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Abstract: Banach’s Fixed Point Theorem (BFT)deals with the certain contraction mappings of a
complete metric space into itself. It states sufficient conditions for the existence and uniqueness of a fixed
point. In the study of fixed point theory, BCP has been extended and generalized in many different
directions in usual metric spaces. One of those generalizations is a b-metric space. Such generalizations
have resulted in generalizing some popular metric fixed point theorems in the context of a b-metric space.
In 2013, Kir and Kiziltunc [8] attempted to generalize Chatterjee’s Fixed Point Theorem (CFPT) in the
context of b-metric spaces. The proof of that generalization, however, had a minor flaw and an unstated
assumption. This paper attempts to fix these issues by introducing new conditions.

Keywords: Convergence, Compactness, Cauchy sequence, Metric space, b-Metric space.

1. Introduction and Motivation:

The concept of fixed point theories is one of the most important results in Functional Analysis. The
famous fixed point result called Banach Contraction Principle(BCP) is generalized and improved in many
directions. One usual way of studying the Banach contraction principle is to replace the metric space with
certain generalized metric spaces. Some problems, particularly the problem of the convergence of
measurable functions with respect to measure led Czerwik[6] to a generalization of metric space and
introduced the concept of b-metric space. The concept of b-metric space was generalized in different
directions, for instance, we refer to a few: Alamari and Ahamad [1], Bakhtin[2], Igbal, Batool, Ege and
Sen[7], Ojha and Pahari [10] and, Shoaib, and et al [12]. Several authors proved fixed-point results of
single-valued and multi-valued operators in b-metric spaces. Also, Kumar, Mishra, and Mishra [9] studied
common fixed point theorems in b-metric space. In the present article, we shall study on a generalization
of Chatterjee's Fixed Point Theorem studied in [4]in b-metric space.

Before proceeding with the main work, we shall define some important definitions, examples, and key
results related to b-metric spaces, which are used in our further discussion.

Definition 1.1 (h-metric space, Bakhtin [2]) Let X be any non-empty set and b = 1 be some given real
number. Letd : X X X — [0,0) be a function which satisfies the following properties:

(bl) Forallx,y € X, d(x,y) =20 and d(x,y) =0 &x=y.
(b2) Forallx,y € X, d(x,y) = d(y,x).
(b3)Forallx,y, z€ X, d(x,y) <bld(x,z) +d(y,z)].

1
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Then, we say that d is a b-metric defined on X and that X along with d forms a h-metric space and is
denoted by the ordered pair (X, d).In some cases, if we need a distinction between b-metrics defined on
different spaces, we write the space in its suffix. For example, we may write d as dy in the above
discussion. We define b as a triangular constant and refer to (b3) as relaxed triangle inequality or b-
triangle inequality (Cobzas,[5]), and (Czerwik, [6]).

The following are examples of b-metric spaces:

Example 1.2. Every metric space is an example of a b-metric space because we have b = 1 validating the
condition, (b3).
Example 1.3.(Bakhtin [2])
The set L,(R) where L,(R) = {{x,} SR :X|x,|’< o} (with 0 <p <1) together with the function
d: L,(R) x L,(R) — [0, ) defined by
d(x,y) = (o lx =y
where x = {x,},y = {y.} €L,(R) forms a b-metric with b =,

Example 1.4.(Bakhtin [2])
The space L,[0, 1] (where 0 <p <1) of all real functions x(¢), ¢ € [0, 1] such that

) 01 [x(t)|’dt < oo forms a b-metric by defining
d(xr,y) = (f; 1x(t) — y(®)I")"7dt for each x,y € L,[0, 1], with b =2'7.

It is clear that definition of b-metric is an extension of usual metric space. Obviously, each metric
space is a b-metric space with b = 1. However, Czerwik [6] has shown that a h-metric on X need
not be a metric on X. The following example illustrates this situation.

Example 1.5.

Let (X, d) be a metric space. Define p(x, y) = [d(x, y)} , where p> 1 is a real number. Then we can
verify that p forms a b-metric with b = 27~' . However, if (X, d) is a metric space, then (X, p) is not
necessarily a metric space.

Example 1.6 (Bota , Molnar, and Varga,[3]). Let X be a set with three elements. LetX = X; U X, such
that X has two elements and X; N X, = @. Define d: X X X - Rby

0, forx=y
d(x,y)={4, forx,y €X, and x # y
1, forxe X;,y€E X, and x #y
Then (X, d) is a b-metric space but not a metric space.

It is noted that the class of h-metric spaces is larger than the class of metric spaces. The following are the
concepts related to sequences which we shall use in the main result.

Definition 1.7(Bota ,Molnar, and Varga, [3]). Let (X, d) be a b-metric space. A sequence(x,)p=q in X is
said to converge to some x € X if for every € > 0 there exists a positive integer N such that
n >N =d(x,,x) < ¢

It is denoted by lim x, = x.

n —oo
Since(d(x,, , x))m=1is a sequence of positive real numbers, this definition suggests the convergence of
this sequence to zero is a characterization of convergent sequence in b-metric space. This is analogical to
a similar characterization in a metric space.

Definition 1.8 (Bota , Molnar, and Varga, [3]). Let (X, d) be a b-metric space. A sequence(x,)n=q in Xis
said to be a Cauchy sequence if for every € > 0 there exists a positive integer N such that
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mn >N = d(x,,x,) < &
Thus, just like in the case of metric spaces, we can equivalently say that (x,)y=, in X is a Cauchy
sequence if d(x,, ,x,) > 0 asm,n - .

Definition 1.9 (Bota , Molnar, and Varga, [3]). If a b-metric space(X, d) is such that every Cauchy
sequence in space(X, d) is convergent, then it is complete h-metric space.

Definition 1.10 (Cobzas, [5]). Let (X,d) be a b-metric space. Then, d is said to be continuous if for any
two convergent sequences (X, )y=q and(¥,) o=, of points in X, we have

lim d(x,,y,) =d(x,y),where lim x, =x and I|im y, =1y.
n —owo n —ow n —ow

Definition 1.11 (Panthi,[11]). A point u is a fixed point of the function f{x) if f{u) = u. In other words,
f(x) has aroot at u iff g(x) =x — f(x) has a fixed point at u.

2. A Ciritical Study of Kir and Kiziltunc's Generalization of Chatterjee's Fixed Point
Theorem (CFPT)

Kir and Kiziltunc[8] gave generalizations of Banach Fixed Point Theorem (BFPT), Kannan Fixed Point
Theorem (KFPT) and Chatterjee's Fixed Point Theorem (CFPT). These theorems have been listed
respectively as Theorem 2.1, Theorem 2.2 and Theorem 2.3 below, in the same order as they appear in
Kir and Kiziltunc[8].The theorems have been restructured here in order to make them consistent with the
notations that we have used in this paper.

Theorem 2.1 (Kir and Kiziltunc,[8]). Let (X, d) be a complete h-metric space with a triangular constant
b>1.LetT:X—>X be a function then there exists A > Osuch thatA € (0,1) and bA < 1 which also
satisfies

d(Tx,Ty) <A1d(x,y), Vx,y €X.
Then, T has a unique fixed point.

Theorem 2.2 (Kir and Kiziltunc,[8]).Let (X, d) be a complete h-metric space with a triangular constant
2

d(Tx,Ty) <Ald(x,Tx) +d(y,Ty)], Vx,y €X.
Then, T has a unique fixed point.

1
b>1.LetT: X — X be a function for which there exists A > Osuch that A € (0, —)Which also satisfies

Theorem 2.3 (Kir and Kiziltunc,[8]).Let (X, d) be a complete h-metric space with a triangular constant

1
b>1. Let T:X — X be a function for which there exists 4 > 0 be such that bA € (0, E)which also

satisfies
d(Tx,Ty) < A[d(x,Ty) +d(y,Tx)] Vx,y €X.
Then, T has a unique fixed point.

These theorems had one more condition, which was actually a hint to construct a Cauchy sequence for the
proof, rather than a condition that was needed to construct a proof. It was to choose any x, € X and
construct a sequence (xX,)meo by X, = T"x, . This sequence is then shown to be a Cauchy sequence
using the conditions in the theorems. This construction has not been overlooked in this paper.

The proof of the third theorem had a flaw and the proof of (x,)n=obeing a Cauchy sequence has some
unstated assumptions as below.
a) The flaw is that the step marked in their proof has been obtained by assuming the
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continuity of the b-metric d. The theorem doesn't state that condition and it has been illustrated by
Cobzas|5] that a h-metric is not necessarily continuous.

b) The proof of (x,)y=o being a Cauchy sequence is said to be followed by using a similar method
as used in the proof of Theorem 2.1 and Theorem 2.2 .Theorem 2.2 suggests the method similar
to that of Theorem 2.1. So, basically the authors want us to use the procedure as used in Theorem
2.1. But while doing so, we obtain

Ay, xp) < bk™[1 + (bk) + (bk)? + -+ (k)" ™ 1] d(x , x1)

The authors have assumed that bk < 1, which leads to the conclusion that the geometric series
on the right was convergent and therefore the sequence was Cauchy.

Here, k= b2 But Jifwehave b = 20and A = %‘? In such a case, we have

1-bA
1
_ b2 (400X 20
T 1-b1 _L T3
a1-2

bk >1.

In this case, the convergence of the said geometric sequence will not follow at all. The authors have not
considered or mentioned such possibilities, which makes the proof incomplete.

Here, we wish to alter the conditions prescribed by Theorem 2.3 so that the new conditions would
generalize Chatterjee's Fixed Point Theorem studied in [4] to a b-metric space and has no such
questionable assumptions and flaws.

3. Main Result

After critically analyzing the proof of Theorem 2.3, it was found that to fix the flaw of continuity of d, we
need the assumption of continuity of d. And, to obtain a Cauchy sequence as we wished, it sufficed to

1
take bk < 1.If bk < 1, then it was found that we can drop the original condition that bA E(O, E) The

necessary “corrections" were found to be trivial. This is stated and proved formally in Theorem 3.1.

Theorem 3.1.Let (X,d) be a complete b-metric space with a continuous b-metric d and a triangular

2
constant b>1. Let T: X — X be a function for which there exists A > 0 such that 0 < % < 1 which
also satisfies
d(Tx,Ty) < 2[d(x,Ty) +d(y,Tx)] Vx,y €X.
Then, T has a unique fixed point.

Proof. Let the given condition hold.
2
Since < < 1and b?2 > 0, it follows that 1 — b2 > 0.
Consequently, we get
bA b?2

0<1—b/1<1—b/1<

1

To construct a Cauchy sequence, let s € X be arbitrary. Define a sequence (x;)n—g by x, = T"s
so that, in general we get x,,,1 = Tx,. This sequence will be shown to be a Cauchy sequence. Letn € N.
Then
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d(xp , Xn41) = d(Txp_q,Txy)
<2 [d(xn—l 'Txn) + d(xn ’ Txn—l)]
=1 d(xn—l 'Txn) [ Xn = Txn—l]
=1 d(xn—l 'xn+1) [ Xn+1 = Txn]

< bA [d(xn—l :xn) + d(xn ’ xn+1)]
which implies that

(1 - bl) d(xn rxn+1) <bi d(xn—l :xn)
and therefore,

d(Xn , Xns1) < kd(xp_1, %)
because 1 — bA > 0. Using this relation recursively, we get

d(xn 'xn+1) < knd(s ,X1)

bA
where,k = o1

Now, letm,n € Nyn > mand for0 < bk < 1, it follows that
d(xm,xp) < b[dCem , Xme1) + d(Xmer, X))
< b[k™d(s,x1) + d(xm+1, Xn)]
bk™d(s,x1) + b d(Xme1, Xpn)
< bk™d(s,x;) + b2k™*1d(s,x;) + b?d(xpmyz, Xn)

IA

bk™[1 + (bk) + (bk)? + -+ + (bk)"™ 1] d(s , x;)
_ 1—(bk)"™
= k™ [—1_ o ] d(s, %)

< bk™ [1_(1bk)] d(s,x,)

So, (X )m=o is a Cauchy sequence since d(x,, ,x,) —0as m,n — .

Thus, by completeness of X, there exists x € X such that lim x, = x.Now, we show that x is a fixed
n —oo

point of 7. For n € N, we have
d(x,Tx) < b[d(x,Xp11) + d(Xp41,TX)]

= bd(x,xp41) + bd(Tx, ,Tx)]

< bd(x,xp41) + bAd(x,Tx,) + bAd(x,,Tx)

bd(x,xp41) + bAd(x,x,41) + bAd(x,,Tx)

Due to the continuity of d, we get
d(x,,Tx) > d(x,Tx)asn — oo,

So taking limits asn — oo in above inequality, we get

d(x,Tx) < bAd(x,Tx).
Now,as1— bA >0, wehave

d(x,Tx) < bAd(x,Tx)

= (1 —-bA)d(x,Tx) <0

=d(xTx) <0

= d(x,Tx) =0.
Therefore, Tx = x, which makes x a fixed point of 7.

To establish the uniqueness, let y be a different fixed point than x so that we havey = Ty. As x # y,
we haved(x,y ) > 0. Since x and y are fixed points of 7, we have

d(x,Ty) = d(y,Tx) = d(x,y).
So, we obtain
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d(x,y) d(Tx,Ty)
< 2[d(x,Ty) +d(y, Tx)]
< 22d(x,y)

b
Now,as0<1_—b/1< 1.

It follows that bA < 1 — bA and so, 2bA < 1.
Since b >1, it follows that 24 < 2bA < 1.

Therefore, the last inequality reduces to d(x,y) < d(x,y).This is absurd. Hence, x is a unique fixed
point of 7.

