k(n) < k(n + 1), n  1  such that 





k

 k

uk

 <   1n      i.e.,  |k(n)|uk(n) > n|  k(n)|uk(n). 

So, if we take the sequence w–  = (< xk , yk >) defined by  

< xk , yk  >  =




–1
k(n) < r‚  t >‚ for k = k(n)‚ n  1  ‚ and

 < 0‚ 0 >‚ otherwise.
  

where < r, t >  X × Y with || < r, t >|| = 1, then we easily see that 

             supk || k < xk , yk > || uk  = supn || k(n) < xk(n), yk(n) > ||uk(n) 

                          = supn || < r, t > ||uk(n)     = 1 

and ,     supk ||k < xk , yk > ||uk   =  supn  ||k(n) < x k(n), y k(n) >||uk(n) 

                        = supn 












k(n)

(n)
 uk(n) || < r‚ t > || uk(n)    > supn n =  

Hence w–   l(X × Y, –, u–,|| . || ) but w–   l(X × Y, –, u–,|| . || ), a contradiction. This completes the 
proof. 

Theorem 3.3:  For any  u– = (uk), l(X × Y, –, u–,|| . || )   l(X × Y, –, u–,|| . || )   

if and only if  lim supk 



k

 k

uk

 < . 

Proof : 

For the sufficiency, suppose lim supk 



k

 k

uk

 < , and w–  = (< xk , yk >)  l(X × Y, –, u–,|| . || ).  

Then there exists   L > 0, such that  



k

 k

uk

  <   L   i.e.,         L|k|uk  >  |k|uk 

for all sufficiently large values of k.  

Thus  supk || k < xk , yk > || uk   supk  L || k < xk , yk > || uk  < , 

for all sufficiently large values of k, implies that  w–   l(X × Y, –, u–,|| . || ). Hence  

l(X × Y, –, u–,|| . || )   l(X × Y, –, u–,|| . || ). 

For the necessity,  suppose  that  l(X × Y, –, u– ,|| . || )   l(X × Y, –, u– ,|| . || ) 

but lim supk 



k

 k

uk

= . Then we can find a sequence (k(n)) of positive  integers k(n) < k(n + 1), n  1 

such that 

n|k(n)|uk(n) < | k(n)|uk(n), for each n  1  
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  For < r, t >  X × Y with || < r, t > || = 1 we define sequence  w–  = (< xk , yk >)   such that 

< xk , yk  >  =




–1
k(n)  < r‚  t >‚ for k = k(n)‚ n  1  ‚ and

 < 0‚ 0 >‚ otherwise.
  

     Then we easily see that 

                 supk || k < xk , yk > || uk  = supn || k(n) < xk(n), yk(n) > ||uk(n) 

                            = supn || < r, t > ||uk(n)     = 1 

   and     supk ||k < xk , yk > ||uk      = supn ||k(n) < x k(n), y k(n) >||uk(n) 

                           = supn 












k(n)

(n)
 uk(n) || < r‚ t > || uk(n)      

                                                  > supn n =  

Hence w–   l(X × Y, –, u–,|| . || ) but w–   l(X × Y, –, u–,|| . || ), , which leads to a contradiction. 

 This completes the proof. 

When Theorems 3.2 and 3.3 are combined, we get 

  Theorem 3.4: For any  u– = (uk), l(X × Y, –, u– ,|| . ||) = l(X × Y, –, u– ,|| . || ) 

                           if and only if   0 < lim infk 



k

 k

uk

  lim supk 



k

 k

uk

 < . 

   Corollary 3.5: For any  u– = (uk), 

(i) l(X × Y, –, u– ,|| . || )  l(X × Y, u–,|| . || )  if and only if lim infk |k|uk > 0; 

(ii) l(X × Y, u–,|| . || )  l(X × Y, –, u–,|| . || ) if and only if lim supk |k|uk < ; 

(iii) l(X × Y, –, u–,|| . ||) = l(X × Y, u–,|| . || ) if and only if   
                                                                     0 < lim infk  |k |uk  lim supk |k|uk < . 

Proof : 
          Proof follows if we take k = 1 for all k in Theorems 3.2, 3.3 and 3.4.           

Theorem 3.6: For any  – = (k) , l(X × Y, –, u– ,|| . || )  l(X × Y, –, v–,|| . || )  

                           if and only if  lim supk 
vk
uk

 < . 

Proof:  Let the condition hold. Then there exists L > 0 such that  vk
uk

 < L for all sufficiently large values 

of k. Thus  supk || k < xk , yk > ||uk  N for some N > 1 implies that  
supk || k < xk , yk >||vk  NL, 

and hence    l(X × Y, –, u– ,|| . || )  l(X × Y, –, v–,|| . || ). 

Conversely, let the inclusion hold but lim supk 
vk
uk

 = .  

Then there exists a sequence (k(n)) of positive integers with k(n) < k(n + 1), n  1  such that   
vk(n)
 uk(n)

  > n   i.e., vk(n) > n uk(n) , n  1. 

We now define a  sequence w–  = (< xk , yk >) as follows: 
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< xk , yk  >  =




–1
k(n) 2 1/uk(n) < r‚  t >‚ for k = k(n)‚ n  1  ‚ and

 < 0‚ 0 >‚ otherwise.
  

where < r, t >  X × Y with || < r, t > || = 1. 
Then  for k = k(n)‚ n  1, we easily see that 

              supk || k < xk , yk > || uk  = supn || k(n) < xk(n), yk(n) > ||uk(n) 

                           = 2 supn ||  < r, t > ||uk(n)     = 2 

and ,    supk ||k < xk , yk > ||vk       = supn ||k(n) < x k(n), y k(n) >||vk(n) 

                           =  supn || 2 1/uk(n) < r‚  t > ||vk(n)    

                                                  > supn 2 n =  

Hence w–   l(X × Y, –, u–,|| . || ) but w–   l(X × Y, –, v–,|| . || ), a contradiction.  
This completes the proof. 

Theorem 3.7: For any  – = (k) , l(X × Y, –, v–,|| . || )  l(X × Y, –, u–,|| . || )  

                        if and only if  lim infk  
vk
uk

 > 0. 

Proof :  Let the condition hold and w–  = (< xk , yk >)  l(X × Y, –, v– ,|| . || ).Then there exists m > 0 such 

that vk < m uk for all sufficiently large values of k and   

supk || k < xk , yk >||vk  N for some N > 1. 

This implies that   

supk || k < xk , yk >||uk N1/m  i.e, w–  = (< xk , yk >)  l(X × Y, –, u– ) 

and hence  l(X × Y, –, v–,|| . || )  l(X × Y, –, u– ,|| . || ). 

Conversely let the inclusion hold but lim infk  
vk
uk

 = 0. Then we can find a sequence (k(n)) of positive 

  integers with   k(n) < k(n + 1), n  1 such that vk(n)
 uk(n)

  <     n       i.e.,   vk(n) < uk(n), n  1. 

Now taking < r, t >  X × Y with || < r, t > || = 1, we define the sequence  w–  = (< xk , yk >) by 

< xk , yk  >  =




–1
k(n) 2

1/vk(n) < r‚  t >‚ for k = k(n)‚ n  1  ‚ and
 < 0‚ 0 >‚ otherwise.

  

  Then  for k = k(n)‚ n  1, we easily see that 

          supk || k < xk , yk > || vk  = supn || k(n) < xk(n), yk(n) > ||vk(n) 

                      = 2 supn ||  < r, t > ||vk(n)     

                                             = 2 

 and     supk ||k < xk , yk > ||uk   =  supn ||k(n) < x k(n), y k(n) >||uk(n) 

                       =  supn || 2 1/vk(n) < r‚  t > ||uk(n)   

                                              > supn 2 n =  

Hence w–   l(X × Y, –, v– ,|| . || ) but w–   l(X × Y, –, u– ,|| . || ), a contradiction.  
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This completes the proof. 

On combining Theorems 3.6 and 3.7,we get the following theorem: 

Theorem 3.8: For any – = (k) , l(X × Y, –, u– ,|| . || ) = l(X × Y, –, v– ,|| . || ) 

                             if and only if    0 < lim infk  
vk
uk

    lim supk 
vk
uk

 < . 

   Corollary 3.9: For any  – = (k) , 

(i)  l( X × Y, –,|| . || )  l(X × Y, –, u– ,|| . || ) if and only if lim supk  uk < ; 

(ii) l(X × Y, –, u– ,|| . || )  l(X × Y, –,|| . || ) if and only if lim infk uk > 0; 

(iii) l(X × Y, –, u– ,|| . || ) = l(X × Y, –,|| . || ) if and only if   0 < lim infk  uk  lim supk vk < . 
Proof : 
 Proof easily follows when we take uk = 1 and vk = uk for all k in  theorem 3.6, 3.7 and 3.8. 

  Theorem 3.10: For any sequences – = (k), 
– = (k), u– = ( uk) and v– = (vk),    

l(X × Y, –, u–,|| . || )  l(X × Y, –, v– ,|| . || )   

                   if and only if     (i)  lim infk 



k

 k

uk

 > 0, and     

                                             (ii)  lim supk 
vk
uk

 < . 

Proof :  Proof directly follows from Theorems 3.2 and 3.6. 

In the following example we show that l(X × Y, –, u–,|| . || ) is strictly contained in l(X × Y, –, v–,|| . || ) 
however (i) and (ii) of Theorem 3.10 are satisfied. 

Example 3.11: 

 Let w–  = (< xk , yk >) be a sequence in  normed space X × Y such that  ||< xk , yk >|| = k k. 

Take uk = 1k   if k is odd integer and  uk = 1
k2  , if k is even integer,   vk = 1

k2  for all values of k, k = 3k for 

all values of k ;and  k = 2k, for all values of k.  Then 





k

 k

uk

 = 32 if k is odd integer  

   and 



k

 k

uk

= 


3

2

1/2

, if k is even integer. 

  Thus lim infk 



k

 k

uk

 = 1 i.e. condition (i) of  Theorem 3.10 is satisfied. 