Conclusion

In this paper, we have introduced some existing properties of b-metric space as the usual notion of a
metric space. Besides this, we have studied a generalization of Chatterjee's Fixed Point Theorem in b-
metric space. In fact, this result can be used for further research work in fixed point theory in Metric
space and extends many other authors' existing works.
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Abstract: 4 student's high school performance is crucial for engineering admission in Nepal. Machine
learning-based predictive models can provide valuable insights. This study aims to predict engineering
entrance exam scores and admission probability based on high school academic records. In this study, we
have used exam data from National Examination Board (NEB) and Institute of Engineering (IOE)
containing grades, scores and results for over 11,000 students. Logistic Regression (LR) and Long-Short
Term Memory (LSTM) models are implemented to predict pass/fail status and year-wise entrance score
forecasting, respectively. In addition, the Prophet model analyzed trends in entrance score threshold
averaging. The result shows that the logistic model achieved 97% accuracy in predicting pass/fail status
and the LSTM network attained reasonable accuracy between 65-85% for score forecasting. The Prophet
model accurately projected decreasing trends in threshold scores and admitted students' averages. Our
model analyses provides actionable insights into student outcomes, complex patterns, and changing trends.
Proactive interventions through upgraded curriculum, teacher training etc. could reverse declining
enrolment.

Keywords: Education data mining, Intake prediction, Logistic regression, Long Short-Term Memory
(LSTM), Student performance

1. Introduction

In the realm of education, understanding and enhancing student performance is pivotal for
fostering national development and stimulating economic growth. Educational institutions amass
extensive datasets encompassing student activities, routines, backgrounds, and academic histories.
However, a considerable portion of this data remains underutilized, primarily due to its sheer volume
and complexity, as well as the institutions' capacity constraints in processing it. To harness the
potential of this data for predictive and prescriptive purposes, the integration of advanced information
technologies, notably data mining and machine learning, is imperative. The data on engineering
entrance exam applicants and results over the past 5 years reveals concerning declines in both student
interest and performance. Specifically, the number of applicants has steadily dropped from over
12,000 in 2017 to just 9,404 in 2022, indicative of reducing the popularity of engineering programs.
However, even among those appearing for the exams, competitiveness and preparedness have
worsened. The entrance score threshold has fallen from 52 down to 38 and average scores have
declined from nearly 70 to around 62. This consistent downward trend in cut off marks and admitted
student performance highlights deficiencies in pre-engineering preparation at the high school level.
Students seem less academically equipped to handle the rigor of the entrance exams compared to
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previous years. The reasons could include deteriorating quality of schooling, increased opportunities
abroad, or other competing fields attracting talent. Nonetheless, the data signals the need for
interventions to boost interest in engineering and bolster high school teaching and resources.
Addressing these gaps proactively through counselling, upgraded curriculum, teacher training, etc.
can help reverse the concerning enrolment patterns. More effective high school preparation will
translate into increased applicants and better performance.

This paper aims to bridge the existing knowledge gap between high school and engineering
education by developing predictive models based on high school academic records. The scope
includes students applying for engineering programs at the Institute of Engineering under Tribhuvan
University. The objectives are to predict entrance exam scores and admission probability using
machine learning techniques. The research questions are: 1) How accurately can high school
performance predict engineering entrance outcomes? 2) What are the capabilities of different machine
learning models for this predictive task? Machine learning techniques like logistic regression and
LSTM networks are applied to high school and entrance datasets to uncover patterns and trends that
can enable data-driven decision-making around admissions.

Data mining, also known as knowledge discovery in databases (KDD), employs a multitude
of techniques and algorithms to extract valuable insights from vast datasets. When applied to the
educational domain, termed as "educational data mining," these techniques can unveil patterns and
correlations previously unseen. Algorithms such as decision trees, neural networks, linear regression,
and random forests are particularly adept at predicting outcomes based on historical data, enabling
educational stakeholders to anticipate student performance trends and act proactively.

For instance, a student's performance in high school, analysed holistically across various
parameters-grade-wise and subject-wise results, demographics, school type, and more-can serve as a
predictive indicator of their potential success in higher education. Especially in contexts where high
school graduates aspire for competitive admissions in tertiary institutions, such predictive models can
be invaluable. As a case in point, for admissions to engineering programs under Tribhuvan University,
students are assessed through a rigorous computer-based entrance examination by the Institute of
Engineering, which evaluates proficiency in subjects like Mathematics, Physics, Chemistry, and
English, all grounded in the high school curriculum. Thus, a student's high school academic record
becomes a significant predictor of their entrance score and subsequent success in the program.

This paper aims to bridge the existing knowledge gap between high school and engineering
education by developing a predictive model based on high school academic records. Such a model can
assist in identifying students at risk, guiding admission decisions, and formulating strategies to ensure
every student's optimal academic progression.

2. Background Study

Predicting student entrance scores based on prior academic performance utilizes information
extraction. Analysing student data, including exam scores, enables institutions to develop predictive
models for identifying students needing extra support. Educational data mining explores predictive models
for academic performance using machine learning techniques (Chen et al.,[2]). Educational institutions are
amassing extensive datasets encompassing student activities, attendance patterns, geographical locations,
family backgrounds, and more. Nevertheless, this wealth of data typically gets harnessed for generating
basic queries and conventional reports that seldom reach the appropriate individuals in a timely manner to
enable informed decision-making (Kabakchieva, [8]). Dien et al. study deep learning methods for student
performance prediction, considering data preprocessing strategies (Dien et al., [4]). In Nepal, research
explores hyper-parameter tuning for student grade prediction using neural networks (Rimal et al., [14]).
GPA prediction employs Boruta algorithm and random forest with single and multiple-layer models.
Artificial neural networks forecast student performance. Educational data mining evaluates classification
algorithms for student success prediction(Gochhait & Rimal, [7]; Meghji et al., [10]; Naser et al., [11]).
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Machine learning is crucial for education, enhancing retention, performance prediction, and
curriculum design. Waheed et al. demonstrate deep neural networks outperform logistic regression and
support vector machines. A hybrid 2D CNN model predicts academic achievement. A deep neural network
predicts student performance effectively. High school GPA predicts college outcomes and future income.
Prophet forecasting aids resource allocation using enrolment data (Bendangnuksung & Prabu, [1];
Enughwure & Ogbise, [5]; Marte, [9]; Patayon & Crisostomo, [12]; Poudyal et al., [13]; Waheed et al.,
[15]). Prophet methodology is a time series forecasting approach that uses a decomposable model with
three main components: trend, seasonality, and holidays (Daraghmeh et al., [3]).To our knowledge, such
modelling is not found in literature in the mentioned scope, thus this research attempts the same using the
following methodology.

3. Methodology

The study methodology involved collecting student academic records from the National Examination
Board (NEB) and Institute of Engineering (IOE) entrance exams. The NEB data contained high school
(Grade 10 and 12) grades and GPAs, while the IOE data had entrance registration details and exam scores.
After joining the datasets, feature extraction and selection was done to identify the most relevant input
variables like PCL subject scores.

Data pre-processing steps included handling missing values, removing outliers, encoding categorical
variables, and pivoting to summarize subject marks. The final dataset contained features such as academic
year, gender, NEB grades, IOE entrance scores and results for over 11000 students. Exploratory analysis
using summary statistics and visualizations provided insights into score distributions.The processed data
was split 70:30 into train and test sets. Three models were developed - logistic regression to predict
pass/fail, LSTM networks for score regression, and Facebook Prophet for result trend forecasting. The
logistic regression hyperparameters were tuned using grid search. The LSTM model architecture had input,
hidden and output layers to capture temporal relationships. Prophet decomposed the time series into trend,
seasonal and holiday components.

The models were implemented in Python using libraries like Pandas, Scikit-learn, Keras and
Tensor Flow. Model training and performance evaluation was done on a Windows system with Core
17 processor and 16GB RAM. Key metrics like accuracy, RMSE and prediction plots were used to
analyse model results.

Data Collection Feature Selection
Preprocessing

W

} Logistic Regression f

Reporting
and
Visualizing
Predictive
Qutcome

Long short-term memory (LSTM) J-

I Prophet }

Figure 1 Methodology followed in the research
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Model Development& Training

Three models were developed - logistic regression, LSTM networks, and Facebook Prophet.
Logistic regression was implemented for binary classification to predict exam pass/fail. The model was
trained by optimizing a cost function using gradient descent. Data preprocessing selected relevant features
like PCL grades.In contrast to ordinary regression that minimizes the sum of squared errors to choose
parameters, logistic regression selects parameters that maximize the probability of observing the sample
values.Logistic regression generates the coefficients (and its standard errors and significance levels) of a
formula to predict a logit transformation of the probability of presence of the characteristic of interest:

logit (p) = bo+ b X1+ b )Xo+ b:3X+...+ biX, (1)

where p is the probability of presence of the characteristic of interest, b; is the weightage factor of

inputs X;. The logit transformation is defined as the logged odds:

probability of presence of characteristic

|4
odds = — = — —
1-p probability of absence of characteristic

logit (p) = In(odds)

LSTM networks were designed for score regression, with input, hidden and output layers to
capture temporal patterns. The LSTM architecture used sequences of past observations to make multi-step
forecasts. The LSTM model had an input layer with 18 units corresponding to the 18 feature variables.
This fed into an LSTM layer with 150 neural network units to capture temporal dependencies. A dense
output layer with a single unit made a regression prediction of the exam score. The model was trained
using the Adam optimization algorithm to minimize the binary cross-entropy loss function. Evaluation
metrics calculated were prediction accuracy and mean squared error (MSE) on a held-out test set. This
LSTM architecture with tuned hyperparameters was designed to leverage sequence data and learn complex
relationships between past academic performance and future examscores.

2

OO

Figure 2 Long Short-Term Memory (LSTM) Architecture(fdeloche, [6])

The logistic regression model estimated the probability of passing the exam using the sigmoid
function. Hyperparameters were tuned via grid search for optimal performance. The LSTM model was
built using the Keras Sequential API, with layers for LSTM cells, dropout, dense connections, and
activations. Binary cross-entropy loss and the Adam optimizer were used for training over multiple epochs.
For new observations, the trained LSTM model generated score predictions.

The Prophet model was applied for time series forecasting of engineering entrance exam pass
thresholds and average scores. It decomposes the time series into trend, seasonality, holidays, and noise
components. The trend component models non-periodic changes using the beta parameter. Prophet
provided interpretable forecasts along with uncertainty intervals for the time series data. Seasonality is
captured by the delta parameter to incorporate periodic patterns. One-off events are accounted for by the
trend_params parameter for holidays. The sigma obs parameter represents noise or random variability.
The model is represented by the equation:

Y(t) = g(t) + s(t) + h(t) + e(t), 3)
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where g(f) is trend, s(f) is seasonality, A(¢) is holidays, and e(?) is noiseKey estimated parameters as,
slope k£ =-0.01304175, intercept m = 1.02369371,noise sigma_obs = 0.00457194.

Prophet automatically detected change points in the time series and modelled trend nonlinearity.It
incorporated uncertainty estimates in its forecasts. The effects of holidays were captured using additional
delta parameters in the model. Regularization helped avoid overfitting the training data. Overall, the three
complementary models provided insights into exam outcomes, score patterns, and temporal trends.

4. Results and Discussion

The analysis demonstrated the capability of machine learning techniques for predictive modelling
of engineering entrance exam outcomes. Correlation analysis using heatmaps revealed entrance scores are
positively associated with high school grades. Heatmap showed entrance exam scores correlated positively
with SEE (0.43) and PCL (0.39) results. Entrance math score had very strong correlation (0.89) with final
entrance score, while PCL math correlation was weaker (0.19).Logistic regression achieved high accuracy
of 97% in classifying pass versus fail status, as evidenced by ROC curve, precision and recall metrics.
LSTM networks attained reasonable accuracy levels between 65-85% for forecasting entrance scores on a
yearly basis, though performance declined in later years likely due to irrelevant training data and potential
COVID-19 impacts.

Facebook Prophet excelled at forecasting decreasing temporal trends in both the entrance score
threshold and average scores of admitted candidates based on historical data. Prophet model accurately
forecasted decreasing trend in entrance score thresholds, from 52 in 2017 to 38 in 2022.Prophet also
predicted declining trend in average scores of eligible candidates, from 69.60 in 2017 to 61.71 in 2022.For
threshold forecasting, Prophet model achieved MAE of 3.279, MSE of 13.820, and RMSE of 3.717.For
average score forecasting, Prophet model obtained MAE of 2.694, MSE of 8.484, and RMSE of
2.912.Prophet obtained mean absolute errors around 3 for threshold and 2.7 for average score predictions.
Overall, the complementarity of logistic regression, LSTM and Prophet models provided insights into
student outcomes, complex score patterns, and changing trends to support data-driven decision making
around admissions.

Logistic Regression

Table 1. Confusion matrix for performance of Logistic Regression model

Predicted (Yes) Predicted (No)
Actual (Yes) TP=1495 FN=40
Actual (No) FP=27 TN=780
Receiver operating characteristic I3 1.

—

f/

086

True Positive Rate

; —— Logistic Regression (area = 0.94)
00 -©
0.0 0.2 04 06 0.8 1.0
False Positive Rate

Figure 3 AUC ROC curve for performance of Logistic Regression
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Iteration v/s Accuracy and Precision
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Figure 4. [teration wise precision and accuracy curve for performance of Logistic Regression

Figure 4 depicts precision over training iterations for the logistic regression model, showing a
high precision consistently maintained between 0.97-0.99. This highlights the model's capability for
accurate positive predictions throughout the training process. A flat accuracy line of 0.97 across
iterations, indicating an unchanging high accuracy rapidly attained within the first few iterations,
without improvement from extended training.