 Further since vk
uk

 = 1k , if k is odd integer and vk
uk

 = 1, if k is even integer, therefore condition (ii) of 

Theorem 3.10 is also satisfied as  lim supk 
vk
uk

 = 1.  

We now see that w–  = (< xk , yk >)  l(X × Y, –, v– )  for all k  1 as 
supk || k < xk , yk > ||vk = supk  (2k)1/k  <  2, 

 but w–  = (< xk , yk >)  l(X × Y, –, u– ,|| . || ) , when k is odd integer  as 
supk || k < xk , yk >||uk   =  supk 3k  = .  

This shows that the condition (i) and (ii) are satisfied but l(X × Y, –, u–,|| . || ) is strictly contained in  

l(X × Y, –, v–,|| . || ). 
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patterns, and an increase in atmospheric CO2 concentration (Neenu et. al, [26]). In terms of agriculture, 
temperature and rainfall are two of the most important climatic parameters. Understanding  how temperature 
and precipitation variations impact crop output is a crucial first step in developing policy and agricultural 
management choices.  
 

A significant economic factor is the timing of rainfall (Torres et. al, [36]). The effect of rainfall on agricultural 
productivity could be asymmetric (Mitra, [35]).  Long-term changes in natural rainfall patterns might pose a 
problem for the world's current farming methods (Wei et. al, [38]). Rainfall's impact on crop production can be 
explained by either its seasonal average quantity or its temporal distribution. Rainfall unpredictability affects 
food accessibility per capita and raises the percentage of the overall malnourished population in developing 
countries (Kinda & Badolo, [18]). Rainfall does not directly affect production because it is dependent on the 
environment, but there are many other factors that do (Yudin et. al, [24]). Precipitation is also responsible for 
loss of soil nutrients. 
 

It was discovered that brief hot spells can lower the number of seeds or grains that might otherwise contribute 
to crop yield (Wheeler et. al, [39]). These results imply that temperature rises brought on by climate change 
may have a significant influence on agricultural yields, which may have consequences for the world's food 
supply. Depending on how each crop species is affected, heat stress has a negative impact on normal plant 
growth and development (Bhattacharya, [8]). The pace of phenological development was accelerated by warm 
temperatures (Hatfield & Prueger, [13]). The benefits of increased planting density for yield are diminished by 
higher temperatures (Wang et. al, [37]). Efficiency is considerably reduced by increases in yearly temperature 
fluctuation and long-term temperature (Rahman & Anik, [31]). Yields were reduced by temperatures outside or 
inside the ideal range (18–22 °C) (Jannat et. al, [17]). In Bangladesh, rising temperatures were linked to 
declines in the value of small farms (Hossain et. al, [14]). All of Bangladesh's primary food crops' production 
and cropping areas were negatively impacted by the maximum temperature. But in certain cases, crop yields 
have typically increased when temperatures have increased. The net crop revenue from crop cultivation in 
Bangladesh will grow as the temperature and rainfall rise (Hossain et. al, [15]). Crop yields are increased 
through climate-smart agriculture, which also makes it easier to produce crops in a secure environment 
(Liliane & Charles, [19]). The production of annual crops like wheat and groundnuts can be drastically reduced 
by brief high-temperature events that occur at various periods close to blooming (Challinor et. al, [10]). Wheat 
yields are reduced by around 3–10% for every 1°C increase in temperature throughout the growing season 
(You et. al, [43]). 
 

In the study district in Ghana, the unpredictable rainfall and rising temperatures have a significant beneficial 
influence on maize output, underscoring the necessity for ongoing adaptation strategies such cultivating high 
yielding and drought tolerant maize varieties to improve family food security (Baffour-Ata et. al, [6]).  Zhao et. 
al. [45] discovered that rising temperatures have a detrimental effect on the world's wheat, rice, maize, and 
soybean crops. According to a study by Lobell and Field, [20] rising temperatures cause a decline in 
worldwide wheat, maize, and barley yields. According to Schlenker and Roberts, [33] research, maize, 
soybean, and cotton yields in the US are severely harmed by temperatures that are higher than a particular 
point. Maize, rice, and soybean crops all benefited from higher minimum temperatures (Yin et. al, [41]). 
Rainfall has a detrimental impact on rice output during the heading, flowering, ripening, and reproductive 
stages. Rice breeders should create rice types that use less water and are more productive in hot weather 
(Abbas & Mayo, [1]). Since there are so many negative impacts of rainfall and temperature fluctuations all 
over the world like this, it is even more important for Bangladesh to come up with a good forecasting method. 
Crops, animals, and pests are all vulnerable to changes in temperature and precipitation patterns, which can 
have an effect on agricultural output. Predicted shifts in the climate must be taken into account so that farmers 
and ranchers can adapt and increase their resilience. Climate variability and changes in the frequency of severe 
events are essential for the yield, its stability, and quality (Porter & Semenov, [28]). That's why it's crucial to 
know how precipitation and temperature will affect agricultural output. The purpose of this study is to predict 
annual mean precipitation and temperature for the period 2023-2032 in an effort to alleviate a major 
agricultural problem. 
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Methods 
The aim of this research is to predict rainfall and mean temperature for the next 10 years from 2023 to 2032. 
Both forecasting is done using ARIMA. Rainfall and mean temperature records of Bangladesh for the past 
sixty years (1961-2021) were collected from the Climate Change Knowledge Portal of World Bank (World 
Bank, [40]). Analysis was done in RStudio with the help of auto.arima() function. In this analysis, lubridate, 
ggplot2, dplyr, and forecast packages were applied. There are no missing values in this data set. The study is 
conducted with non-stationary time series data. The Auto-Regressive Integrated Moving Average (ARIMA) 
model is used to forecast annual mean rainfall and temperature trends in Bangladesh.  
 

ARIMA Model 
 

The Autoregressive (AR) model can be effectively coupled with Moving Average (MA) models to form a 
general and useful class of time series models called Autoregressive Moving Average (ARMA) models. 
However, they can only be used when the data are stationary. This class of models can be extended to non-
stationary series by allowing differencing of the data series. These are called the Autoregressive Integrated 
Moving Average (ARIMA) model (Anderson & Theodore, [3]). Thus, an ARIMA model is a combination of 
an Autoregressive (AR) process and a Moving Average (MA) process applied to a non-stationary data series. 
The three essential elements of the ARIMA model are autoregressive, integrated, and moving average, which 
drives the evaluation and selection of coefficients iteratively and recursively. These three elements are known 
as p, d, and q, respectively (Aborass et al, [2]). 
 

The general non-seasonal model is known as ARIMA (p,d,q):  
AR:p =order of the autoregressive part 
   I:d = degree of differencing involved 
MA:q =order of the moving average part 
The equation forth simplest ARIMA (p,d,q) model is as follows: 

Yt =  c + φ1Yt−1 + φ2Yt−2 + …+ φpYt−p +  et− θ1et−1− θ2et−2 − … − θpet−p          (1) 
 

Where, Yt  = Climatic factor (Annual mean rainfall and temperature) 
Yt-1,  Yt-2,…,Yt-p = Climatic factor (Annual mean rainfall and temperature)at time lags t-1,t-2,…,t-p  ,respectively. 
 
The Box Jenkins Methodology  

The Box Jenkins methodology is used to find the best-fitted model of time series data for both Univariate and 
Multivariate ARIMA models (Ljung & Box, [22]). Box-methods Jenkin's have four steps. First, it is necessary to 
determine whether or not the variables are stationary. The unit root test is used to ensure stationarity. To check the 
unit root and stationarity of the data, the augmented Dickey-Fuller (ADF) test and the Kwiatkowski, Phillips, 
Schmidt, and Shin (KPSS) test can be used. If the data is not stationary, it is transformed to be stationary by 
comparing the original data series. The second step is to develop a preliminary model that specifies the appropriate 
values of p, d, and q. The AutoCorrelation Function (ACF) and Partial Auto Correlation Function (PACF) plot to 
assist us in determining the order of the MA and AR processes respectively. The third step is to estimate the 
model's parameters using likelihood methods such as AIC, AICc, and BIC. Finally, the best-fitted model must 
be validated by testing the parameters and residuals of the chosen model. The residuals are examined using the 
ACF and PACF plots, as well as the (Box & Jenkins, [9]) statistics.  

Decomposition of Time Series Data 
To break down time series data into its component parts, decomposition of data is used. Using RStudio, simple 
additive decomposition has been performed. It goes like this: 

𝑌𝑌� = 𝑆𝑆� + 𝑇𝑇� + 𝑅𝑅�                      (2) 
Where, S = Seasonal Variation 
           T = Trend or cyclic component 
           R = Residual or error component 
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Results and Discussion 
Annual Mean Rainfall 
The time series plot (figure 1) shows stationary and the parameter values of p, d and q found for the ARIMA 
model are 0, 1 and 2. The final model chosen with the aid of the "auto.arima()" function is ARIMA (0,1,2). 

 
Fig.1: Time series plot of yearly rainfall in Bangladesh 

 
Fig.2: Decomposition of additive time series of annual mean rainfall data in Bangladesh 

In figure 2, four types of plots are shown. first one is for the observed raw data, the second one shows the 
trend of the data, the third one depicts the seasonal variation and the last one shows a random component. 
No specific trend shows in the above plot. 

Table 1 
Parameter estimation of ARIMA (0,1,2) model 

Parameter Coefficients St. Error z value Pr(>|z|)     
MA1  -1.1073 0.1238 -8.9449 <2e-16 *** 
MA2 0.2164 0.1250 1.7318 0.0833* 

*** means significant at 1%, ** means significant at 5% and * means significant at 10% level of  
      significance. 

 

The model selection criteria as Akaike Information Criteria (AIC), lowest Corrected Akaike Information 
Criteria (AICc), Bayesian information criterion (BIC) values are listed in the following table for the yearly 
average rainfall data. 
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Table 2 
Performance criteria of ARIMA (0,1,2) model 

Criteria ARIMA(0,1,2) 
log likelihood -420.88 

sigma2 72730 
AIC 847.77  
AICc 848.2 
 BIC 854.05 

 
Fig.3: Forecasting yearly average rainfall in Bangladesh 

 

Figure 3 focuses the forecasted values of yearly average rainfall in Bangladesh for the next ten years from 
2022 to 2032. By using ARIMA(0,1,2) model the deep blue shade in the forecasted part shows 80% 
confidence interval and light blue shade shows 95% confidence interval for the rainfall in Bangladesh. From 
the 95% confidence interval it depicts the forecasted average annual rainfall is around 1550 mm to 2650 mm. 
Annual Mean Temperature 

The parameter values for the ARIMA model are determined to be 0, 1, and 2 according to the time series plot 
in Figure 4. The final model chosen with the aid of the "auto.arima ()" function is ARIMA (0,1,2). 