LSTM

Table 2 Actual and predicted (using LSTM) values of entrance score for randomly selected students

SN Actual Entrance Score (A) | Predicted Entrance Score (P) | Ratio =P/A
1 103 77.88 0.756
2 61.9 51.28 0.828
3 79.5 62.6 0.787
4 46.5 44.04 0.947
5 89 73.65 0.827
6 113.5 98.07 0.864
7 129 98.97 0.767
8 99.5 84.15 0.845

Actual Score vs Predicted Score

140
120
100

2 80
S
S 60
4 I
2
0
1 2 3 4 5 6 7 8

B Pred. ScongseMAGtisal Score

o o

Figure 5 Plot of actual and predicted values of entrance score from table 2
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Figure 5 plots the actual versus predicted entrance scores for 8 sample students to demonstrate the
LSTM model's score forecasting capability. The predicted scores align fairly closely to the actual values,
with some minor variability. This indicates the LSTM network can reasonably predict entrance exam
performance for individual students based on their academic history, though some variance persists

between actual and predicted scores.

— y.pred
— yleal

02

[ 500 1000 1600 2000 200 000 ¥%00
Data Points in the Test Set

Figure 6 Prediction Plot: Prediction Values & actual values using LSTM

Figure 6 visually evaluates the trained LSTM model's overall predictive accuracy on the test set
through a regression plot. The tight fit of predicted scores to the ideal y = x line and high R-squared of 0.89
highlight excellent correlation between true and predicted outcomes. This shows the LSTM model attains
strong predictive capabilities, able to generalize well to new unseen data.

Prophet

Table 3 Historical records of year wise Threshold Score and Average Score of Eligible Applicants

Year 2017 2018 | 2019 2020 | 2021 | 2022
No of Applicants 12309 11184 | NA 12708 | 11037 | 9404
No of Eligible Candidates 6377 6335 | NA 6725 | 6879 | 6722
Entrance Threshold Score 52 49 NA 46 42 38

Average Score of Eligible Candidates 69.60 68.42 | NA 65.98 | 64.52 | 61.71

(g ]

50 -

40 1

trend

20 1

10 4

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
e

Figure 7 Trend of Entrance Threshold Score as forecasted by Prophet Model
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Figure 8: Trend of Entrance Average Score as forecasted by Prophet Model

Figures 7 and 8 utilize Facebook Prophet to forecast temporal trends in the engineering
entrance exam threshold cut-off and average scores over a 5-year period. Prophet projects decreasing
trajectories for both metrics, implying worsening competitiveness and academic preparedness among
aspirants over time. The accurate capture of these downward trends demonstrates Prophet's

effectiveness at analysing historical time series data to reveal insights into changing exam patterns.
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Figure 9: Actual vs Predicted Entrance Threshold Score over Time
Lastly, Figures 9 and 10 compare Prophet's predicted threshold and average scores to the actual
values over time. The close alignment to the real data with minor errors illustrates Prophet's ability to
precisely forecast the trends and fluctuations in these key exam metrics. The accurate predictions highlight
the model's suitability for making data-driven projections to support planning around admission

requirements and applicant preparedness.
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Figure 10: Actual vs Predicted Entrance Average Score over Time
5. Conclusion

The logistic regression model demonstrated satisfactory performance for predicting engineering
admission probability based on high school results, attaining an R-score of 0.8733 and accuracy of 97.13%.
These metrics indicate the model's reliability for estimating intake likelihood. Meanwhile, the LSTM network
exhibited potential for high prediction accuracy up to 85% for forecasting engineering entrance scores using
prior academic records. However, model accuracy may be influenced by various factors including student
behaviours, backgrounds, activities, and potential impacts of events like COVID-19. Hence, the LSTM model
could also achieve a lower accuracy of 65% for a given year. Both approaches can be justified based on their
respective evaluation metrics. The Prophet model accurately forecasted declining future trends in entrance
threshold scores and average scores. The findings provide insights for policymakers and educators regarding
performance gaps across education levels. Addressing such gaps through improved instruction quality and
resource allocation is critical. Entrance authorities need to examine reasons for the consistent threshold and
score declines each year, implying reduced engineering education interest and substandard schooling.

This study centred solely on high school students applying for engineering programs at the
Institute of Engineering. Student behaviours, backgrounds, and geographic parameters were not
considered, which may influence performance due to educational access disparities. Future work should
broaden the scope across other academic domains like medicine, sciences, and international education
trends. Incorporating supplemental factors such as socioeconomics, culture, family settings, and extra-
curriculars could enrich the research. Overall, this study offers a foundation for future efforts to expand
predictive modelling and provide enhanced insights into student transitions to higher education. A
multifaceted approach accounting for a wider array of student attributes and environments would further
advance this research domain.

In summary, machine learning techniques like logistic regression and LSTM networks are
recommended for admission screening and score prediction using high school records. Prophet aids in
projecting threshold trends for planning. Overall, these data-driven methods offer actionable insights to
enhance student outcomes through early intervention and streamlined admission processes.
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Abstract: Considering the risk connected with the expectation of life at retirement as a result of the
unavailable actuarially modeled life annuity to price life insurance products, this study explores the gains
in an annuity that would be advantageous to lives who choose life annuity option at retirement under
defined condition of actuarially fair annuity value. When continuous parsimonious parametric mortality
intensities are Makehamised, then the life table functions used in computing the actuarial present values
of the fully continuous whole life insurance and the fully continuous life annuity could be expressed in
terms of special functions such as Gamma, Incomplete lower Gamma and Incomplete upper Gamma
functions for a homogeneous insured population. In this study, the objective is to
(1) Construct mathematical estimations through single life parameterization through algebraic technique
(11) Apply the mean value theorem to construct modification theorems under the framework of policy alterations
(1) Employ the properties of the aforementioned special functions to construct estimations which could
permit us to compute closed-form expressions for continuous whole life insurance and continuous
whole life expectancy applicable in classical life contingencies.
(iv) Apply the commutation function to develop a mathematical model for the employer liability.
From our results, Gradshteyn and Ryzhik’s analytic integral technique presents an advanced technique
for computing life insurance biometric functions and ignores the need for any algorithmic numerical
procedures.

Keywords: GM (1, 2) , Whole life insurance, whole life annuity, Gradshteyn and Ryzhik’s integral,
Gamma functions.
1. Introduction to GM (m,n) Class
In human mortality, intensity is applied to define the trends of mortality where the management of life
office assets and liability depend on the death rate of the insured Siswono, Azmi, and Syaifudin(2021).

Following Lageras, 2009; Missov and Lennart (2013), continuous parametric functions such as
assume that the mortality rate increases as age advances. However, the intensity law adds an age-
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independent parameter that is not associated with senescence. In human populations, issues connected
with overestimation in observed death rates at senescence in mortality trajectories aroused the study of
continuous parsimonious parametric mortality models which are responsible for the unobserved
heterogeneity and consequently, the cohort population is then partitioned into strata in accordance with an
observed measure of insured’s exposure to the risk of death. However, in Dragan(2022), we have
observed that the methods of generating mortality tables were initially developed for cohorts whose
members have varying characteristics in connection with longevity measures.

Numerical Computation of the GM (1,2) Parameters

In Debon, Montes and Sala (2005); Debon, Montes and Sala (2005), the GM (1, 2) is defined as
u, =p+GH* (1
Let { =e” andG =—-log,dlog, H,{ >0 andd >0

The right hand side must be multiplied by (—1) throughout by definition of the force of mortality

U, :—loge§+(— loge5logeH) * 2)
__Ldl, __dlogl, 3)
BT dx
dlog, [
L. =_%= ~log, ¢ +(~log, Slog, H)H" (4)
X
dloge . x
J I log,¢ +(—log, Slog, H)H dx+K 5)

X

log, I, = xlog, ¢ +(log, 5log, H) | ", log, 2 (6)

og, H

K =log, A; taking K as the constant of integration

log, I, =log, {* +(log, Slog, H) IOHX +log, A (7)

log, I, =log, & +(log, S)H" +log, A (8)

where log, 4, is the constant of integration.

log, /. =log, ¢* + (1og Pl )+ log, A =log, AC*6"" )

Now, equating both sides, we have

I, =Ag6" :»Tlmumds =576 (10)
0

Note that the age of the insured is chronological. We can take four of such age with equal intervals at the

points {x +0,x+s,x+2s,x+ 3s} to have four systems of simultaneous equations

18
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L, =256 (10
[y = AL (12)
Ly = AL (13)

xt+s oH™ s H™™ o|HS-1
ot A6 O £ =§S5H( | (14)
lx /flé/,ré‘H é‘H

Considering 4 consecutive values of function log, /,

log, I, =xlog, £ +(log, §)H* +log, A (15)
log, .., =(x+s)log, ¢+ (log, §)H™ +log, A (16)
log, I, =(x+2s)log, ¢ +(log, §)H"™* +log, A (17)
log, .., = (x+3s)log, ¢ +(log, §)H*™ +log, A (18)
log, 1., —log, 1. =(x+s)log, ¢ +(log, §) H*" +log, A

—xlog, ¢ +(log, §) H* +log, A (19
log, 1., —log, I, = (slog, &)+ (log, 5)H H* —(log, 5)H* (20)
log, 1., —log, 1, =slog, & + H'(H* ~1)log, & 1)
log, I,,,, —log, I, =slog, & +H" (H* ~1)log, & (22)
log, I.,,, —log, 1,,,, =slog, & + H*> (H* ~1)log, & (23)
log, 1, —2log, [, +log, [ =(x+2s)log, & +(log, &) H*** +log, A —

2[ (x+5)(log, &) +(log, 8) H* +log, A |+x(log, &) +(log, §) H* +(log, A) 4
log, 1., —2log, 1., +log, I =xlog, ¢ +2slog,  +(log, §) H*** +log, 2 o3)
~2xlog, { —2slog, & —2(log, §) H*** —2log, A+ xlog, ¢ +(log, §) H* +log,

log, 1,,,,—2log, L., +log, I, =(log, §) H** ~2(log, §) """ +(log, 5) H"  (26)
log, /,.,, —2log,1,., +log, I, =(log, §) H" | H* —2H" +1] 27)
Let U = H°, then

log, /,.,, —2log, I, +log, I, = (log, §)U[U* =2U" +1] (28)
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log, 1., —2log, I, +log, . =(log,§)U (U ~1)’ (29)
2

log, /., —2log, 1., +log, I, = (log, ) H* (H" ~1) (30)

Similarly,

log, I .5, —2log, [, +log, I . =(x+3s)log,{ +(log, §)H™™ +log, A

—2[(x+ 2s)log, ¢ +(log, §)H* +log, /1] +(x+s)log, ¢ +(log, §) H™ +log, A

log, [ .5, —2log, [, +log, [ =xlog,{ +3slog, & +(log, §) H™™ +log, A

—2xlog, ¢ —4slog, ¢ —2(log, ) H*™* —2log, A+ xlog, { +slog, ¢ +(log, §)H**
+log, A

log, l,.;, —2log, I, +log, 1, =(log, &) H"™ ~2(log, §) H*"™ +(log, ) H™"
log, [, —2log, I ,, +log, [ =(log,6)H"" [st -2H" + 1]
loge Ix+3s - 210ge Zx+25 + loge lx+s = HXJrS (P[Y - 1)2 loge 5 (35)
xX+s s 2

loge Zx+3s — 2 loge l‘c+23 + loge lx+s B H (H B 1) lOge 5 X

2 = 5 =H (36)

loge lx+2s - Zloge ZX‘FS + loge ZX HX (HS _1) loge 5
Let log,/ ,,, —2log, [ ., +log, /| =« (37)
loge lx+3s - 2 loge lx+2s + loge lx+s = ﬂ (38)
HY(H* =1 log, 5 = (39)
2

H* (Hf -1) log, 5=/ (40)
Taking logarithms of the two equations above, we have
xlogeH+2loge(HS —1)+10geloge5:10gea (41)
(x + S)loge H+ 210gE(HS - 1)+ log,log, 0 =log, B (42)

Subtracting equation (41) from(42), we obtain
xlog, H +slog, H + 210g(HS ~ 1)+ log, log, 6 —xlog, H —2log, (H“ - 1)— log, log, 0
- log, B~ log,

slog, H =log, B—log, « (44)
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14
log,
1 -1 ¢
loge H = 0og, ﬂ 0g, — a (45)
s s
xlog, H + 210ge(HS - 1)+ log,log, 0 =log, (46)
substitute (45) into(41)
x. B s
—loge—+210ge(H —1)+10geloge5=logea (47)
s a
x, B s
log, log, o =log, o ——log, ——2log, (H —l) (48)
s a
log, [loge 5] =log, o +log, (ﬁ] ' +log, (HS —1)_2 =log, (ﬁj ' (HS —1)_2 (49)
a a
. ﬂ _T; s 2
Equation (49) then becomeslog, 6 = | — (H - 1) (50)
a
xlogeH+210ge(Hs —1)+10g€10ge5=10g€a (51)
Eqn (46) is re-expressed as
xlog, H + loge(H“' - 1)+ log, log, 6 =log, o — logE(H“' - 1) (52)
a
log,| H*(H’ -1)log, d |=log, —— (53)
g [ ( ) g } g (HS _1)
a
H*\H* —1)log, 0 = 54
(1" ~1og, 6= 7 (54)
log,/ . —log, [ =slog, {+ H'”(Hs - l)loge 0 (55)
Substituting equation (54) in (55), we have
a
log,/ ., —log, [ =slog, &+ (56)
g g g.¢ (i 1)
slog, & =log, I —log, [ — 2% (57)
ge ge xX+s g@ X HS _1
log, /., ~log. 1, ~ .
log, ¢ = - (58)
s

Recall from (52) that xlog, H + loge(Hs - 1)+ log,log, 0 =log, a — loge(Hs - 1) (59)
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xlog, H +log,log, o =log, o +log, (HS - 1)_2 (60)
log, [Hx log, 5]zlogea(HS —1)_2 (61)
H*log, 5 =a(H’ -1)” (62)
a -2

H* = H' -1 63

log, 5< ) ()
Recall that xlog, & + (loge 5)Hx +log, A =log, I, (64)
log, A=log, ! —xlog, { — (logé') * (65)
Inserting (58), (63) into (64)

loge l)C+S‘ _loge X - a
‘ H' -1 s )2
log, A =log, I, —x —a(H* -1) (66)
s
log.&=p
o
log,/ . —lo -
ge X+s ge X HS _1
p= (67)
s
and by the initial definition G = —log, dlog, H
log, — B é
recalllog, H =——% =log, (—] (68)
s a
!

i = (ﬁj“ (69)

a

—log, o
Note that G = Mloge I (70)
s o
a =)
And H* = H' -1 71
log, 5( ) 7h

U, = p+ GH " becomes
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log, 1., —log,I .
e "x+s e X HS _1 _10 5 f
= ) {( )16 eﬁ}(ﬁj 72)
S s
_log S @
‘ lx HS _1 f —1 5
" (#-1) +(ﬁj( 08 9) . B -
s a s
- a
log,(,P,)- x
e\s” x s B _1 5
u = "ol [ﬁj (clog. 0)y £ (74)
s a s a
i x(zrs [04
log, £*6" 1) _ x
e s B —l
“, = e (ﬁj Cloe. 9)yo £ (75)
s a N a
1
Recall H = (ﬁjb = H' = (ﬁj (76)
o a
So when s = X, we have
- (ﬁj (77)
o
xX+s S 2
loge lx+33 - Zloge lx+25 + loge lx+s — H (H _1) lOge 5 — Hx — (ﬁj (78)
log, /..o, =2log, L. +log, I, f(H* -1) log, o
Inserting Equation (37) and (38) into equation (78), we have
_log 4,2511*(11‘71) B a
‘ H’ -1
(|
N
Hence, we obtain 1, = (79)

éj: (_ loge 5) 10 (loge lx+3s - 2 loge lx+2s loge lx+s)
(24

s ¢ log,l,., —2log, I +log,I,

x+2s
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lo Sé‘H"(HS—l) o
g.¢ T 1
H. = +
S
(80)
( ﬁjs (~log, &) log (loge ACESTT Z2log, AT ST +log, A ST )
a s © log, ACTESTT —2log, ACHST +log, AT ST
o Sé,HX(H‘—l) . «a
ge é, (HY _ 1)
ﬂx = +
s
x+3s GH3S x+2s oH™? xt+s oH™ (81)
log, A" 70" —log, AC™°6"  +log, AL™6
( ﬂj: (~log.5)  |-log, AL
- Oge x+3s X+s x
a s log, AC8" " ~log, AL 6™ +log, AT 6"
—log, AL
1o Sé‘HX( —1) _ 24
g.¢ 71
H, = +
s
+3s 81
/14/)&355H /14/)&35H ( a)
X loge x+2s + loge L he ggre2s
(ﬂ J (- log, 8), log, A5™"6" igs”
— 0g. x+3s B
104 Ky log /»{(é'x+2s5H IOge /Ié/xé‘H
€ IOge A«é/XJrSéH ' € /*lé/thévH“'“
log 4135H (H —1) o
¢ H' -1
H, = +
s
' ] (82)
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Materials and Methods

Let o =log, (1 +1i ) be the force of interest where i is the valuation interest rate

Following Neil (1979); Chowdhury (2012); Kara (2021); Patricio, Castellares and Queiroz (2023), the
continuous whole life annuity. Suppose, ( is the maximum age in a mortality table, then

_ Q—x
E(aﬂ) =d. :ll J. VI, dt (83)
x 0
_ Q-x
a.= [ e (Pt (84)
0
p— Q_x X t
ax = g”é'H (# _l)e"”dt (85)

(H”LHX) 3 e*m 15(HM)

thefcrt _ efcrté/zé-H‘Y(HLl) — efatézta 5HX (86)
e ot i (H) exp(H'H log, o +tlog, (e ¢
t})xefal — efaté/lé‘H (H 1) — € ig — ( 5]_[‘( ( )) (87)
Observe that H' = %11 = g% 1! (88)
v oot et ) exp((e% ) (H xlog, g)+tlog, e ¢
tﬂe_m _ e_o—té,té‘H (1 1) _e i[;g _ (( )( i ) ) (89)
. exp((e”"ng )(H" xlog, 5) +tlog, e*"g”)
aAx = . dt (90)
0 5"
n
Let n=tlog H = =t 91
n=tlog H =3 O
When 1 =0, =0
When ¢ =Q—x, n=(Q-x)log, H =log, H@) (92)
‘;—’Z =log, H = dr = log, Hd = - d”H = dt (93)
0g,
L g exp(e” (H)r xlog, 5) + | n I xlog, e”{} i
ax = < 94
! 5" log, H .
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(@)

- I o . n .

ax = (loge H)(&HX ) ! exp (e” x H" xlog, §)+ log 71 xlog, e g”]dn
- 1 e e X loge efo_é’

dx = eXp (H Xloge5)e”+ lOg—H nan

(log, H)(8" ) 3

Following Gradshteyn and Ryzhik (n.d, pp. 356, formula, E71147 (37))
Iexp(—aey —EY)dY = a‘5F<—5, a)

0

e

Where F() is the gamma function

a=a+ib, i=\/—_l anda>OandaSRe|a|

_ 1 log, H

(@)
. log, e °¢
ax:(logeH)(éHx) ! exp(_(_H Xlogeg)en_[_%y}dn

K log, e ¢

exp| —(—-H" xlog o)e" —| ——=——= =
! p[( £.%) ( log, H ]n]dn
log, H®™)

! exp(—(—H" xlog, 5) e’ —(—%)n}dn
+ T(m) exp[—(—Hx xlog, 5)9’7 _(_ loliegj;gjnjdﬂ

log, H

Consequently,

Iexp(—(—H“‘ xlog, 5)6” —(—loliegee;f)ﬂ]dn—

® ) log, ™

) loge;[m_x) exp[—(—[—[v xlog, 5)e’7 _[_ Oligeerjanﬂ
(log, H)(é'Hx)

oEexp[—(—H" xlog, §)e’7 —[—%]U}d?]—

(log, H)(gHX ) T exp{—(—H" xlog, 5)e’7 _(_—loge e_ggjﬂ)dﬂ

log, 7O log‘-’ H
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J, = Texp(—(—H" xlog, 5)@'7 —(—M}]Jdn =
0

log, H
(103)
_log, &
[(_Hxxloge 5)][ logeH]l—w(_( logee ;J ( Hxxloge 5)J
log, H

J, = J. exp —(—Hxxlogeﬁ)e”— _log.e” ndn (104)

log 1(9) log, H

og, H
Let £ =n—log, H®™ (105)
Let E+log, H " =7 (106)
dé=dn (107)

When 77 =0, £ =0 and when 77 =log, H*™, £=0

Therefore, J, = Iexp [— (—Hx xlog, 5) efHoe T _ (—%j (§ +log, H™™" )}df (108)
0g,

*xlog, 5 log, H™ )& _loge—eé/ E+ _loge—eé/ 1OgeHQ‘x dE (109)
log, H log, H

H
- log e ¢ log e ¢
H” xlo HQ“ Cp| B B g =B 2 (- log H)dE (110

g0 ¢ ( log, H Jé( log, H ( x)( S ) s (110

{ _
J, = exp{ (~log, §) H%" +— ( log, & QVJ (—logee“’é")(Q—X)}di (111)
ool
ool
ool

log, H
Q¢ log e é,
J, = exp log 5 Hf% +—| ——=—2 |E+log, £ tdE (112)
_ a¢, | loge”d ()
J, = exp loge H e +—| ——=—|&+log, e & (113)
log, H
(~log, 8) H%" +- _log.e7e £-o(Q-x) & (114)
2= log, H
J,=¢ " [exp|—(~log, §) H® xe* - g ooy (115)
? o ‘ log, H
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J, e_U(Q_X)JeXp{—(—loge S)H" x¢f —[
0

log,

e o) [(— log, 6)H* ](

1
(log, H)(ﬁm)

ax

(Jl_Jz)

1
(log, H)(é'HX )

ax

1
(log, H)(éH'X)

Q|
=

a(H 1)

X

log, o =

[(—H" xlog, 5)][ :

e ¢ -
log, H ] I (_(_M

e o™ [(— log, §)H® ](

B log, e ?¢

log, H

J

log, H

o

(—log, 5)H9j

log,e™?¢ ]
og, H 1—* [

log, e

28

log, H

“lr([

:>Hxloge5:a(Hs —1)_2 = log, 6™ :a(HS —1)

log, e ?¢
log, H

log, e "¢
log, H

(116)

(118)

(119)

(121)

-2

(122)

(123)

j,(—H" xlog, 5)} -

j,(—loge 5)HQJ

(124)
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If [ = .[ [ M. dsand [, :J.IHHSE,UX ..(£)dE | then following de Souza (2018), the continuous
0 0

annuity in equation (124) is bounded as follows

(zm 1 eS¢ de ] << {zx e +81, e v J (125)
51, l.o
Discussion of results
lima = I pdé=e. (126)
o 5o}
tlfi_lgax = (log Hl)(y;)},lg% (_mgeef“g] p log, e ¢
e e[ (~log, 5)H® | ut r(( 1§g H J’(_loge 5)HQJ
(127)
) [(~H" xlog, 5)}[‘1521 r (( llggeg j J(~H" xlog, 5)} -
[.pdé= 0 Hl)(gm ) - 1 s (128)
o _log,
° 8 [(—IOge §)HQ][ 1ogeHJF{(%],(—loge §)HQJ
Conclusion

Life annuity plays an important role in defined benefits schemes under defined contribution pension plans
and hence it represents a modified version of a defined benefit structure. Consequently, it lends itself as a
good alternative measure to defined benefits schemes to assist retirees in earning income streams
provided the annuitant survives. This paper contributes to this field by providing an analytical technique
for computing the fully continuous life annuities and continuous life insurance under the framework of
mortality rate intensity defining the trend of human mortality. The development of actuarially robust
analytical computation of fully continuous life annuities and fully continuous life insurance has
continually posed core challenges for actuaries and life offices. In insured populations having reasonably
good track records of death statistics, there seems to be disturbances in the function of a low number of
events representing limitations in the information on the survival data at different ages. The applicable
pricing assumptions available in life insurance especially in annuity-linked securities take into account
changes in demographic statistics and mortality changes. The mathematical technique through the
Gamma function is used to evaluate attempts to model and generate mortality rate intensities further
employed in computing pension and death benefits. The continuous life annuities in a probabilistic
mortality model aptly defines the actuarial present value of the underlying death density function such
that the analytically closed form solution for the annuity integral contains special function in the form
Gamma, upper Incomplete Gamma, and Lower Incomplete Gamma function. In particular, the lower
Incomplete Gamma function was constructed with series representation to allow approximations of first-
order and second-order basis when the initial level of mortality is infinitesimally small.
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Abstract: The Elzaki Transform Homotopy Perturbation Method (ETHPM), a modified computational
technique, is used in this article to solve the time-fractional reaction-diffusion equation that emerges in
porous media. Herein fractional-order derivatives are considered in Caputo sense. To show how simple
and effective the suggested method is, some specific and understandable examples are provided. The
numerical results produced by the suggested technique show that the method is accurate and easy to use.
The graphical illustrations of the approximate solutions to the porous media equation for different
particular cases are the key characteristics of the current research. The solution obtained is very useful
and significant to analyze the many physical phenomena.

Keywords: Fractional calculus, Elzaki Transform Homotopy Perturbation Method (ETHPM),
Fractional reaction-diffusion equations

1. Introduction

Numerous problems in the real world have been solved using the theory and fundamental concepts of
fractional calculus. As an extension of the conventional integer-order differential equations, fractional-
order differential equations are being utilized more often to describe problems in the domains of
engineering, mechanics, fluid flow, biology, and physics. Fractional partial differential equations (FPDEs)
are widely used in science and engineering, and as a result, research on FPDEs has grown significantly
over the past several decades. The theory of fractional partial differential equations can be used to more
accurately and systematically translate real-world problems. A novel automated brain segmentation
technique for magnetic resonance imaging was developed by Ahlgren et al. [1] employing fractional
signal modeling of a spoiled gradient-recalled echo (SPGR) sequence acquired at different flip angles.
Sun et al. [2] presented fractional and fractal derivative models for temporary anomalous diffusion. Here,
four models are thoroughly compared with one another. In order to solve the time-fractional Navier-
Stokes equation in a tube, Kumar et al. [3] devised a unique homotopy perturbation transform method.
Murio [4] suggested an implicit unconditionally stable numerical strategy to address the one-dimensional
linear time-fractional diffusion issue. The fractional-order diffusion equations were solved by Shah et al.
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[5] using the Natural transform decomposition technique. The best approach for g-homotopy analysis was
used by Darzi et al. [6] to solve partial differential equations with time-fractional derivatives. A space-
time fractional order non-linear Cahn-Hilliard issue was resolved by Pandey et al. [7] using an operational
matrix approach and Laguerre polynomials. Pandey et al. [8] recommended an effective Laguerre
collocation technique to generate the approximate order non-linear reaction-advection-diffusion
equations. The first basic solutions of general fractional-order diffusion equations within the negative
Prabhakar kernel were taken into consideration by Yang et al. [9]. The symmetry analysis approach to
determine the symmetry of the time-fractional diffusion equation has been covered by Liu et al. [10].