 

 Fig.4: Time series plot of yearly mean temperature in Bangladesh 



54

K. R.Das, P. Burman, L.R. Barman, M. Jahan, M. Noorunnahar / Forecasting Annual Mean Temperature …K. R.Das, P. Burman, L.R. Barman, M. Jahan, M. Noorunnahar / Forecasting Annual Mean Temperature … 

54 
 

 

Fig.5: Decomposition of additive time series of annual mean temperature data in Bangladesh 

Figure 5 displays four different types of plots, the first of which is for the observed raw data, the second 

of which indicates the data's trend, the third of which shows the seasonal fluctuation, and the fourth of 

which displays random components. For this data, there is no specific trend in the figure 5. 

Table 3 
Parameter estimation of ARIMA (0,1,2) model 

Parameter Coefficients St. Error z value Pr(>|z|) 

MA1  0.4816 0.1363 3.5336 0.0004*** 

MA2 0.3270 0.1577 2.0732 0.03816** 

*** means significant at 1%, ** means significant at 5% and * means significant at 10% level of significance.
 

For the yearly average temperature data, the model selection criteria such as Akaike Information Criterion 

(AIC), lowest Corrected Akaike Information Criteria (AICc), and Bayesian information criterion (BIC) 

values are provided in the table below. 

Table 4 
Performance criteria of ARIMA (0,1,2) model 

Criteria ARIMA(0,1,2) 

log likelihood -12.56 

sigma2 0.09063 

AIC 31.11 

AICc 31.54 

BIC 37.4 
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Fig.6: Forecasting yearly average temperature in Bangladesh 

Figure 6 depicts the anticipated values of yearly average mean temperature in Bangladesh over the next 10 
years, from 2023 to 2032. Using the ARIMA(0,1,2) model, the deep blue shade in the predicted portion 
represents an 80% confidence interval while the light blue shade shows a 95% confidence interval for the 
temperature in Bangladesh. According to the 95% confidence interval, the anticipated average annual mean 
temperature ranges between 24.9 0C and 26.3 0C. 

Over the years, researchers have tried to pin down the best approach to studying climate change's impact on 
farm yields. The yield of crops is greatly affected by weather fluctuations over time (Yirdew & Yeshiwas 
[42]). Extreme heat and rain events have been demonstrated to significantly lower crop yields (Powell & 
Reinhard, [29]). But, accurate weather predictions can reduce planting-stage wages by reducing prior out-
migration and can amplify the negative effects of bad meteorology on crop production wages (Rosenzweig & 
Udry, [32]). In addition, rainfall has both a short-term and long-term negative and considerable influence on 
agriculture productivity (Zahoor et al, [44]).  Again another pair of researchers say that rainfall and economic 
growth in general appear to be growing in tandem. Temperature, unlike rain, has little effect on agricultural 
productivity (Erkan&Diken, [11]). But it has been found that more so than rainfall, temperature has an 
influence on crop productivity (Ochieng et al, [27]). Cotton production is growing in relation to rainfall 
(Ghanwat et al, [12]) whereas rainfall had little effect on coffee output (Msuya & Mahonge, [25]). With global 
warming, it is predicted that average temperatures would rise and heat waves will occur more frequently 
(Asseng et. al, [5]). For most nations, the impacts of heat are equal to or greater than those of water stress 
(Siebert et al, [34]). Crop performance suffers as a result of rising global temperatures (Zhu et al, [46]). The 
studies repeatedly demonstrate that agricultural yields are significantly impacted by temperature.  

Short- and long-term stresses can significantly influence growth and yield processes when stress occurs at 
sensitive stages (Prasad et al, [30]). So regulated, steady growth in climatic factors is sometimes good for 
agricultural production. Bangladesh has witnessed extremes in rainfall and temperature during the previous 
few decades, affecting both the environment and the agricultural economy. Masum et al, [23] used the ARIMA 
model to predict and forecast rainfall and temperature in Chattogram, Bangladesh from 1953 to 2070 
considering seasonal variations. (Aborass et al. [2]) applied the Box-Jenkins ARIMA methodology and 
comparative study of ETS model for rainfall forecasting at Birzeit for the period which extended from 
September -2003 to August-2021. This study predicts annual mean rainfall and temperature with the ARIMA 
(0,1,2) and ARIMA (0,1,2) model respectively. 
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Concluding Remarks 
The two most important climatic factors are rainfall and temperature. Studies have shown that deviations in 
temperature from the ideal range can have a significant impact on a country's agricultural output. In a similar 
vein, inadequate or excessive precipitation will reduce agricultural output. A nation should take adequate 
measures to prepare for such critical climate elements. Floods, cyclones, droughts, and other extreme weather 
are becoming more frequent, wreaking havoc on farmlands and agricultural production in Bangladesh, one of 
the nation's most vulnerable to global warming. The consequences of global change, such as low land 
submergence, severe floods, cyclones, tidal waves, coastal flooding, and poor socioeconomic situations, 
especially with regards to everyday living and food security, are having a profound effect on the physical and 
chemical processes in these areas. Many factors, including but not limited to rising sea levels, rising 
temperatures, saline intrusion, shrinking cultivable landmass, limited access to clean water and sanitary 
conditions, infrastructure, plant diseases, limited energy sources, and so on, are making this worse. With 
increasing temperature and precipitation swings, farmers in Bangladesh can benefit from up-to-date and 
reliable weather forecasts in order to better manage crops in the field. The 10-year rainfall and mean 
temperature forecasts from 2023 to 2032 can help farmers make long-term plans and adjustments to their 
agricultural production processes. Even if climatic conditions may fluctuate due to a number of variables, this 
prediction will hopefully help them have a secure agricultural production process and avoid the difficult 
periods. If farmers had access to weather predictions, it might have prevented some of the damage that has 
been done. These climate services will help the agricultural sector prepare for and respond to extreme weather 
events, as well as adapt to the long-term effects of climate change. Therefore, this type of forecasting method 
is essential for ensuring the reliability of agricultural output. 
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The majority of fractional integro-diffrential equations (FIDEs) cannot be solved analytically; hence, extensive
research has been done to find approximations and numerical methods of solving FIDEs.

Fractional Fredholm IDEs are solved using Laguerre polynomials in [13] and Bernstein polynomials as the
basis function in [14, 15] to approximate the solution of FIDEs. In [16–18], collocation techniques were used
to solve FIDEs using various basis functions. In [19], the Sumudu transform method and the Hermite spectral
collocation method are used to solve FIDEs; When solving Volterra fractional IDEs, [20] used Bernstein modified
homotopy perturbation approach; and in [21], approximate solutions of Volterra-Fredholm IDEs of fractional
order are introduced. Using Galerkin method and Taylor series expansion, as well as a quick numerical algorithm
based on the second kind of Chebyshev polynomials, [22, 23] investigated the numerical solution of fractional
singular IDEs. [24, 25] used the least-squares method to solve FIDEs. [26] investigated the solution of linear
fractional Fredholm integro-differential equation by using second kind Chebyshev wavelet and [27] employed
numerical techiques for the solution of nonlinear integro-differential equations. [28] proposed and investigate a
spectral approximation for numerical solutions of fractional integro-differential equations with weakly kernels. In
order to eliminate the solution’s singularity, the original equations are changed into an equivalent weakly singular
Volterra integral equation by incorporating some relevant smoothing transformations. The above work serves as
the motivation for the present study.

In this study, we present an innovative and precise numerical method for addressing fractional integro-differential
equation systems. Our approach employs the collocation computational technique, utilizing first-kind Chebyshev
polynomials as the basis functions for solving these fractional IDEs. This method results in less demanding work
in terms of computational cost and better accuracy.

The rest of the paper is structured as follows: Section 2 deals with some relevant basic definitions, section
3 deals with the demonstration of the suggested method. Numerical examples which demonstrate the method’s
applicability and validity is given in section 4, section 5 deals with results and discussion of results. Finally, the
conclusion of the study is presented in section 6. The general form of the class of problem considered in this work
is given as:

Dα ω(s) = p(s)ω(s) f (s)+
∫ s

0
K(s, t)ω(t)dt;0 ≤ s, t ≤ 1, (1)

with the following supplementary conditions:

ω( j)(0) = ω j; j = 0,1,2, ...n−1;n−1 < α ≤ n,n ∈ N. (2)

Where Dα ω(s) is the α th Caputo fractional derivative of ω(s); p(s), f (s) and K(s, t) are given smooth functions,
ω j are real constant, and s are real variables varying [0, 1] and ω(s) is the unknown function to be determined.

Some relevant basic definitions

Definition 1. Fractional integro-differential equation is an equation in which the unknown ω(s) appears under the
integral sign and contain fractional derivatives Dα ω(s) as well. According to [29], a standard fractional integro-
differential equations is defined as:

Dα ω(s) = f (s)+λ
∫ h(s)

g(s)
K(s, t)ω(s)dt,

where K(s, t) is a function of two variables s and t known as the kernel or the nucleus of the integral equation, g(s)
and h(s) are the limits of integration, λ is a constant parameter.

Definition 2. The Caputo Factional Derivative is defined as [30]

Dα ω(s) =
1

Γ(r−α)

∫ s

0
(s− t)r−α−1ωr(t)dt (3)

n is non-negative integer such that, r−1 < α < n. For example, if 0 < α < 1, the Caputo fractional derivative is

Dα ω(s) =
1

Γ(1−α)

∫ s

0
(s− t)r−α−1ω

′
(t)dt. (4)

Definition 3. The Chebyshev polynomials [31] of degree r over [0,1] is defined by the relation

υ∗
r (s) = cos

{
Cos−1(2s−1)

}
;n ≥ 0.

The recurrence relation is given as,

υ∗
r+1(s) = 2(2s−1)υ∗

r (s)−υ∗
r−1(s);r ≥ 1,

where
υ∗

0 (s) = 1,υ∗
1 (s) = 2s−1.

6
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Implementation of the method

The study considered an estimated solution represented in the form of first-kind Chebyshev polynomials:

ω(s) =
r

∑
i=0

υ∗
i (s)ai, (5)

Here, the constants ai for i = 0(1)r represent the undisclosed coefficients of the shifted Chebyshev polynomials
that need to be ascertained. The approach relies on the approximation of the unknown function ω(s) by employing
equation (3) to equation (1). Additionally, substituting equation (5) into (1) yields,

1
Γ(1−α)

 s

0
(s− t)r−α−1 dr

dtr (
r

∑
i=0

υ∗
i (t))aidt − p(x)υ∗

i (s)−
 s

0
k(s, t)υ∗

i (t)dt = f (s) (6)

Let ζ (s) =
1

Γ(1−α)

 s

0
(s− t)r−α−1 dr

dtr (
r

∑
i=0

υ∗
i (t))aidt,

η(s) =
 s

0
k(s, t)υ∗

i (t).

Substituting ζ (s) and η(s) in equation (6), gives

ζ (s)− p(s)υ∗
i (x)−η(s) = f (s). (7)

Collocating (7) at equally spaced point si = a + (b−a)i
r , (i = 0(1)(r)) results into linear system algebraic of

equations in (r+1) unknown constants a′is. Also, additional equations are also derived from (2) and are represented
in matrix form:




Q11 Q12 Q13 · · · · · · · · · Q1r
Q21 Q22 Q23 · · · · · · · · · Q2r

...
...

...
...

...
...

...
...

Qm1 Qm2 Qm3 · · · · · · · · · Qmr
Q0

11 Q0
12 Q0

13 · · · · · · · · · Q0
1r

Q1
21 Q1

22 Q1
23 · · · · · · · · · Q1

2r
...

...
...

...
...

...
...

...
Qr−1

m1 Qr−1
m2 Qr−1

m3 · · · · · · · · · Qr−1
mr







a0
a1
...
...
...
...
...
...

ar




=




R11
R22

...

...
Rmr
R0

11

R1
22

...
...

Rr−1
mr




(8)

where Qis and Qr−1
is are the coefficients of ais and Ris are values of f (si)

The matrix inversion approach is then used to solve the system of equations in order to obtain the unknown
constants. 



a0
a1
...
...
...
...
...
...

ar




=




Q11 Q12 Q13 · · · · · · · · · Q1r
Q21 Q22 Q23 · · · · · · · · · Q2r

...
...

...
...

...
...

...
...

Qm1 Qm2 Qm3 · · · · · · · · · Qmr
Q0

11 Q0
12 Q0

13 · · · · · · · · · Q0
1r

Q1
21 Q1

22 Q1
23 · · · · · · · · · Q1

2r
...

...
...

...
...

...
...

...
Qr−1

m1 Qr−1
m2 Qr−1

m3 · · · · · · · · · Qn−1
mn




−1


R11
R22

...

...
Rmr
R0

11

R1
22

...
...

Rr−1
mr




(9)

The sought-after approximate solution is derived through the solution of equation (9), followed by the insertion
of the determined constant values into the assumed approximate solution.
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Numerical examples with results and discussion

In this section, three numerical problems are presented to test the efficiency and simplicity of the suggested
method. We perform the computation with the help of Maple 18 software.

Example 1. Consider the fractional Volterra integro-differential equation [32]

Dα ω(s) =
s2es

5
ω(s)+

6x2.25

Γ(3.25)
+

∫ s

0
tω(t)dt, (10)

subject to ω(0) = 0, for α = 3
4 , the exact solution is ω(s) = s3. Applying the proposed technique for different

values α = 0.65,0.75,0.85,0.95 respectively, we have the following approximate solutions.

ω(s) =−3×10−11 +3×10−9s−3×10−9s2 +1.0000000001s3

ω(s) = 2×10−11 −0.027653591s+0.153378821s2 +1.008595542s3

ω(s) =−4×10−11 +0.034398374s−0.1426233144s2 +0.9903261389s3

ω(s) = 1×10−10 +0.07693657s−0.277005541s2 +0.9802676637s3

Example 2. Consider the fractional Fredholm Integro-differential equation [24]

Dα ω(s) = ω(s)+
8

3Γ(0.5)
s1.5 − s2 − 1

3
s3 +

∫ s

0
ω(t)dt (11)

Subject to ω(0) = 0, for α = 1
2 , the exact solution is ω(s) = s2. Applying the proposed technique for different

values α = 0.5,0.65,0.75,0.85 respectively, we have the following approximate solutions.

ω(s) = 1.16826354×10−11 −2.83×10−9s+1.0000000043s2 −3.573844333s×10−9s3

ω(s) =−7.2×10−11 −0.0928995883s+0.8741581798s2 −0.1738219395s3

ω(s) =−2.7×10−11 −0.1234325707s+0.7798780867s2 −0.1944653643s3

ω(s) =−1.9×10−11 −0.1453990287s+0.6972345157s2 −0.193248671s3

Example 3. Consider the fractional Volterra Integro-differential equation [33].

D1/3ω(s) =
3
√

π
4Γ( 13

6 )
s

4
3 − 2

63
s

9
2 (9+7s2)+

∫ s

0
(st − s2t2)ω(t)dt, (12)

subject to initial conditions ω(0) = 0 with the non-polynomial exact solution ω(s) = s
3
2 . Applying the pro-

posed technique for different values α = 0.333333,0.35,0.45,0.55,0.65 respectively, we have the following ap-
proximate solutions.

ω(s) = 0.1593261367s−0.5714144863s7 +2.492317064s6 −4.596356361s5

+4.735599489s4 −3.136374607s3 +1.917377053s2 +3.601×10−11

ω(s) = 0.1468793779s+2.342527711s6 −4.324730514s5 +4.464678275s4

−0.5389237087s7 +1.872627517s2 −2.979559309s3 +5.184×10−11

ω(s) = 0.08760750183s+1.540065996s6 −2.408×1011 −2.864694840s5

+2.987408235s4 −0.3625998682s7 +1.590190322s2 −2.088567904s3

ω(s) = 0.04859546975s+0.9314622181s6 −1.745512022s5 +1.822787227s4

−0.2276405006s7 +1.310079152s2 −1.333448084s3 −5.874×10−11

ω(s) = 0.02341269350s+0.5076386080s6 −0.9551665749s5 +0.9749333984s4

−0.1336620560s7 +1.053811826s2 − .7390996908s3 +2.425×10−11

In this section, we present the results and discussion of the study. Tables 1-3 shows comparison of the absolute
errors for examples 1-3, while figures 1-3 shows the graphical behaviour of the approximation solutions of example
1-3.
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Table 1. Comparison of the absolute errors for example 1

s Exact Appro. Solu. n=3 Absol. Error at n =3 Absol. Error n=4 [32]
0.0 0.000 −0.00000000003000 3.000E −11 3.000E −5
0.2 0.008 0.00800000025800 2.580E −10 3.710E −5
0.4 0.064 0.06400000035000 3.540E −10 2.400E −5
0.6 0.216 0.21600000030000 3.060E −10 8.400E −5
0.8 0.512 0.51200000020000 1.620E −10 4.300E −5
0.1 1.000 1.00000000000000 0.000E +00 2.800E −5

Table 2. comparison of the absolute errors for example 2

s Exact Appro. Solu. at n=3 Absol. Error n=3 Absol. Error [24]
0.0 0.000 0.00000000001168 1.168E −11 0.000E +00
0.2 0.040 0.03999999958000 4.169E −10 1.557E −04
0.4 0.160 0.15999999930000 6.970E −10 2.887E −03
0.6 0.360 0.35999999890000 1.000E −09 1.681E −02
0.8 0.640 0.63999999860000 1.498E −09 6.069E −02
0.1 1.000 0.99999999740000 2.362E −09 1.683E −01

Table 3. comparison of the absolute errors for example 3

s Exact Appro. Solu. n=3 Absol. Error n=3 Absol. Error [33]
0.0 0.0000000000 0.00000000003601 3.601E −11 −
0.2 0.0894427191 0.08972763196000 2.849E −04 9.8E −03
0.4 0.2529822128 0.25321979130000 2.376E −04 4.9E −03
0.6 0.4647580015 0.46500112560000 2.431E −04 3.2E −03
0.8 0.7155417528 0.71583758500000 2.958E −04 3.5E −03
1.0 1.00000000000 1.00047428800000 4.743E −04 3.5E −03

Figure 1. Showing the graphical behaviour of the approximation solutions of example 1

Using the collocation method via cubic B-spline wavelets, example 1 was solved by [31] at n = 4, [32] applied
the homotopy analysis transform method for solving example 2, and example 3 was solved by [24] using three
numerical schemes. By comparing the results, it can be seen from tables 1- 3 that the proposed method performed
better when compared with the results obtained by other numerical methods. Also, figures 1-3, demonstrate that
the approximate solutions are in excellent agreement with the exact solutions, and as the values of α increase the
curve tend to zero.