As a chemical moves from a zone of high concentration to one of low concentration, the diffusion process
takes place. The dynamics of density profiles during the diffusion of a material are depicted by the
diffusion type equation, which is a partial differential equation [11]. Fractional reaction-diffusion
equations may be used to describe both shallow water waves in seas and ion-acoustic waves in plasma.

The present study deals with the following time- fraction reaction-diffusion equation which arises in
porous media [12]

@D = DTy (1) — XM x4, 1) + kx(1 — ) + £(4,T) (1)
atP , GICE 4 S aro2 , ,T),
Where 0 <(<1,0<1t<1,0<p<1,00 >1,a, = 2; withIC

X(G,0) = x0 (). (2)

Here, y({,7) is a state variable and describes the concentration of a substance/solute profile, D denotes
the diffusion coefficient, average velocity of fluid is denoted by ¢ > 0, k denotes the reaction coefficient
and m, n are integers.

Here we will be applying ETHPM to find the approximate numerical solution of time-fractional reaction-
diffusion equation (1)-(2). The correctness and effectiveness of the provided technique are demonstrated
by the three test examples.

2. Basic definitions of fractional calculus and Elzaki Transform

In this section, we present some basic definitions of fractional calculus that will be incorporated into this
study, as follows [13-15].

Definition 1. A real function f(t),t > 0 is said to be in the space C, if u € R, there exists a real number
p > u and the function f; (t) € C[0, ) such that f(t) = tPf;(t). Moreover, if

f™e Cy, then f(t) is said to be in the space C',n € N.

Definition 2. The Riemann-Liouville fractional integral of order @ = 0 for a function f(t) is defined as

( Lf(t —1)* 1f()dr a>0
[f(t) = i I'(a) ; ’
f(@, a=0

Where I'(+) denotes the Gamma function.

32



Nepal Journal of Mathematical Sciences (NJMS), Vol. 4, No. 2, 2023 (August): 31-40

Definition 3. The Riemann-Liouville fractional derivative of order @ > 0 for a function f(t) is defined as

dn

datn

DEf(t) = 1" *f (1),

n
=I”‘“%f(t), neENn—1<a<n.

Definition 4. The Caputo fractional derivative of order @ > 0 is defined as

ars()
datn

pefe) =1 ¢

'(n—a)

a=n, neEN

()
L © _dr, 0<n-1<a<n,

0 (t—r)a-n+1
where n is an integer, t > 0 and f(t) € C{.
Definition 5. The Elzaki transform of f(t) is defined [16] as
o _t
E[f®O]l =Elf(),vl=TW) =v [, f(t)e vdt, ky <v <k ki,k; >0,0<t <o, 3)

where f(t) is taken from the set A, which is defined as

Iel
A= {f(t); AM,k; >0, j=1,2,|f()] <Me",if t € (=1)/ x [0, oo)}, 4)

here, constant M must be a finite number, k; and k, may be finite or infinite.

Using duality of Laplace [17], Elzaki transform of the Caputo fractional derivative (given in definition 4)
of order & > 0, can be obtained [18] and get as

E[Def(t),v] = T2 _ yn-tyk-a+2£(0(0), n-1<a<n, (5)

va
In Eq. (5), T(v) is the Elzaki transform of the function f(t).

Elzaki transform has many useful and important properties like linear property, scale property, shifting
property, duality with Laplace transform ,and so forth. Further detail and properties about this transform
can be found in [16-19].

3. Elzaki Transform Homotopy Perturbation Method

To illustrate the basic idea of this method, we consider a general form of nonlinear, non-homogeneous
partial differential equation as follows:

Dfu(x,t) = Lu(x,t) + Nu(x,t) + f(x,t), a >0 6)
With the following initial conditions
Dfu(x,0) = g,k =0,..,n—1, D}u(x,0) = 0,andn = |a] (7)

In eq. (6), D¢ denotes without loss of generality the Caputo fractional derivative operator, L represents a
linear differential operator, N stands for nonlinear differential operator and f(x, t) is a known function.

Taking Elzaki transform on both sides of eq. (6), to get
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E[Dfu(x,t)] = E[Lu(x,t)] + E[Nu(x,t)] + E[f(x, )], (8)
Using the differentiation property of Elzaki transform[16-19] and above initial conditions, we have
Elu(x,t)] = v*E[Lu(x,t)] + v*E[Nu(x,t)] + g(x,t) 9)
Applying the inverse Elzaki transform on both sides of eq. (9), we obtain
u(x,t) = G(x,t) + EY[v*E[Lu(x, t)] + v*E[Nu(x, t)]] (10)

Where G(x,t) represents the term arising from the known function f(x,t) and the prescribed initial
condition.

Now, we implement the homotopy perturbation method, (see [20-22])

u(x,t) = Yo P " un(x, 1) (11)
And the nonlinear term can be decomposed as

N[u(x,t)] = Xpzop"Hn(w) (12)
Where H, (u) are He’s polynomials (see, [23-24]) and given by

1 9"

Hn(uo,ul, ...,un) = 56;7

[N(Z?Ozo piui)]p=0 , n=012,.. (13)
Substituting equations (11) and (12) in equation (10), we get
Y=o P up(x,t) = G(x,t) + p{E[v*E(L ¥ o pMu, (2, t) + X p™H, (w))]}. (14)

This is the coupling of the Elzaki transform and the Homotopy perturbation method using He’s
polynomials. Comparing the coefficients of like powers of p in eq. (14) on both sides, we obtain the
following approximations as

p%:uo(x,t) = G(x,t)

priuy(x, t) = ETYw*E[Luy(x, t) + Hy(w)]}

p2u,(x,t) = ETYw®*E[Lu, (x, t) + Hy(w)]}

p"iun(x,t) = ETH{v*E[Lu,_1(x, t) + Hypoy (W13
Similarly, we can find rest of the terms and hence, we obtain the desired series solution. Thus, we

approximate the analytical solution u(x, t) as

u(x, t) = limy_, e Xy=o Un (x, ). (15)

The series solution (15) converges very fast in a very few terms.
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4. Solution of the time-fractional Reaction-Diffusion Equations

In this part of the article, we have solved some fractional order one-dimensional non-linear partial
differential equations that originate in porous media by using ETHPM as mentioned in section 3.

Example 1. The following non-linear fractional order PDE has many uses in rotating flow of liquid in a
tube, waves in plasma, etc.

2D+ 2 (FED) - Tk =0, 1>00<7<1,0<p<1 (16)
with IC

x(¢,0)=4. (17)
On putting p = 1, then exact solution of (16) is y({,7) = 1—;

Applying the Elzaki transform on (16), get as
aP a (x*@1) a3 _
Bl5mx@o) + |5 (52) - s o] =0

By using the results of Elzaki transform and simultaneously using IC (17), we get

3] 2(g, a3
Elx(@, 0] = v2¢ + vPE [ (F52) - S5-x(@ 0] =0, (18)
Employing inverse Elzaki transform on (18), it yields
— 5} 2(g, a3
1@ 0 = ¢ =7 (v [ 2 (Y52) - 26 0)]) = o, (19)

Again incorporating the homotopy perturbation method, (see [20, 21, 227)

x(6,1) = Xr=op"xn (¢, D) (20)

And the decomposition of nonlinear term as

N[x(©¢ D] = Xa=op"Hn(X) 21)
Substituting (20) and (21), in (19), it reduces to
SieoPn (G 7) = ¢ = p{E [0PE (Sico p"Hy () — T EE IO} (22)

Where H,, () are He’s polynomials (see, [23, 24]). Some He’s polynomials factors are

o) = 2 (4142)

() = 32 (066 D06 D)
00 = 2 (106 Dx( 0 +252)

Comparing the coefficients of like powers of p in eq. (22), its yields
P’ x0@ D=7,

1. — =1 { pp [0 (Xx2CDY _
Pt (D) = —E {voE | (BE2) -

On little simplification, we get
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{zP
T(p+1)’

- 5} a3
P 060 = —E7H{vPE [ (06 D1 D) — 555 06D}
On putting previously obtained value and after that little simplification, get as
2. _ 2<T2p
p . XZ({I T) - F(2p+1) )
Similarly
- (C ) o°
P* 1360 = —E7H {(vPE [ (%06 D60 + 222) - 2160,
On putting previously obtained value and after that httle simplification, get as

3p
Prxs(6m) ([ T ey TEen

ph @) =-

Using the same procedure, we can extract more values, and by substituting the aforementioned values in
(15), we get an approximate solution in the form of a series
JtP 20t3P [ r(2p+1) ] 3P
={- —-{ |4 +.... 2
X0 =¢ T(p+1) + r(2p+1) At (F(p+1))2 r(3p+1) (23)
Putting p = 1 in (23), we get

x@ 1) =¢—{t+{t? = (T3 + - (24)

This is identical to exact solution

x(, 1) =——= (25)

1+7

Example 2. Taking a non-linear fractional order PDE which is a specific occurrence(non-conservative
case k # 0) of our concern equation i.e. (1).

On putting D =¢=a, =k =1and a; = 1.5 in (1), it reduces into

2x@ D) =2 20 - (XZ((. D)+ (1-x@D)x¢ D), (26)
with the initial condition y(¢,0) = 2. Jointly with this IC the exact solution of (26) is

x(@, 1) =%+ 12

On using the computational technique (given in section 3) as applied for getting the solution of Example
1, obtain the coefficients of power of p as below

pO: XO((! T) = (2

plle((,r)=(%+(z_4(3_(4>r(;il),
P D) = (38— S0 - 2R 0P = 1207 + 3764 4 200 4 60°) s,

Similar obtain further values; on putting these obtained values in (15), get solution of (26), in series form
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X(Z'T)=52+T2—(%+(2—4(3 (4) iy +(¥—3—3( —w_65+(2—12(3+37(4

T(p+1)

54 676) 2" 4 ...
2005 + 67 )F(2p+1)+ . 27)

Example 3. Taking a non-linear fractional order PDE which is a specific occurrence(conservative case

k = 0) of our concern equation i.e. (1).

OnputtingD =¢=a, =1anda; = 1.5, k=0,m = 0,n = 2in (1), it reduce into

9P 915 d
52X =mX(5.T)—a—<(X2(§.T)), (28)

With the initial condition y({,0) = { — ¢2.

On using the computational technique (given in section 3) as applied for solution of Example 1, get the
coefficients of power of p as

pO: XO((! T) = ( - (2:

Tp
T(p+1)°

Pl = (—2E - 2g + 607 - 4?)

2 201 = (3242 _ 5273 4 47 — 40¢% + 8003 — 40¢*)
b= X246, = Jn r(2p+1)’

Similar obtain further values; on putting these obtained values in (15), get solution of (28), in series form
— 7 _ 72 47 2
¥@0=¢-¢+ (-2 - 20+ 607 - 4g ) T

+(Eve- \/_;55 +4¢ — 4077 + 807% — 40*)

2P
r2p+1)

+ o (29)

5. Graphical Analysis of the Approximate Results

In this section we are presenting some graphical analysis of the obtained approximate results as

0 0
-100 -
= -100 -
T i
g 200 g
- =200 .
-300 -
-400 -l -300 -1
T 5 1
S o 1 i~ e 1
( 0 0 T ¢ 0 0 T

Fig. 1: The surface shows the ETHPM solution Fig. 2: The surface shows the ETHPM solution
x(¢, 1) for Example 1, when p = 0.5 x (¢, t) for Example 1, when p = 0.7
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Fig. 3: The surface shows the ETHPM solution Fig. 4: The surface shows the ETHPM solution

x(¢,7) for Example 1, when p =1 x(¢,7) for Example 2, when p = 1

6000 -

4000 -

C:T]

~ 2000 |

-

. . Fig. 6: The surface shows the ETHPM solution
Fig. 5: The surface shows the ETHPM solution

x (¢, 7) for Example 3, when p = 0.5 x(¢,7) for Example 3, when p = 0.7
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0.25

— r= 1
p=08

. p=08
N |----p==07

-0.05 : - : : -
0 0.2 0.4 06 0.8 1

¢
Fig. 7: The surface shows the ETHPM solution Fig. 8: The behavior of Solute concentration
x(¢,7) for Example 3, when p = 1 x({,7) vs.{ at T =1, for different values of p for
Example 3

It has been observed from all graphs that the fractional order is better to describe the solution of the time-
fractional Reaction-Diffusion Equations, and give a free hand to adjust and control accordingly.

6. Conclusion

The major objective of this study is to demonstrate the usefulness of the combination of the homotopy
perturbation technique and the novel integral transform "Elzaki transform" for obtaining both approximate and
accurate solutions for nonlinear time-fractional reaction-diffusion equations. Graphs for different fractional
order have been plotted to examine the various effects on solute concentration. The numerical result shows that
the method used is very simple and straightforward to implement. Our findings provide interesting unifications
and extensions of many results, hither to scattered in the literature. At the end, we can conclude that the

ETHPM has nice refinement in all numerical methods and it can be used in solving many real world-problems.
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Abstract: In this paper, we introduce and study a new vector valued sequence space (., (X x Y, v, u || . |))

with its terms from a product normed space X x Y. Beside investigating the linear space structure of
(o (X XY, v, 1l .| ) with respect to co-ordinatewise vector operations, our primarily interest is to

explore the conditions in terms of u and 7y so that a class (.,( X % Y, y,u,)| .|| ) is contained in or equal
to another class of same kind .