9
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Figure 2. Showing the graphical behaviour of the approximation solutions of example 2

Figure 3. Showing the graphical behaviour of the approximation solutions of example 3

Conclusion

This work demonstrates a numerical solution of fractional integro-differential equations using collocation
computational technique. Three examples are used to demonstrate the method’s applicability and validity, and
it appears that the method produces favourable results. We confirmed that the proposed method is in excellent
agreement with the exact solutions, the solution obtained using the proposed method is more accurate than the
obtained result in [24, 31, 32]. On the basis of this work, researchers can extend this technique to some other
fractional integro-differential equations. The research will be valuable in multidisciplinary fields such as science
and engineering, among others. It is helpful because it addresses the challenge of dealing with fractional order
integro-differential problems by employing a simple collocation technique. The method has the advantage of
being more accurate and requiring less computer time to run. Fractional integro-differential equations can be used
to simulate many real life situations.
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independently developed by considering various non-integer orders (fractional) derivatives in time, space,

and both time-space domains [19]. The time-fractional diffusion equation, inspired by studies by Metzler

et al. [10], introduces a fractional derivative in the time domain by considering the continuous time

random walk. This equation extends the traditional diffusion equation incorporating time derivative of

fractional order, enabling the description of memory effects and long-range correlations observed in time-

dependent diffusion processes. Similarly, the space fractional diffusion equation, as described in works by

Meerschaert et al. (2006), incorporates a fractional order spatial derivative. It allows for the character-

ization of diffusion processes in non-homogeneous media and fractal geometries. The equation captures

sub-diffusion or super-diffusion phenomena, where the spreading behavior is slower or faster than classical

diffusion, respectively, in spatial domains [8]. Furthermore, the space-time non-integer (fractional) order

diffusion equation, studied by Gorenflo et al. [4], and Meerschaert et al. [9] combines fractional deriva-

tives in both time and space domains. This is particularly relevant for describing anomalous diffusion in

highly heterogeneous environments, where temporal and spatial correlations play significant roles.

Several fundamental methods have been developed by renowned mathematicians for solving non-integer

order diffusion equations. Abbasbandy et al. [1] proposed the variational iteration method (VIM) to con-

struct an approximation solution. Lin et al. [7] employed the finite difference scheme method (FDSM)

for constructing approximations of fractional diffusion. Additionally, other approaches like homotopy

analysis method (HAM) [5], homotopy perturbation transform method (HPTM) [6], natural decomposi-

tion method (NDM), [11], Adomian decomposition method (ADM) [18], and so on have been utilized in

this context [15]. In this this work, we utilize the natural decomposition method to solve the non-integer

order diffusion equations. The natural transform with Adomian decomposition approach for non-linear

partial differential equations was first used by Rawashdesh and Matima [16]. Through our investigation,

we reveal the numerical solution to the time-fractional diffusion equation, which is a critical step toward

developing a general framework to model anomalous diffusion phenomena. This framework captures the

intricacies of long-range correlations, memory effects, and time-dependent system dynamics[19, 20].

1.1 Riemann-Liouville (R-L) Derivative

The Riemann-Liouville (R-L) derivative for non-integer order is defined in terms of the fractional inte-

gration called R-L fractional integral [3]. The R-L integral of ϕ(ξ), ξ ≥ −1 of non-integer order α > 0 is

formulated as [3, 15]

aI
α
ξ (ϕ(ξ)) =

1

Γ(α)

 ξ

a

ϕ(τ)

(ξ − τ)1−α
dτ, α > 0, ξ > a (1)

where Γ is gamma function. With fractional integral, R-L derivative is given by

R
a D

α
ξ (ϕ(ξ)) =




1

Γ(p− α)

dp

dξp
 ξ

a

ϕ(τ)

(ξ − τ)1−p+α
dτ, if α ∈ R+, p− 1 < α < p

dp

dξp
ϕ(ξ), if α = p

1.2 Caputo Derivative

The Caputo definition is defined by interchanging the order of derivative and fractional integration [3].

C
a D

α
ξ (ϕ(ξ)) =





1

Γ(p− α)

 ξ

a

ϕ(p)(u)

(ξ − u)1−p+α
du if α ∈ R+, p− 1 < α < p

ϕ(p)(ξ) if α = p ∈ N
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1.3 Natural Transform

The fractional natural transform of a function ϕ(τ) is given by [2, 17]

N +[ϕ(τ)] = ψ(s, u) =

∫ ∞

0

e−sτϕ(uτ)dτ, s, u ∈ R (2)

where the variables s and u represent the transformation variable. The definition of the inverse of natural

transform for a function is [17];

N −[ψ(s, u)] = ϕ(τ) =
1

2πi

∫ a+i∞

a−i∞
esτψ(s, u)ds (3)

where the variables s and u represent the transformation variable, a is a real constant, and the integration

is taken along line Re(P ) = a in a complex plane P = ξ + iτ .

1.4 Adomian Decomposition Method (ADM)

Consider a non-linear ordinary fractional differential equation [11],

c
aD

α
τ ϕ(τ) +Rϕ(τ) +Gϕ(τ) = ψ(τ), p− 1 < α ≤ p, p ∈ N (4)

with initial conditions

ϕ(j)(0) =
djϕ(0)

dτ j
, j = 0, 1, ..., p− 1.

c
aD

α
τ denote the fractional derivative with respect to τ in Caputo sense and it is an invertible linear

operator, R is the operator for liner remainders, G represent the non-linear operator that is considered

as analytic, and ψ(τ) is a known function. As per ADM algorithm, the solution of (4) is an infinite series

ϕ(τ) =

∞∑
i=0

ϕi(τ). (5)

Taking the fractional integral (inverted operator of c
aD

α
τ ) on both side of (5),

Iατ
c
aD

α
τ ϕ(τ) + Iατ Rϕ(τ) + Iατ Gϕ(τ) = Iατ ψ(τ) (6)

Using the initial condition,

ϕ(τ) =

p−1∑
j=0

τ j

j!
ϕ(j)(0) + Iατ ψ(τ)− Iατ Rϕ(t)− Iαt Gϕ(τ) (7)

and the expression for the non linear expression Gϕ(τ) is given by

Gϕ(τ) =

∞∑
k=0

Ak(τ) (8)

where Ak(τ),depending on ϕ0, ϕ1..., are Adomian polynomials and can be calculated for non-linearity

Gϕ = f(ϕ(τ)) as,

Ak(τ) =
1

k!

[
dk

dλk
f

(
k∑

i=0

ϕi(τ)λ
i

)]

λ=0

(9)

From (5), (8) and (9), equation (7) becomes;

∞∑
n=0

ϕn(τ) =

p−1∑
j=0

τ j

j!
ϕ(j)(0) + Iατ [ϕ(τ)]− Iατ

[
R

∞∑
n=0

ϕn(τ)

]
− Iατ

[ ∞∑
k=0

Ak(τ)

]
(10)

Then, from (10), we find the iterative scheme and then the approximate solution to equation (5) is the

sum of thus obtained term.
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2 Natural Decomposition Method (NDM)

The fractional natural transform method (FNTM) and Adomian decomposition method (ADM) are

combined to create a new method natural decomposition method (NDM) [12]. Let Ω = S × I, where

S = [0, L] be spatial domain and I = [0, T ] be time domain. Then an equation of one-dimensional

time-fractional diffusion is [7, 11];

cDα
τ U (ξ, τ) = K

∂2U (ξ, τ)

∂ξ2
+ ψ(ξ, τ), (ξ, τ) ∈ Ω, 0 < α ≤ 1 (11)

with initial and boundary conditions

U (ξ, 0) = h(ξ), 0 ≤ ξ ≤ L (12)

U (0, τ) = U (L, τ) = 0, τ > 0 (13)

where cDα
τ =

∂α

∂τα
is non-integer order (fractional) derivative in Caputo sense, U (ξ, τ) is solute concen-

tration , ψ(ξ, τ) is the source function, and K represents the diffusion coefficient (constant or function of

ξ) which controls the anomalous diffusion in complex medium.

The solution of non-integer order diffusion equation by NDM, taking natural transform of (11)

N + [cDα
τ U (ξ, τ)] = N +

[
K

∂2U (ξ, τ)

∂ξ2
+ ψ(ξ, τ)

]
(14)

Using the natural transform’s differentiation property

( s

u

)α

N + [U (ξ, τ)]− sα−1

uα
U (ξ, 0) = N +

[
K

∂2U

∂ξ2
+ ψ(ξ, τ)

]

=⇒ N + [U (ξ, τ)] =
1

s
h(ξ) +

uα

sα
N +

[
K

∂2U

∂ξ2
+ ψ(ξ, τ)

]

U (ξ, τ) can be written as an infinite series by using the ADM technique.

U (ξ, τ) =

∞∑
k=0

Uk(ξ, τ) =

∞∑
k=0

Uk (15)

The Adomian polynomials infinite series is used in this problem to represent any existent non-linear

components

GU (ξ, τ) =
∞∑
k=0

Ak (16)

where Ak =
1

k!

[
dk

dλk
G
[∑∞

k=0(λ
kUk)

]]

λ=0

k = 0, 1, 2..., are adomian polynomials

From equation (15) and (16)

N +

[ ∞∑
k=0

Uk

]
=

1

s
h(ξ) +

uα

sα
N +

[
K

∞∑
k=0

∂2Uk

∂ξ2
+ ψ(ξ, τ)

]

Using the Adomian decomposition and inverse natural transform,

U0(ξ, τ) = N −
[
1

s
h(ξ)

]
+ N −

[
uα

sα
N + [ψ(ξ, τ)]

]
and Uk+1(ξ, τ) = N −

[
uα

sα
N +

[
K

∂2Uk

∂ξ2

]]

for k=0,1,2,..., the NDM method’s solution is derived by substituting the values of Uk(ξ, τ) in (15)
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3 Result and Discussion

In this section, we use the NDM approach to illustrate a few time-fractional diffusion equations.

Ex.1. Consider the following fractional diffusion equation in one dimension [11]

∂αU (ξ, τ)

∂τα
=

ξ2

2

∂2U (ξ, τ)

∂ξ2
, (ξ, τ) ∈ Ω, 0 < α ≤ 1 (17)

with initial condition

U (ξ, 0) = ξ2, 0 ≤ ξ ≤ 2 (18)

By employing natural transform on (18)

N +

[
∂αU (ξ, τ)

∂τα

]
= N +

[
ξ2

2

∂2U

∂ξ2

]

Using the differentiation property of natural transform,

N + [U (ξ, τ)] =
1

s
U (ξ, 0) +

uα

sα
N +

[
ξ2

2

∂2U

∂ξ2

]
=

ξ2

s
+

uα

sα
N +

[
ξ2

2

∂2U

∂ξ2

]
(19)

Then by ADM algorithm, the solution U (ξ, τ) can be expressed in infinite series as

U (ξ, τ) =

∞∑
k=0

Uk(ξ, τ) =

∞∑
k=0

Uk (20)

From equation (19) and (20)

N +

[ ∞∑
k=0

Uk(ξ, τ)

]
=

ξ2

s
+

uα

sα
N +

[
ξ2

2

∞∑
k=0

∂2Uk

∂ξ2

]

Taking inverse natural transform

∞∑
k=0

Uk(ξ, τ) = N −
[
ξ2

s

]
+ N −

[
uα

sα
N +

[
ξ2

2

∞∑
k=0

∂2Uk

∂ξ2

]]

By ADM algorithm

U0(ξ, τ) = N −
[
ξ2

s

]
= ξ2

and

Uk+1(ξ, τ) = N −
[
uα

sα
N +

[
ξ2

2

∂2Uk

∂ξ2

]]
, for k = 0, 1, 2, ...

For all values of k = 0, 1, 2, ..., equation (20) becomes;

U (ξ, τ) = ξ2
(
1 +

τα

Γ(α+ 1)
+

τ2α

Γ(2α+ 1)
+

τ3α

Γ(3α+ 1)
+

τ4α

Γ(4α+ 1)
+ ...

)
(21)

Using computational software, figure 1 shows that the three-dimensional plot that visually represents

the NDM solution for different values of the variable α. On the other hand, figure 2 presents a two-

dimensional plot illustrating the solution for various values of α specifically when τ is fixed at 1. Notably,

by observing both figures, it becomes evident that as the value of α progressively approaches 1, the

solution curve increasingly converges towards the curve corresponding to α = 1. The figures provide

clear evidence that the non-integer (fractional) order diffusion equation effectively captures the diffusive

5
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Figure 1: 3D plot of numerical solution of

example 1 for different values α

Figure 2: 2D plot of solution of example 1 at τ = 1

behavior in continuous time. This property enables it to accurately represent the non-local nature and

long-range memory effects observed in anomalous diffusion processes occurring within complex medium.

When α = 1, (21) gives;

U (ξ, τ) = ξ2
(
1 + τ +

τ2

2!
+

τ3

3!
+

τ4

4!
+ ...

)

This is the somewhat like exact solution in closed form

U (ξ, τ) = ξ2eτ

By computational software,

Figure 3 shows that three-dimensional plot illustrating the error of the solution across different values

of the variable α. This plot visually demonstrates how the error changes with varying α. On the other

hand, Figure 4 presents a two-dimensional graph that specifically focuses on the error of the solution for

different α values when τ is fixed at 1. Notably, both figures provide clear evidence that as α approaches

1, the corresponding error consistently decreases. This observation suggests a strong correlation between

the proximity of α to 1 and the reduction of error in the solution.

Ex.3. Consider following two dimensional fractional diffusion equation [11]

∂αU (ξ, y, τ)

∂τα
=

y2

2

∂2U (ξ, y, τ)

∂ξ2
+

ξ2

2

∂2U (ξ, y, τ)

∂y2
, (ξ, y, τ) ∈ Ω, 0 < α ≤ 1 (22)

with initial

U (ξ, y, 0) = y2, 0 ≤ y ≤ 1 (23)

Applying the natural transform on both side of (23)

N +

[
∂αU

∂τα

]
= N +

[
y2

2

∂2U

∂ξ2
+

ξ2

2

∂2U

∂y2

]

By differentiation property of natural transform and using initial condition

N + [U (ξ, y, τ)] =
y2

s
+

uα

sα
N +

[
y2

2

∂2U

∂ξ2
+

ξ2

2

∂2U

∂y2

]
(24)

6
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Figure 3: Error plots of the solution by NDM for different α in 3D.

Figure 4: Error plots of the solution by NDM for τ = 1

in 2D.

Using ADM algorithm, solution U (ξ, y, τ) is given by infinite series

U (ξ, y, τ) =

∞∑
k=o

Uk(ξ, y, τ) (25)

From equation (24) and (25)

N +

[ ∞∑
k=o

Uk

]
=

y2

s
+

uα

sα
N +

[
y2

2

∞∑
k=0

∂2Uk

∂ξ2
+

ξ2

2

∞∑
k=0

∂2Uk

∂y2

]

Taking inverse natural transform

∞∑
k=o

Uk = N −
[
y2

s

]
+ N −

[
uα

sα
N +

[
y2

2

∞∑
k=0

∂2Uk

∂ξ2
+

ξ2

2

∞∑
k=0

∂2Uk

∂y2

]]

By ADM algorithm

U0(ξ, y, τ) = N −
[
y2

s

]
= y2

and

Uk+1(ξ, y, τ) = N −

[
uα

sα
N +

[
y2

2

∂2Uk(ξ, τ)

∂ξ2
+

ξ2

2

∞∑
k=0

∂2Uk

∂y2

]]
, for k = 0, 1, 2, ...

putting different values of k

U2k−1(ξ, y, τ) = ξ2
τ (2k−1)α

Γ((2k − 1)α+ 1)
, for k = 1, 2, ...

and

U2k−2(ξ, y, τ) = y2
τ (2k−2)α

Γ((2k − 2)α+ 1)
, for k = 1, 2, ...

From all above, equation (25) becomes;

U (ξ, y, τ) = ξ2
(

τα

Γ(α+ 1)
+

τ3α

Γ(3α+ 1)
+ ...

)
+ y2

(
1 +

τ2α

Γ(2α+ 1)
+

τ4α

Γ(4α+ 1)
+ ...

)

7
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Figure 5: Solution of two dimensional fractional diffusion Equation by NDM

Now, by using computational software,

Figure 5 shows that the three-dimensional plot that visually represents the NDM solution of two dimen-

sional fractional order diffusion equation for different values of the variable α. Notably, by observing

figure, it becomes evident that whenever value of α progressively approaches 1, the solution curve in-

creasingly converges towards the curve corresponding to α = 1 and at α = 1 it coincides with the exact

solution in closed form.

When α = 1, above gives;

U (ξ, y, τ) = ξ2
(
τ

1!
+

τ3

3!
+ ...

)
+ y2

(
1 +

τ2

2!
+

τ4

4!
+ ...

)
= ξ2 sinh τ + y2 cosh τ.

This is the somewhat like exact solution in closed form Plotting the error by using computational software

Figure 6 shows that three-dimensional plot illustrating the error of the solution of two dimensional

Figure 6: Error plot of the solution by NDM

diffusion equation by NDM across different values of the variable α. This plot visually demonstrates how

the error changes with varying α. Notably, figures provide clear evidence that as α approaches 1, the

corresponding error consistently decreases. This observation suggests a strong correlation between the

proximity of α to 1 and the reduction of error in the solution.

8
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4 Conclusion

In this work, we have examined the numerical analysis of the non-integer (fractional) order diffusion

equation by employing the natural decomposition method (NDM). Proposed method offers a valuable

approach for approximating solutions to fractional differential equations, including the fractional diffusion

equation, which exhibits anomalous diffusion behavior. The fractional diffusion equations are the best

tools to capture the diffusion in complex media where non-local property and and long-range memory

effect plays a crucial role. Through the application of the NDM, we have successfully illustrated the

numerical solutions for one dimensional and two dimensional fractional diffusion equations and from

the result we discovered that whenever on-integer order α tends towards integer order, the non-integer

order solutions converge rapidly close to exact solution. Therefore the accuracy and convergence of the

NDM have been validated through our numerical experiments. The application of NDM to illustrative

instances has further proved that, when comparing the integer-order model with fractional order model,

it becomes apparent that the fractional-order mathematical model provides the most effective approach

for capturing the non-local property and long-range memory effect that exhibit by anomalous diffusion

process. In conclusion, the non integer order diffusion equation offers a best mathematical framework

to capture the anomalous diffusion process in complex media and the fractional natural decomposition

method (NDM) is regarded as the best tool for solving linear as well as non-linear fractional partial

differential equations due to its superior convergence and accuracy compared to other methods.
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1. Introduction 

Cauchy's monumental "course d'analyses algebriaic"  published in 1821 and Abel's investigations (see 
[8, 10-18]) into the binomial series (published in 1826) provided a solid foundation for the antiquated 
and esoteric concept of convergence infinite series. In Dynamical Astronomy, in particular, there were 
a few non-convergent series that gave close to the right answers. In 1890, a theory of divergent series 
was formulated for the first time by Ces𝑎̀𝑎ro, who wrote a paper on the multiplication of a series. From 
there, the theory of series emerged as the hub of mathematical analysts' ingenuity, explaining why the 
sequence of partial sums of a function varies in a periodic fashion. Mathematicians like Holder, 
Hausdorff, Riesz, N𝑜𝑜�rlund, etc. worked tirelessly to develop effective solutions, and only in the last 
decade of the twentieth century and the first year of the twenty-first century have they succeeded. 
Cauchy's idea of convergence is intended to have a tight relationship with this method through 
process. In a fair fashion, we can refer to these values as their sums. The process of linking 
generalized sums, known as summability (Szasz 1946; Hardy 1949), offers a natural generalization of 
the classical notion of convergence (Hobson 1909). 
 

2. Definitions 
Before proceeding with the main work, we now give some notations and definitions that are used in 
the paper.  
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2.1 Regular triangular matrix (see [17]) 

The matrix of triangles (Λ) = ( 𝑟𝑟�,� ) where a = 0, 1, 2, 3, … and b = 0, 1, 2, 3, …and  𝑟𝑟�,� = 0 for       
0 < a < 1,(defines a regular sequence-to-sequence transformation) b, is regular) if 

   𝑟𝑟�,��→����   = 0, for every fixed b;                                                    …         (1) 
∑ | 𝑟𝑟�,�   |���� ≤  K, independent of a;                                                   …  (2) 

and                          ∑ 𝑟𝑟�,������→�
���   = 1.                                                                       … (3) 

2.2 Strongly summable (see [5,17]); 

An infinite series ∑ 𝑣𝑣� with the sequence of partial sums { 𝑆𝑆�} is said to be strongly summable (Λ ) to 

a fixed finite sums S, if ∑ 𝑟𝑟�,� ���� | 𝑆𝑆� − 𝑆𝑆𝑆𝑆 = o( 1 ),     as a→ ∞.    …          (4) 

2.3 We have the following three cases (see [5,20,21]); 

      (a) 𝑟𝑟�,�  = �
𝑓���𝑎 ( b ≤ 𝑎𝑎) 

      (b) 𝑟𝑟�,�   = �
�𝑓� ��𝑎 ∑ �

  ��� }����
     (b ≤ 𝑎𝑎𝑎 

     (c)  𝑟𝑟�,�   = �
𝑓� � � � �𝑎  ∑ �

��� 
����

   (b≤ 𝑎𝑎𝑎𝑎 

Summability (Λ) becomes respectively Ces𝑎̀𝑎ro summability, Riesz summability and N𝑜𝑜�rlund 

summability. 