Keywords: Sequence space, Generalized sequence space, Product-normed space.

1. Introduction and Preliminaries

So far, a large number of research projects have been carried out in mathematical structures
built with real or complex numbers. In recent years, many researchers have investigated many
results on vector valued sequence space defined on normed space. Many researchers are
motivated towards further investigation and application on product-normed space.

In this section, we give some definitions regarding to the product-normed linear space.

Let X be a normed space over C , the field of complex numbers and let ®(X) denote the linear

space of all sequences x = (x; ) withx, € X, k£ > 1 with usual coordinate-wise operations .We shall
denote ® (C) by o . Any subspace S of o is then called a sequence space. A vector valued sequence
space or a generalized sequence space is a linear space consisting of sequences with their terms from a
vector space.

The various types of vector and scalar valued single sequence spaces has been significantly
developed by several workers for instances, Kothe (1970), Kamthan and Gupta (1980), Maddox (1980),
Ruckle (1981), Malkowski and Rakocevic (2004), Khan (2008), Kolk (2011), Pahari (2012), (2014),
Srivastava and Pahari (2012) etc. Recently, Ghimire and Pahari (2022),(2023) studied various types of
vector valued sequence spaces defined by Orlicz function. Paudel and Pahari (2021),(2022) extended
the work related to scalar valued single sequences in fuzzy metric space.

Let (X, || . |lx) and (Y, || . ||[y) be Banach spaces over the field C of complex numbers. Clearly the
linear space structure of X and Y provides the Cartesian product of X and Y given by

XxY={<x,y>:xeX,yel}
forms a normed linear space over C under the algebraic operations
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<X, >+ <X, >=<x1t X3, Y1 t> anda<x,y>=<qx,ay>
with the norm
| <x,y>|=max {||x|x [y},
where <xp, y1>, <X, »><x,y>e€ Xx Yand a € C.

Moreover since (X, || . |lx) and (Y, || . ||y) are Banach spaces therefore (X x Y, || <.,.>||) is also a
Banach space.

Sanchezl et al(2000), Castillo et al (2001) and Yilmaz et al/(2004) and many others have
introduced and examined some properties of bilinear vector valued sequence spaces defined on product
normed space which generalize many sequence spaces.

2. The Space /., (X x Y, 7,4 .||)

Let u = (u;) and v = (v;) be any sequences of strictly positive real numbers and y = (y;) and p = () be
sequences of non-zero complex numbers.

We now introduce and study the following class of Normed space X x Y -valued sequences:

uk

Co (XX Yy, 1) == (<xe, yi>) 1 <X, o> € XX Y, supy || v <oxe, yi> || < 0}

Further, when y; = 1 for all k, then 7, (X x Y, v, u,|| .|| ) will be denoted by /., (X x Y, u ,|| . ||) and
when u; =1 for all k then /., (X xY, v, %,|| . || ) will be denoted by /., (X x Y, y .|| . || ).

In fact, this class is the generalization of the space introduced and studied by Srivastava and Pahari
(2012) to the product normed space.

3. Main Results

In this section we shall derive the linear space structure of the class /,, (X x Y, v, 1, . || ) over the

field C of complex numbers and thereby investigate conditions in terms of %, v, y and p_so that a class
is contained in or equal to another class of same kind .

As far as the linear space structure of /., (X X Y, v, ]| . || ) over C is concerned we throughout take

the co-ordinatewise vector operations i.e., for w= (<x, v, >), Z = (< x4, V% >) in L, (X X Y, 7,1, . || )
and scalar o, we have

WHZ=(<x, e >) + (KX Ve >) = (SKx X% etV >)

and oz = (o0 <xg, Y >) = (< oxg, OVg>).

The zero element of the space will be denoted by
6=(<0,0>,<0,0><0,0>, ...

Further, by u = (1) € (., we mean supy uy < .
We see below that sup; u; < oo is the necessary condition for linearity of the space. Moreover, we shall

denote M = max (1, sup; u) and A(a) = max(1, |a|).

Theorem 3.1: /,,(Xx Y,y, 4, .||) formsa linear space over C if and only if % = (u;) € £s.
Proof:

For the sufficiency, assume that u = (i) €/, and w = (< x;, y; >) and
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Z=(<x6V>) € LX< Y, y,u). ).
So that we have

uk

supy || ve <xe, v > [ < oo and supy || v <x', 5> < oo

Thus considering

uk IM uk IM

supy || Y (< x5, yic> + <X, Ve < supg || ve<xi, ve> || +supg || ve < X%, V>l

and we see that

Supx H yk(< Xk s Vk >+ <x’k’ylk>)|‘uk/M< 0.
andhence w+ZzZ e l,(X x Y, y,ul .]).

Similarly for any scalar o, aw € £, (X X Y, y,u,|| . || ) since

supg || v <xe, yi > = supe [of"™ ™M ye<x, pe> Y
<A(o) supe || ve <xe, v > ™M < oo,
Conversely if 7= (1) & /(X x Y,y,%,] . || ) then we can find a sequence (k(n)) of positive integers

with k(n) <k(n+1),n=1 such that u,, > n for each n > 1.

Now taking<r,t>e X x Y, | <r,t>| =1 we define a sequence w = (< x; , yx >) by

-1 —rk(n) _
x> :{kk(n)n <r, t>, fork=4k(n),n>1 , and

<0, 0>, otherwise.

where <r,t> e X x Ywith || <r, t>|| =1, then we have

supy || ve <xe, > 11 = sup, [l Yee < e, Vi > [

— Supn || n —rk(n) < r, t> ||uk(n)
1
= sup, = 1.

Thus we easily see that w € /., (X x Y, v, ]| .|| ) but on the other hand for k = k(n), n > 1 and for the

scalar oo =2,we have

sup || v (ot <xe, yie> ) 1 = supi || Yae (0 < X agnys ¥ k> I

sup, ‘2|uk(n)|| n —rk(n) < v, t> ||uk(n)

uk(n) l

= sup, 21",

n
> sup, o >1

This shows that o w & £, (X x Y, v, %,|| . || ). Hence /., (X X Y, y,u,|| . ||) forms a linear space
if and only if u = (1) € /.

Theorem 3.2: Forany u = (), los(X X Y, v, u || .||) €l (X x Y, u,u || .|| ) if and only if

uk
i

lim inf} > 0.
M

uk
>0,and W= (<x;,y:>) € Lo (X X Y, y,u,|.||). Then there exists

Proof : Suppose lim inf}, ‘LL
k

m >0, such that m|p " < |y“* for all sufficiently large values of k. Thus
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1
supe || e <, 1> || < supy ;||Yk<xk,yk>|\uk <

for all sufficiently large values of k, implies that w € £, (X x Y, u, % ,|| . || ). Hence

KOO(XXYJV:HMH)CEOC(XXYaﬁaavnn)
uk

Conversely, let (,(X X Y, y,u,||.||) S lo(X x Y, u, %, .]|) butlim inf; =0.

Y
e

Then we can find a sequence (k(n)) of positive integers with k(n) < k(n + 1), n > 1 such that
uk

1 .
< o e, \uk(n)|uk(n) > 1| Y ki)

i
L

uk(n)

So, if we take the sequence w = (< x4 , y4>) defined by

Yim <7 1>, fork =k(n),n>1 , and

<Xk Vk > —{ .
7 <0, 0>, otherwise.

where <r, t> e X x Ywith || <r, t>| =1, then we easily see that
supk || v <X, yi> || = Sups || Yo < Xim» Vi > ||uk(n)
=sup, || <r, > [["" =1

and,  supy [l <xe, ye> [ = supy [lkon < X iy ¥ i >

Yoo
Y

_ Supn{ uk(n) ” <rt> H uk(n)} > sup, n = o,

Hence w € (. (X X Y, y,u,|| .|| )butw ¢ £, (X X Y, n, i, .|| ), a contradiction. This completes the
proof.

Theorem 3.3: Forany u = (), (X X Y, || . ||) €l (X X Y, v, . )
uk

if and only if lim supy {f < oo,
k
Proof :
uk

For the sufficiency, suppose lim supy ‘LL <oo,and W= (<xz, i>) € Lo (X X Y, w1, . || ).

k

uk
Then there exists L > 0, such that ‘YHL < L ie, LI > [y

k

for all sufficiently large values of .

Thus supy || v <xe, yi> | < supg L || e <xi, yi> || < oo,
for all sufficiently large values of k, implies that w € /(X x Y, y,u,|| . || ). Hence
loX % Yol 1) €l (X % Yoy, | ).

For the necessity, suppose that £, (X x Y, i, u,||.||) cl(X X Y, y,u,|.|)
uk

but lim sup; = o0. Then we can find a sequence (k(n)) of positive integers k(n) < k(n + 1), n > 1

i
ke

such that

uk(n

n|uk(,,)\ ) < | 'Yk(n)|uk(n), foreachn >1
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For<r,t>e X x Ywith| <r, t>| =1 we define sequence w = (<x;,y;>) such that

Wy <7> 1>, fork=k(n),n>1,and

<Xk, Yk > :{ .
J <0, 0>, otherwise.

Then we easily see that
Supe || e <0, 3> 11 = 50pn | b < g i > 1"
—sup, || <r,¢> |40 =1
and  supg [lve <X, > 1 = sup, [Wien < X ks V ke >

Yk(n
N0

 sup, { [ 2] 0 < . 1 )

> sup, n = oo.

Hence w € £, (X x Y, w, u| .|| )butw & £, (X X Y, y,ul .]|),, which leads to a contradiction.
This completes the proof.
When Theorems 3.2 and 3.3 are combined, we get

Theorem 3.4: For any u = (uy), L (X X Y, v, 0,/ . ) = Lo (X X Y, u, %, . ||)

uk
< lim supy

uk
< 00,

ifand only if 0 <lim inf}, —Yuik _'YuLk
Corollary 3.5: For any u = (1),
() (X XY, 7,8,].]|) < la(X x Y, 5. ||) ifand only if lim inf, [y, > 0;
(i) Lo (X XY, ). ||)C Lo(X x Y, y, 1) . |)if and only if lim sup [y{" < oo;

(iii) Lo (X % Y, y, 1 . ||) = £ (X x Y, @, . || ) if and only if
0 <lim infi |y¢]" < lim supy [y < co.
Proof :
Proof follows if we take p; = 1 for all £ in Theorems 3.2, 3.3 and 3.4.

Theorem 3.6: Forany y=(ys), le (X X Y, v, u||.[|) S X X Y, v, V]| .|])

if and only if lim sup; Z—’; < oo,

Proof: Let the condition hold. Then there exists L > 0 such that :—i < L for all sufficiently large values

of k. Thus supy || v« <x¢, ve> || < N for some N> 1 implies that

supy || vx <X, yi > < N,
andhence L. (X x Y, v, u.|.|)c la(X x Y, 7, V)| ]]).
Conversely, let the inclusion hold but lim sup, :—i =0,

Then there exists a sequence (k(n)) of positive integers with k(n) <k(n+ 1), n>1 such that

Vi(n)

i >n ie., Vi) > 1 Uk(ny , 1 2 1.

We now define a sequence w = (< xy , y,>) as follows:
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Yem 2 40 < r, 1> fork=k(n),n>1 , and

<Xk, Yk~ —{ .
’ <0, 0>, otherwise.

where <r,t>e X x Ywith||<r > =1.

Then for k = k(n), n > 1, we easily see that
supi || v <X, yie> 1" = sup, || Yan <X > |
Pr || Ve < Xk » Vk P (| Yk(n) = Xkim)> Vi)
uk(n) =2

2sup, || <r,t>]
and,  supy [[ve <xe, > 1" = supy [Waon < X ko ¥ ke >

= sup, H 2 1/uk(n) <r t> ||vk(n)
> sup, 2" =o0.
Hence w € £, (X x Y, v, .||)butw ¢ £, (X x Y, v,V . |), a contradiction.

This completes the proof.

Theorem 3.7: Forany y=(vp), l (X X Y, 7, V|| . || ) €l (X X Y, v, ]| . ||)
if and only if lim inf, Z—’;> 0.

Proof : Let the condition hold and w = (< x; , 34>) € £, (X x Y, ¥,V || . || ).Then there exists m > 0 such

that v; < m u, for all sufficiently large values of k and
supy || v < Xx , ve>|" < N for some N> 1.

This implies that

supr || ve <, > SN de, W= (S, 6>) € L (X X Y, v, 1)

and hence L, (X X Y, 7, V||.[|) Cl(X X Y, y,u || . ).
Conversely let the inclusion hold but lim infj Z—Ii = 0. Then we can find a sequence (k(n)) of positive

i.e., Vi(n) < Uk(ny, N >1.

S

integers with k(n) < k(n + 1), n> 1 such that J—szk(”) <
Now taking <r,t> € X x Ywith || <r, 1> || =1, we define the sequence w = (<x, yx>) by

o 2 < r, 1>, fork =k(n),n>1 ,and

<Xk, Vi > :{ .
J <0, 0>, otherwise.

Then for k = k(n), n > 1, we easily see that

sup || ve < xe, > 1™ = supy || i < Xeis Vi > I
=2sup, || <r,t>|""

=2

k()

and  supg [lve <xi, > [ = supu Wi <X ks ¥ ke >l

= sup, H ) 1/vk(n) < r > ”uk(n)
> sup, 2" = .

Hence w € (o, (XX Y, v,V ,||.||)butw & £, (X X Y,y,u,||.|), a contradiction.
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This completes the proof.
On combining Theorems 3.6 and 3.7,we get the following theorem:

Theorem 3.8: Forany v = (v) , Lo (X * Y, 7, U, [ [) = L X < ¥, 7,9 ]| . )

ifand only if 0 < lim inf; Z—’; < lim sup; :—’; < oo,

Corollary 3.9: For any y = (),
D) Lo(X XY,y 1) lu(X %Y, y,u,| .| ) if and only if lim sup; u; < oo;
() lo(X XY, 7,u,|.||)clu(Xx Y, y,l.]|)ifand only if lim inf} u; > 0;

(i) Lo (X X Y, 7, u,|| . ||) =l (X X Y, 7,]| .|| ) if and only if 0 <lim inf; u; < lim supy v < oo.
Proof :
Proof easily follows when we take u; = 1 and v, = u; for all k£ in theorem 3.6, 3.7 and 3.8.

Theorem 3.10: For any sequences ¥ = (74), 1 = (1), 7 = (1) and v = (1),

(04D SRANDEIA0. e D ATRN Y
uk

ifand only if (i) lim inf; > (), and

s
M

- v
(i1) lim supy M_IIZ < o0,
Proof : Proof directly follows from Theorems 3.2 and 3.6.

In the following example we show that /., (X x Y, v, 1, . || ) is strictly contained in /., (X x Y, v, V,|| . ||)
however (i) and (ii) of Theorem 3.10 are satisfied.

Example 3.11:

Let w = (<x;, y>) be a sequence in normed space X x Y such that |[<x;, y:>| = k"
1 1 1
Take u; = % if k is odd integer and u; = 2 if k is even integer, v, = 2 for all values of k, vy, = 3* for

all values of k ;and ;= 2% for all values of k. Then

uk
e

M

:% if £ is odd integer

uk 3 12
= (E) , if k£ is even integer.

and ‘ e
M
uk

Yk

Thus lim inf; =1 i.e. condition (i) of Theorem 3.10 is satisfied.

Further smce:—i=% , if k is odd integer andZ—i= 1, if k£ is even integer, therefore condition (ii) of
Theorem 3.10 is also satisfied as lim supkz—i =1.

We now see that W= (<x;,4>) € Lo (X x Y, u,v) forall k>1 as

supg || e <xe, yi> I =supe 2k)"F < 2,

but w=(<x;,>) & L (X XY, y,u,|| .|| ), when kis odd integer as

supy || v <xi, > = supy 3k = 0.
This shows that the condition (i) and (ii) are satisfied but £, (X x Y, v, %,| . || ) is strictly contained in

KC@(XX Y: ?: va” . || )
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Abstract: Our ability to grow crops is significantly impacted by the weather. Therefore, it is important to
make predictions about the weather. Because of its reliance on stable weather conditions, agriculture is highly
susceptible to the effects of climate change. Countries like Bangladesh, whose economy is based on
agriculture, will be more severely affected by the effects of climate change than others. For this reason, it is
crucial to develop a robust forecasting tool to determine the implications of climatic variables, especially
temperature and rainfall. In this study, we project the average annual rainfall and temperature in Bangladesh
using the Auto-Regressive Integrated Moving Average (ARIMA) model for the next decade, from 2023 to 2032.
Bangladesh's precipitation and temperature records from the past 60 years were compiled and analyzed with
the help of the R programming language. Annual mean temperatures are forecasted to fall between 24.9 and
26.3 degrees Celsius, while annual mean rainfall is forecasted to fall between 1,550 and 2,650 millimeters.

Keywords: Rainfall, Temperature, Agricultural production, Bangladesh, ARIMA.
Introduction

Agriculture is the backbone of the economies of many developing countries because it provides people with
both food and income. Since this sector is highly vulnerable to climate change, Bangladesh, one of the rising
developing nations, is in particular jeopardy. Farmers use weather forecasts and climatological trends to
determine which crops to plant and when. Climate has a major impact on how often pests need and diseases
occur, how easily farmers can get their hands on water, and how much fertilizer they need to use. However,
climatic change and variability have an effect on agricultural output and standard of living. Recent climate
changes have had multiple effects on crop yields (Lobell et. al, [21]). The threat that climate change posed to
small and medium-sized rainfed farmers was significant (Ashalatha et. al, [4]).

Bangladesh typically experiences subtropical monsoon weather. The highest temperature ever recorded in the
summer is 37 C (98 F), while there are few spots where it can occasionally reach 41 C (105 F) or more.
Between July and October, we get about 80% of our annual precipitation. Precipitation totals typically fall
between 1429 and 4338 millimeters per year on average (BBS, [7]).

The effects of the climate affect many facets of agricultural production (lizumi&Ramankutty, [16]). The
primary climatic factors affecting agricultural production include rising temperatures, changed precipitation
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patterns, and an increase in atmospheric CO2 concentration (Neenu et. al, [26]). In terms of agriculture,
temperature and rainfall are two of the most important climatic parameters. Understanding how temperature
and precipitation variations impact crop output is a crucial first step in developing policy and agricultural
management choices.

A significant economic factor is the timing of rainfall (Torres et. al, [36]). The effect of rainfall on agricultural
productivity could be asymmetric (Mitra, [35]). Long-term changes in natural rainfall patterns might pose a
problem for the world's current farming methods (Wei et. al, [38]). Rainfall's impact on crop production can be
explained by either its seasonal average quantity or its temporal distribution. Rainfall unpredictability affects
food accessibility per capita and raises the percentage of the overall malnourished population in developing
countries (Kinda & Badolo, [18]). Rainfall does not directly affect production because it is dependent on the
environment, but there are many other factors that do (Yudin et. al, [24]). Precipitation is also responsible for
loss of soil nutrients.

It was discovered that brief hot spells can lower the number of seeds or grains that might otherwise contribute
to crop yield (Wheeler et. al, [39]). These results imply that temperature rises brought on by climate change
may have a significant influence on agricultural yields, which may have consequences for the world's food
supply. Depending on how each crop species is affected, heat stress has a negative impact on normal plant
growth and development (Bhattacharya, [8]). The pace of phenological development was accelerated by warm
temperatures (Hatfield & Prueger, [13]). The benefits of increased planting density for yield are diminished by
higher temperatures (Wang et. al, [37]). Efficiency is considerably reduced by increases in yearly temperature
fluctuation and long-term temperature (Rahman & Anik, [31]). Yields were reduced by temperatures outside or
inside the ideal range (1822 °C) (Jannat et. al, [17]). In Bangladesh, rising temperatures were linked to
declines in the value of small farms (Hossain et. al, [14]). All of Bangladesh's primary food crops' production
and cropping areas were negatively impacted by the maximum temperature. But in certain cases, crop yields
have typically increased when temperatures have increased. The net crop revenue from crop cultivation in
Bangladesh will grow as the temperature and rainfall rise (Hossain et. al, [15]). Crop yields are increased
through climate-smart agriculture, which also makes it easier to produce crops in a secure environment
(Liliane & Charles, [19]). The production of annual crops like wheat and groundnuts can be drastically reduced
by brief high-temperature events that occur at various periods close to blooming (Challinor et. al, [10]). Wheat
yields are reduced by around 3-10% for every 1°C increase in temperature throughout the growing season
(You et. al, [43]).

In the study district in Ghana, the unpredictable rainfall and rising temperatures have a significant beneficial
influence on maize output, underscoring the necessity for ongoing adaptation strategies such cultivating high
yielding and drought tolerant maize varieties to improve family food security (Baffour-Ata et. al, [6]). Zhao et.
al. [45] discovered that rising temperatures have a detrimental effect on the world's wheat, rice, maize, and
soybean crops. According to a study by Lobell and Field, [20] rising temperatures cause a decline in
worldwide wheat, maize, and barley yields. According to Schlenker and Roberts, [33] research, maize,
soybean, and cotton yields in the US are severely harmed by temperatures that are higher than a particular
point. Maize, rice, and soybean crops all benefited from higher minimum temperatures (Yin et. al, [41]).
Rainfall has a detrimental impact on rice output during the heading, flowering, ripening, and reproductive
stages. Rice breeders should create rice types that use less water and are more productive in hot weather
(Abbas & Mayo, [1]). Since there are so many negative impacts of rainfall and temperature fluctuations all
over the world like this, it is even more important for Bangladesh to come up with a good forecasting method.
Crops, animals, and pests are all vulnerable to changes in temperature and precipitation patterns, which can
have an effect on agricultural output. Predicted shifts in the climate must be taken into account so that farmers
and ranchers can adapt and increase their resilience. Climate variability and changes in the frequency of severe
events are essential for the yield, its stability, and quality (Porter & Semenov, [28]). That's why it's crucial to
know how precipitation and temperature will affect agricultural output. The purpose of this study is to predict
annual mean precipitation and temperature for the period 2023-2032 in an effort to alleviate a major
agricultural problem.
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Methods

The aim of this research is to predict rainfall and mean temperature for the next 10 years from 2023 to 2032.
Both forecasting is done using ARIMA. Rainfall and mean temperature records of Bangladesh for the past
sixty years (1961-2021) were collected from the Climate Change Knowledge Portal of World Bank (World
Bank, [40]). Analysis was done in RStudio with the help of auto.arima() function. In this analysis, lubridate,
ggplot2, dplyr, and forecast packages were applied. There are no missing values in this data set. The study is
conducted with non-stationary time series data. The Auto-Regressive Integrated Moving Average (ARIMA)
model is used to forecast annual mean rainfall and temperature trends in Bangladesh.

ARIMA Model

The Autoregressive (AR) model can be effectively coupled with Moving Average (MA) models to form a
general and useful class of time series models called Autoregressive Moving Average (ARMA) models.
However, they can only be used when the data are stationary. This class of models can be extended to non-
stationary series by allowing differencing of the data series. These are called the Autoregressive Integrated
Moving Average (ARIMA) model (Anderson & Theodore, [3]). Thus, an ARIMA model is a combination of
an Autoregressive (AR) process and a Moving Average (MA) process applied to a non-stationary data series.
The three essential elements of the ARIMA model are autoregressive, integrated, and moving average, which
drives the evaluation and selection of coefficients iteratively and recursively. These three elements are known
as p, d, and q, respectively (Aborass et al, [2]).

The general non-seasonal model is known as ARIMA (p,d,q):
AR:p =order of the autoregressive part
I:d = degree of differencing involved
MA:q =order of the moving average part
The equation forth simplest ARIMA (p,d,q) model is as follows:

Vi=ct oY1+ @Y2+ ...+ (Pth-p+ e~ 01e-1— 02— ... — epet-p (D

Where, Y; = Climatic factor (Annual mean rainfall and temperature)
Y1, Yio,...,Y:, = Climatic factor (Annual mean rainfall and temperature)at time lags #-1,t-2,...,t-p ,respectively.

The Box Jenkins Methodology

The Box Jenkins methodology is used to find the best-fitted model of time series data for both Univariate and
Multivariate ARIMA models (Ljung & Box, [22]). Box-methods Jenkin's have four steps. First, it is necessary to
determine whether or not the variables are stationary. The unit root test is used to ensure stationarity. To check the
unit root and stationarity of the data, the augmented Dickey-Fuller (ADF) test and the Kwiatkowski, Phillips,
Schmidt, and Shin (KPSS) test can be used. If the data is not stationary, it is transformed to be stationary by
comparing the original data series. The second step is to develop a preliminary model that specifies the appropriate
values of p, d, and q. The AutoCorrelation Function (ACF) and Partial Auto Correlation Function (PACF) plot to
assist us in determining the order of the MA and AR processes respectively. The third step is to estimate the
model's parameters using likelihood methods such as AIC, AICc, and BIC. Finally, the best-fitted model must
be validated by testing the parameters and residuals of the chosen model. The residuals are examined using the
ACF and PACEF plots, as well as the (Box & Jenkins, [9]) statistics.

Decomposition of Time Series Data
To break down time series data into its component parts, decomposition of data is used. Using RStudio, simple
additive decomposition has been performed. It goes like this:
Ye =S+ T+ R, (2)
Where, S = Seasonal Variation
T = Trend or cyclic component
R = Residual or error component
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Results and Discussion

Annual Mean Rainfall
The time series plot (figure 1) shows stationary and the parameter values of p, d and q found for the ARIMA
model are 0, 1 and 2. The final model chosen with the aid of the "auto.arima()" function is ARIMA (0,1,2).

Yearly Rainfall in Bangladesh
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Fig.1: Time series plot of yearly rainfall in Bangladesh
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Fig.2: Decomposition of additive time series of annual mean rainfall data in Bangladesh

In figure 2, four types of plots are shown. first one is for the observed raw data, the second one shows the
trend of the data, the third one depicts the seasonal variation and the last one shows a random component.
No specific trend shows in the above plot.