2.4 Ultraspherical series (see [5,20,21]); 

Let 𝑓𝑓(θ, ɸ ) be a function defined in range 0 ≤ θ ≤  π and 0≤  ɸ ≤ 2π. The ultraspherical series 

corresponding to 𝑓𝑓𝑓𝑓𝑓𝑓 ) on the sphere S is given by  

𝑓𝑓𝑓𝑓𝑓𝑓𝑓   ~ �
�� ∑ (𝑎𝑎 𝑎 𝑎𝑎���� ʃ �ʃ � ���  ,ɸ�  ���

 𝑓�𝑎   𝑓��� � 𝑎  ��� ��  ���   �ɸ�

� ������    ����    ( ɸ  �   ɸ�)]
����

�
   … (5) 

Where, cos ω = cos θ cos θ� + sin θ sin θ� cos (ɸ -ɸ�) .                                      …  (6) 

2.5 Ultraspherical polynomial (see [18,20]); 

The ultraspherical polynomial 𝑄𝑄�
(�)( 𝑥𝑥𝑥𝑥 is defined by generating function  

(1 − 2𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥�)��  = ∑ 𝑡𝑡����� 𝑄𝑄�
𝑓�𝑎( 𝑥𝑥𝑥),  α > 0      … (7) 

A generalized mean value of 𝑓𝑓𝑓𝑓𝑓𝑓𝑓  on the sphere S has been defined Gupta (see [4]) as follows: 

𝑓𝑓𝑓𝑓𝑓 = �
��𝑓��� �𝑎�� ʃ��

����,ɸ�� ���

���� ��� ���� ( ɸ�ɸ� )]
����

�
      … (8) 

where the integral is taken along the small circle C whose center is (θ, ɸ) on the sphere S and whose 

curvilinear radius is ω. 

The series (5) reduces to 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓   ~ �𝑓�𝑎
���

��   �𝑓�
���𝑎

∑ (𝑎𝑎 𝑎 𝑎𝑎𝑎���� � 𝑓𝑓𝑓𝑓𝑓�
� 𝑠𝑠𝑠𝑠𝑠𝑠�� ω𝑄𝑄�

𝑓�𝑎 (cos ω) dω .                              …  (9) 

Also, we write  
ɸ(ω) = {𝑓𝑓(ω) − 𝐴𝐴𝐴𝐴 ( sin ω )����       … (10) 
where A is a fixed constant. 
Various researchers have explored various intriguing generalizations; here we list just a handful (see 
[1-9, 19-21]). The following theorem on the summability of Laguerre series in matrices was proved 
by them (see [6]): 
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2.6 Known Theorem: 

Let the non- negative real sequence {𝑟𝑟�,�} be none decreasing with respect to b  

and 

∑ λ�,������→�
���   = 1                                                                                        … (11) 

If │ ɸ │is integrable in the sense of Lebesgue integral in any bounded interval (0, ω) 

and if,  

� ℯ��
� 𝑧𝑧𝑧

��
�   │ ɸ (𝑧𝑧)│ dz  <  ∞ .                                                                      … (12) 

Then for −2<2α < −1, the Leguerre series corresponding to the function 𝑓𝑓𝑓 L [0,∞] given by  

𝑓𝑓𝑓𝑓𝑓𝑓 ~ ∑ 𝑣𝑣����� 𝐿𝐿�𝑧𝑓�𝑓(𝑥𝑥)         … (13) 

where  

𝑣𝑣� = �Γ(α + 1) �𝑎𝑎 𝑎𝑎
α ��

��
� ℯ��𝑧𝑧�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑓�𝑓(𝑧𝑧𝑧�
�  dz                                … (14) 

and  𝐿𝐿�𝑓�𝑧𝑓(𝑧𝑧𝑧 denotes the 𝑎𝑎�� Laguerre polynomial of order α < 1 which is defined as 

∑ 𝐿𝐿�𝑧𝑧𝑓�𝑓(𝑥𝑥𝑥���� 𝜔𝜔� = (1 − ω)����ℯ
���
���       … (15) 

and 

ɸ (z) =(𝛤𝛤𝛤𝛤𝛤𝛤𝛤  )��ℯ��𝑧𝑧�{𝑓𝑓(𝑧𝑧) − 𝑓𝑓𝑓𝑓𝑓} … (16) 
is summable ( Λ) at 𝑥𝑥 = 0 to the sum 𝑓𝑓(0). 
 

3. Main Theorem 
 

We prove the following theorem 

3.1 Theorem:  

Let �𝑟𝑟�,�� be non-negative, monotone increasing sequence with respect to b, and  

∑ 𝑟𝑟�,������→�
���   = 1.                                                                                        … (17)   

Let μ be a large constant and δ be such that  

1> α(1 + δ) > α,    α (0, 1).                                                                      … (18) 

Let ɸ be a function ω which is bounded variation in open interval (ξ, π) i.e.|ϕ(ω)|  ∈ (ξ, π)where ξ  is 

defined as follows: 

ξ = μ 𝑎𝑎��, ( 0 < ξ < π)         … (19) 

and, if  

� │ɸ(ω)│𝑑𝑑𝑑�
�   = O(𝑡𝑡���) ,   as t→ 0                                                                   … (20) 

and � = ����
� − 1.                                                                       …        (21) 

Then the given ultraspherical series corresponding𝑓𝑓(θ, ϕ) on the sphere S is strongly summable (Λ) 
to the sum A.  
 

3.2 Lemmas: 
The following lemmas are necessary for us to prove our theorem: 

Lemma 1 ( see [22]) : We have for α > 0, 
𝑄𝑄�𝑓�𝑓 ( cos θ ) = θ�� O ( 𝑎𝑎���), �� ≤ θ ≤ �

�      … (22) 

and, 



80

SK Sahani, JK Pokharel, GP Paudel & SK Tiwari / On a New Application of Almost Increasing Sequence ….
SK Sahani , JK Pokharel, GP Paudel  & SK Tiwari / On a New Application of Almost Increasing Sequence …. 
 

80 
 

𝑄𝑄�(�) (cos θ) = O ( �
�����), 0≤ θ ≤ �

�       … (23) 
Lemma 2 (see [22]) : For a≥ 0, we have  
�
�� { 𝑄𝑄�(�)(𝑥𝑥) } = 2 α𝑄𝑄�(���)(𝑥𝑥),        … (24) 

Where 𝑄𝑄��(�)(𝑥𝑥𝑥 = 0 

Lemma 3 : Under the condition of theorem, we have  

∑ 𝑟𝑟�,����� 𝐾𝐾��� = O(𝑎𝑎���),                                                                                           …       (25) 

and similarly, 

∑ 𝑟𝑟�,����� 𝐾𝐾���� = O( 𝑎𝑎���� ),    as a→ ∞.                                                                  …        (26) 

The proof obviously follows on using (17). 

3.3 Proof of the theorem: 

Let 𝜎𝜎� denote the 𝑎𝑎�� partial sum of the series (5) .Then we have ( see [22]). 

𝜎𝜎� = �(�)
√�𝜔𝜔�(����)

� 𝑓𝑓𝑓𝑓𝑓𝑓�
� ∑ (𝑚𝑚 𝑚 𝑚𝑚���� 𝑄𝑄�(�) (cos ω ) (sin𝜔𝜔𝜔𝜔��dω     

𝜎𝜎�  = �(�)
√�𝜔�(����)

� 𝑓𝑓𝑓𝑓𝑓�
� 𝑠𝑠𝑠𝑠𝑠𝑠��𝜔𝜔𝜔𝜔𝜔 ��� �𝑄𝑄���

(�) (𝑥𝑥) + 𝑄𝑄�(�)(𝑥𝑥)�]������ dω.       … (27) 

Therefore, with view of  (10), we have  

𝜎𝜎� – A = �(�)
√�𝜔𝜔�������

� ɸ(𝜔𝜔𝜔�
�

�
�� { 𝑄𝑄���(�) (cos𝜔𝜔𝜔𝜔+ 𝑄𝑄�(�)(cosω) } dω 

𝜎𝜎� – A = O [� ɸ(ω)�
�

�
�� (𝑄𝑄���

(�) (cosω ) 𝑑𝑑𝑑 ] + O [ � ɸ(ω)�
�

�
�� (𝑄𝑄�

(�)(cos𝜔𝜔𝜔) dω],                                                    

             = 𝐼𝐼� +𝐼𝐼�,                                                                                  …       (28) 

In order to establish our theorem, we must demonstrate that  

∑ 𝑟𝑟�,����� │𝜎𝜎� − 𝐴𝐴𝐴�𝜔𝜔= O(1), as a→ ∞.                                                           … (29) 

Now applying Minkowski’s inequality, we get  

{ ∑ 𝑟𝑟�,����� │𝜎𝜎� − 𝐴𝐴𝐴𝐴�}
�
� ≤ {∑ 𝑟𝑟�,�│𝐼𝐼�│����� }

�
�  + { ∑ 𝑟𝑟�,�│𝐼𝐼�│�} 

𝜔�
�����  

                                         = ( 𝑀𝑀𝑀𝑀
�
� +(𝑁𝑁𝑁

�
�     (say)                   … (30) 

Let us first consider I�,  

│𝐼𝐼�𝜔│= O[ � │ɸ(ω)│�
� │ �

�� {𝑄𝑄���
(�) (cosω)│dω] 

         = O [ (� + �
� � )��  │ ɸ ( ω) │ │ �

�� { 𝑄𝑄���(�)  ( cos ω ) │dω 

          = O ( 𝐼𝐼�,� ) + O ( 𝐼𝐼�,� ) ,          ( say) .                                                                            … (31) 

 We have,           

𝐼𝐼�,� = � │ɸ(ω)│�
�  │ �

�� { 𝑄𝑄���(�) ( cos ω ) │dω 

      = � │ɸ(𝜔𝜔𝜔𝜔�
�  2α│𝑄𝑄���(���)( cos ω ) │, using ( 24) 

      =� │ɸ(𝜔𝜔𝜔𝜔�
�  2α O{ ( 𝑏𝑏 𝑏 𝑏𝑏���� } dω, using ( 23) 

      = O ( 𝑏𝑏����) � │ɸ(ω)│�
�  dω 

      = O ( 𝑏𝑏����) O ( ξ ��), using ( 20). 
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 Hence, 

∑ 𝑟𝑟�������  O( 𝐼𝐼���) = ∑ 𝑟𝑟������� O(𝑏𝑏����)  O(ξ���) 

                            = O (∑ 𝑟𝑟������� 𝑏𝑏����) O(ξ���) 

                            = O(𝑎𝑎����) O(𝑎𝑎��(���𝜔), using( 26) and (19) 

                            = O( 𝑎𝑎���������) 

                             =O(1), as a→ ∞,  using (21) .                                                  … (32) 

Again, 

 𝐼𝐼��� = � │ɸ(𝜔𝜔𝜔𝜔�
� │ �

��{𝑄𝑄���
(�𝜔 ( cos ω ) dω 

       = [ɸ(𝜔𝜔𝜔𝜔𝜔���
(�) (cos 𝜔𝜔𝜔𝜔�

� - � 𝑑𝑑𝑑𝑑𝑑𝑑�
� 𝑄𝑄���

(�𝜔 (cos ω) dω 

       = O(𝑏𝑏���) ξ��, using ( 22) 

and   ɸ(𝜔𝜔𝜔𝜔 BV(ξ,𝜋𝜋). 

Hence, 

∑ 𝑟𝑟�������  O(𝐼𝐼���) = ∑ 𝑟𝑟������� O(𝑏𝑏���) ξ�� 

                          = O (∑ 𝑟𝑟������� 𝑏𝑏���) ξ�� 

                          = O (𝑎𝑎���) (μ𝑎𝑎��)��, using ( 25) and (19) 

                          = O ( 𝑎𝑎������) 

                          = O(1),  as a→ ∞    by (27) and (19).                              … (33) 

Therefore,  M = ∑ 𝑟𝑟������� │𝐼𝐼�│�   =  O{∑ 𝑟𝑟 ������� } 

  (𝑀𝑀𝑀
�
�   = O(1), as a→ ∞         by (3).                                                                … (34) 

We can also demonstrate that  

(𝑁𝑁𝑁
�
� = O(1)    as n→ ∞ .                                                                                    … (35) 

Combining (34) and (35), we get the required result (29). 

Conclusion 
 

In this article, we have used the Generalization procedure to establish advanced systems. Summability 
methods are instructed to reduce the error. Some new result can be generated by using suitable 
conditions in the main result. The results [10-22] can be found by applying conditions on the main 
result. 
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Abstract:  Hypergeometric functions are transcendental functions that are applicable in various 
branches of mathematics, physics, and engineering. They are solutions to a class of differential equations 
called hypergeometric differential equations. Kummer obtained six solutions for the hypergeometric 
differential equation and twenty connection formulae. This research work has extended those connection 
formulas to other six solutions ),(),(),(),(),( 54321 xyxyxyxyxy and )(6 xy to show that each solution 

can be expressed in terms of linear relationship among three of the other solutions. 

Keywords: Hypergeometric function, Kummer’s formula, Connection formula 

1. Introduction and Motivation 

Before Proceeding with the main work, we shall now introduce some basic notations,definitions and 
preliminaries that are used in this paper. 

 

1.1 Hypergeometric Function[12] 

The Gaussian hypergeometric function );;,(12 xcbaF  is a special function represented by the 
hypergeometric series,  

);;,(12 xcbaF =
!)(

)()(1
;
;

1
12 n

x
c

ba
x

c
ba

F
n

n n

nn












   ...(1.1.1) 

Where na)(  is called the Pochhammer  symbol and is defined as  

(i) )1()....3)(2)(1()(  naaaaaa n 



n

k
ka

1
)1( =

)(
)(

a
ka




              …(1.1.2) 

(ii)   ,10 a for oa        

If the value of a,b,c Z+ in (1.1.1) then it is convergent for 1z [13] and if ,a and b are the positive 

integers, }1,...,1,0{  ac and }1,...,1,0{  bc , then the hypergeometric series (1.1.1) is a  
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polynomial of degree a or b , If c = a and b = c then it is not possible to define );;,(12 zcbaF [3]. In this 

case, 

);;,(12 xcbaF = k

k

k x
k
b



0 !
)(

 = bx  )1(    …(1.1.3) 

If ,0)Re(  bac 0)Re()Re(  bc in (1.1.1) then it can be expressed in the form of gamma 
function through the Guass Kummer identity; 

    
)()(
)()(

bcac
bacc




     … (1.1.4) 

The series (1.1.1) is a solution of a second-order linear ordinary hypergeometric differential equation 
known as Guass Hypergeometric differential equation[12],  

0'))1(('')1(  abyyxbacyxx     …(1.1.5) 

1.2 The solutions at the singularities 

The equation (1.1.5) has a regular singularity at ,0x 1, and infinity [5, 16]. The table given below, 
commonly known as Riemann Scheme table, shows the of local exponents of the hypergeometric 
differential equations at the variate values of x 

x = 0 x =1 x =  
0 0 a

1c c  a  b b
 

According to Riemann scheme, the difference of the local exponent is not an integer. This condition is 
called the generic condition. In this condition the fundamental system of solutions are defined at each 
singular points.[4]. The fundamental solutions of this differential equation in different singular points are 
as below.[2] 

(i) For singularity at 0x , 

);;,()( 121 xcbaFxy                   … (1.2.1) 

and );2;1,1()( 12
1

2 xccbcaFxxy c                               …(1.2.2) 

(ii) For singularity at ,1x  

)1;1;,()( 123 xcbabaFxy                    …(1.2.3) 

         and )1;1;,()( 124 xbacbcacFxzy bac       …(1.2.4) 

(iii) For singularity at ,x  

)1;1;1,()( 125 x
bacaaFxxy a          …(1.2.5) 

and  )1;1;1,()( 126 x
abcbbFxxy b                    …(1.2.6) 

1.3 Local Solutions and Connection formula 

These six solutions published by Kummer, has four forms related to one another by Euler transformation 
giving twenty four forms in total [11]. These twenty four solutions are known as Kummer’s solution of 
hypergeometric differential equation. For details, we refer [2, 8].  



85

Nepal Journal of Mathematical Sciences (NJMS), Vol. 4, No. 2, 2023 (August): 83-88
Nepal Journal of Mathematical Sciences (NJMS),  Vol. 4, No. 2  , 2023 (August): 83-88 

 
 

1.4 Connection Formulas 

The six formulas as mentioned by Kummer [2, 8] for three parameters a, b, c and combination of three 
solutions,[14,15] with the property (1.1.4) will give 2036 C connection formulae as the principle 
branches of Kummer’s solution[1, 2, 10]. They are listed as follows;  

)(
)()(

)1()1()(
)1()1(
)1()1()( 213 xy

ba
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cbca
cbacxy








   … (1.4.1)  
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)1()1()( 214 xy
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




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   … (1.4.2)
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)1()1()(
)1()1(
)1()1()( 2

)1(
15 xy

bca
bacexy

bca
bacxy ic
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2. Research Objective 
  

In 1837, Kummer introduced the solution to the Kummer differential equation which is known as 

Confluent hypergeometric function. In the meantime he had discovered twenty four solutions for the 

same, which subsequently formed the twenty formulas as the branches of Kummer solution [13]. They are 

listed in relations (1.4.1-1.4.20). In this paper, our objective is to find the relations between any four sets 

of solutions and also to express any one of them as the linear combination of the other three solutions.  

 
3. Main Result 

In section 1.4, the connection formulas for six different solutions, each consisting of two different 
solutions are presented. The extension of connection formula refers to the combination of any three 
solutions for a given solution. Each extension formulas is obtained as the combination of three different 
solutions. The combination of six formulas taken four at a time constitute of 124

6 C solutions. The six 
extension of connection formula are already evaluated by Poudel et.al [9] The remaining six connection 
formulas will be obtained in this research paper. Those results are presented as follows. 
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The proof of the above extension formulas are as follows; 

2.1 Derivation of the extension formula for (2.1.1) 

From (1.4.1) and (1.4.11), we get 
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This proves the extension formula (2.1.1). 

Applying the similar derivations from the given relations we obtain the formulae (2.1.2)-(2.1.6). From 
formulas (1.4.2) and (1.4.12), we get the connection formula for )(2 xy in(2.1.2), Similarly using the 

formulas (1.4.13) and (1.4.18) we get the connection formula for )(3 xy in (2.1.3),from (1.4.14) and 

(1.4.17), we get the connection formula for )(4 xy in(2.1.4), from (1.4.15) and (1.4.20), we get the 

connection formula for )(5 xy in (2.1.5) and finally from (1.4.6) and (1.4.10), we get the formula for 

)(6 xy in (2.1.6). 
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3. Conclusion 

The hypergeometric function is the solution of the Gaussian hypergeometric differential equation[1]. 
Kummer has obtained six solutions and twenty connecting formulas for the second-order hypergeometric 
differential equation. By the help of these formulas listed in (1.3.1-1.7.6) and (1.4.1-1.4.20) respectively, 
for the hypergeometric differential equation, we have obtained additional six extensions [(2.1.1)-(2.1.6)] 
of the connecting formulas for ),(1 xy )(2 xy ),(3 xy )(4 xy , xy (5 ) and )(6 xy . Every solution are 
expressed as the linear combination of other three solutions. These solutions are highly applicable in 
various branches of applied sciences. 
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