Table 1
Parameter estimation of ARIMA (0,1,2) model
Parameter Coefficients St. Error z value Pr(>|z))
MAI -1.1073 0.1238 -8.9449 <2e-16 ***
MA2 0.2164 0.1250 1.7318 0.0833*

**% means significant at 1%, ** means significant at 5% and * means significant at 10% level of
significance.

The model selection criteria as Akaike Information Criteria (AIC), lowest Corrected Akaike Information
Criteria (AICc), Bayesian information criterion (BIC) values are listed in the following table for the yearly
average rainfall data.
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Table 2
Performance criteria of ARIMA (0,1,2) model
Criteria ARIMA(0,1,2)
log likelihood -420.88
sigma’ 72730
AIC 847.77
AlCc 848.2
BIC 854.05
Forecasts from ARIMA(O,1,2)
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Fig.3: Forecasting yearly average rainfall in Bangladesh

Figure 3 focuses the forecasted values of yearly average rainfall in Bangladesh for the next ten years from
2022 to 2032. By using ARIMA(0,1,2) model the deep blue shade in the forecasted part shows 80%
confidence interval and light blue shade shows 95% confidence interval for the rainfall in Bangladesh. From

the 95% confidence interval it depicts the forecasted average annual rainfall is around 1550 mm to 2650 mm.
Annual Mean Temperature

The parameter values for the ARIMA model are determined to be 0, 1, and 2 according to the time series plot
in Figure 4. The final model chosen with the aid of the "auto.arima ()" function is ARIMA (0,1,2).
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Fig.4: Time series plot of yearly mean temperature in Bangladesh
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Decomposition of additive time series

o
5 =
= -
@
oy w3
o o
o
(S
[i=}
o4
= = ]
wx
P -
= A
wx
o
W o
5 87
o = —
o —
ax» wy ]
—_
=
E = 4
S o
= o
= -
T = T
=
T
1950

18965 1970 1975 18980 1985 1590

Time

Fig.5: Decomposition of additive time series of annual mean temperature data in Bangladesh

Figure 5 displays four different types of plots, the first of which is for the observed raw data, the second
of which indicates the data's trend, the third of which shows the seasonal fluctuation, and the fourth of

which displays random components. For this data, there is no specific trend in the figure 5.

Table 3
Parameter estimation of ARIMA (0,1,2) model
Parameter Coefficients St. Error z value Pr(>|z|)
MAI —-0.4816 0.1363 -3.5336 0.0004***
MA2 -0.3270 0.1577 -2.0732 0.03816%*

*** means significant at 1%, ** means significant at 5% and * means significant at 10% level of significance.

For the yearly average temperature data, the model selection criteria such as Akaike Information Criterion
(AIC), lowest Corrected Akaike Information Criteria (AICc), and Bayesian information criterion (BIC)

values are provided in the table below.

Table 4
Performance criteria of ARIMA (0,1,2) model
Criteria ARIMA(0,1,2)

log likelihood -12.56
sigma’ 0.09063

AIC 31.11

AlCc 31.54

BIC 37.4
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Forecasts from ARIMA(O,1,2)
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Fig.6: Forecasting yearly average temperature in Bangladesh

Figure 6 depicts the anticipated values of yearly average mean temperature in Bangladesh over the next 10
years, from 2023 to 2032. Using the ARIMA(0,1,2) model, the deep blue shade in the predicted portion
represents an 80% confidence interval while the light blue shade shows a 95% confidence interval for the
temperature in Bangladesh. According to the 95% confidence interval, the anticipated average annual mean
temperature ranges between 24.9 °C and 26.3 °C.

Over the years, researchers have tried to pin down the best approach to studying climate change's impact on
farm yields. The yield of crops is greatly affected by weather fluctuations over time (Yirdew & Yeshiwas
[42]). Extreme heat and rain events have been demonstrated to significantly lower crop yields (Powell &
Reinhard, [29]). But, accurate weather predictions can reduce planting-stage wages by reducing prior out-
migration and can amplify the negative effects of bad meteorology on crop production wages (Rosenzweig &
Udry, [32]). In addition, rainfall has both a short-term and long-term negative and considerable influence on
agriculture productivity (Zahoor et al, [44]). Again another pair of researchers say that rainfall and economic
growth in general appear to be growing in tandem. Temperature, unlike rain, has little effect on agricultural
productivity (Erkan&Diken, [11]). But it has been found that more so than rainfall, temperature has an
influence on crop productivity (Ochieng et al, [27]). Cotton production is growing in relation to rainfall
(Ghanwat et al, [12]) whereas rainfall had little effect on coffee output (Msuya & Mahonge, [25]). With global
warming, it is predicted that average temperatures would rise and heat waves will occur more frequently
(Asseng et. al, [5]). For most nations, the impacts of heat are equal to or greater than those of water stress
(Siebert et al, [34]). Crop performance suffers as a result of rising global temperatures (Zhu et al, [46]). The
studies repeatedly demonstrate that agricultural yields are significantly impacted by temperature.

Short- and long-term stresses can significantly influence growth and yield processes when stress occurs at
sensitive stages (Prasad et al, [30]). So regulated, steady growth in climatic factors is sometimes good for
agricultural production. Bangladesh has witnessed extremes in rainfall and temperature during the previous
few decades, affecting both the environment and the agricultural economy. Masum et al, [23] used the ARIMA
model to predict and forecast rainfall and temperature in Chattogram, Bangladesh from 1953 to 2070
considering seasonal variations. (Aborass et al. [2]) applied the Box-Jenkins ARIMA methodology and
comparative study of ETS model for rainfall forecasting at Birzeit for the period which extended from
September -2003 to August-2021. This study predicts annual mean rainfall and temperature with the ARIMA
(0,1,2) and ARIMA (0,1,2) model respectively.
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Concluding Remarks

The two most important climatic factors are rainfall and temperature. Studies have shown that deviations in
temperature from the ideal range can have a significant impact on a country's agricultural output. In a similar
vein, inadequate or excessive precipitation will reduce agricultural output. A nation should take adequate
measures to prepare for such critical climate elements. Floods, cyclones, droughts, and other extreme weather
are becoming more frequent, wreaking havoc on farmlands and agricultural production in Bangladesh, one of
the nation's most vulnerable to global warming. The consequences of global change, such as low land
submergence, severe floods, cyclones, tidal waves, coastal flooding, and poor socioeconomic situations,
especially with regards to everyday living and food security, are having a profound effect on the physical and
chemical processes in these areas. Many factors, including but not limited to rising sea levels, rising
temperatures, saline intrusion, shrinking cultivable landmass, limited access to clean water and sanitary
conditions, infrastructure, plant diseases, limited energy sources, and so on, are making this worse. With
increasing temperature and precipitation swings, farmers in Bangladesh can benefit from up-to-date and
reliable weather forecasts in order to better manage crops in the field. The 10-year rainfall and mean
temperature forecasts from 2023 to 2032 can help farmers make long-term plans and adjustments to their
agricultural production processes. Even if climatic conditions may fluctuate due to a number of variables, this
prediction will hopefully help them have a secure agricultural production process and avoid the difficult
periods. If farmers had access to weather predictions, it might have prevented some of the damage that has
been done. These climate services will help the agricultural sector prepare for and respond to extreme weather
events, as well as adapt to the long-term effects of climate change. Therefore, this type of forecasting method
is essential for ensuring the reliability of agricultural output.
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Abstract: In this study, the collocation method and first-kind Chebyshev polynomials are used to
investigate the solution of fractional integral-differential equations. In order to solve the problem, we first
convert it to a set of linear algebraic equations, which are then solved by using matrix inversion to get the
unknown constants. To demonstrate the theoretical findings, a few numerical examples are given and
compared with other results obtained by other numerical techniques. Tables and figures are utilized to
demonstrate the accuracy and effectiveness of the method. The outcomes demonstrate that the method
improved accuracy more effectively while requiring less labor-intensive tasks.

Keywords: First-kind Chebyshev polynomials, Fractional integro-differential equations, Numerical
technique, Matrix inversion.

Introduction

The utilization of fractional integro-differential equations (IDEs) has significantly enhanced the modeling of
real-world physical problems. Fractional calculus stands out as the most effective approach for capturing
unusual phenomena. Illustrative instances encompass the dispersion of heat within a furnace, the spread of
viruses, the positioning of satellites in space, and the memory characteristics of a system, among others. As
commonly acknowledged, the collocation method hinges on the notion of approximating the precise solution
of a given functional equation using an appropriate approximant selected from a finite-dimensional space,
typically a piecewise algebraic polynomial. This approximant precisely satisfies the equation within a specific
subset of the integration interval, known as the set of collocation points. [1-8]. According to [9-12], the
concept of fractional calculus originated from a question over whether the definition of a derivative to an
integer order » could be expanded to still hold true when is not an integer. This question was later forgotten
because the formula for fractional derivatives is complex, making it difficult to work with ordinary pencil and
paper. However, because we have computers and machines, complexity is no longer an issue.
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The majority of fractional integro-diffrential equations (FIDEs) cannot be solved analytically; hence, extensive
research has been done to find approximations and numerical methods of solving FIDE:s.

Fractional Fredholm IDEs are solved using Laguerre polynomials in [13] and Bernstein polynomials as the
basis function in [14, 15] to approximate the solution of FIDEs. In [16-18], collocation techniques were used
to solve FIDEs using various basis functions. In [19], the Sumudu transform method and the Hermite spectral
collocation method are used to solve FIDEs; When solving Volterra fractional IDEs, [20] used Bernstein modified
homotopy perturbation approach; and in [21], approximate solutions of Volterra-Fredholm IDEs of fractional
order are introduced. Using Galerkin method and Taylor series expansion, as well as a quick numerical algorithm
based on the second kind of Chebyshev polynomials, [22, 23] investigated the numerical solution of fractional
singular IDEs. [24, 25] used the least-squares method to solve FIDEs. [26] investigated the solution of linear
fractional Fredholm integro-differential equation by using second kind Chebyshev wavelet and [27] employed
numerical techiques for the solution of nonlinear integro-differential equations. [28] proposed and investigate a
spectral approximation for numerical solutions of fractional integro-differential equations with weakly kernels. In
order to eliminate the solution’s singularity, the original equations are changed into an equivalent weakly singular
Volterra integral equation by incorporating some relevant smoothing transformations. The above work serves as
the motivation for the present study.

In this study, we present an innovative and precise numerical method for addressing fractional integro-differential
equation systems. Our approach employs the collocation computational technique, utilizing first-kind Chebyshev
polynomials as the basis functions for solving these fractional IDEs. This method results in less demanding work
in terms of computational cost and better accuracy.

The rest of the paper is structured as follows: Section 2 deals with some relevant basic definitions, section
3 deals with the demonstration of the suggested method. Numerical examples which demonstrate the method’s
applicability and validity is given in section 4, section 5 deals with results and discussion of results. Finally, the
conclusion of the study is presented in section 6. The general form of the class of problem considered in this work
is given as:

S
D%a(s) :p(s)a)(s)f(s)+/ K(s,))0(1)dr;0 < s,1 < 1, (1
0
with the following supplementary conditions:
oV (0)=w;;j=0,1,2,..n—Iin—1<a<nneN. )

Where D%@(s) is the a" Caputo fractional derivative of ®(s); p(s), f(s) and K(s,t) are given smooth functions,
o; are real constant, and s are real variables varying [0, 1] and (s) is the unknown function to be determined.

Some relevant basic definitions

Definition 1. Fractional integro-differential equation is an equation in which the unknown @(s) appears under the
integral sign and contain fractional derivatives D*@(s) as well. According to [29], a standard fractional integro-
differential equations is defined as:

h(s)

D w(s) = f(s)+ A / K(s,1)o(s)dr,

8(s)
where K(s,t) is a function of two variables s and r known as the kernel or the nucleus of the integral equation, g(s)
and h(s) are the limits of integration, A is a constant parameter.

Definition 2. The Caputo Factional Derivative is defined as [30]

1 S
Da(s) = m/0 (s—1)% '/ (¢)dt 3)
n is non-negative integer such that, r — 1 < o < n. For example, if 0 < o < 1, the Caputo fractional derivative is
1 s BV
Da(s) = m/o (s—1)~ "o (t)dr. )

Definition 3. The Chebyshev polynomials [31] of degree r over [0, 1] is defined by the relation
v} (s) = cos {Cos™ ' (2s— 1) };n > 0.
The recurrence relation is given as,
U1 (8) = 2(25 = o7 (s) = v, (s)sr = 1,

where
vy (s) =1,0{(s) =2s— 1.
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Implementation of the method

The study considered an estimated solution represented in the form of first-kind Chebyshev polynomials:
r
o(s) =) v/ (s)ai, )

Here, the constants a; for i = 0(1)r represent the undisclosed coefficients of the shifted Chebyshev polynomials
that need to be ascertained. The approach relies on the approximation of the unknown function ®(s) by employing
equation (3) to equation (1). Additionally, substituting equation (5) into (1) yields,

ﬁ A (s =y~ (Y w7 ())audt — p() 7 () - | s.ayvi e = £6) (6)

r

Lt £6)= 5 ) (s—t)’aljtr,g_zovi*(r))a,-da

ne) = [ ks )
Substituting £ (s) and 7 (s) in equation (6), gives

C(s) = p(s)vi (x) =n(s) = f(s). )
Collocating (7) at equally spaced point s; = a + (b;”)i , (i=0(1)(r)) results into linear system algebraic of
equations in (r+1) unknown constants a;s. Also, additional equations are also derived from (2) and are represented
in matrix form:

Onu Qnr Qi3 - = - Qi ap Ry
O Qxn Q23 v o0 oo Oy a Ry
le QmZ Qm3 er _ Rmr (8)
Q?l Q(})z Qié Q?, R,
0y On O3 0y, RL:
) 3t
O’ Q' Q' o e O \a Ry

where Q;; and Q;;l are the coefficients of a;; and R;; are values of f(s;)
The matrix inversion approach is then used to solve the system of equations in order to obtain the unknown

constants.
-1

aop On Qi Qi - o o QO Ry

ap O Qxn 0O - o - Oy Ry
_ le Qm2 Qm3 Tttt er Rmr (9)

Q({)1 Q?z Q({)3 Q({)r R(l)l

QO On Opn - - 0 Oy Rl:

) 22"

a Ol O Ot O R,

The sought-after approximate solution is derived through the solution of equation (9), followed by the insertion
of the determined constant values into the assumed approximate solution.
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Numerical examples with results and discussion

In this section, three numerical problems are presented to test the efficiency and simplicity of the suggested
method. We perform the computation with the help of Maple 18 software.
Example 1. Consider the fractional Volterra integro-differential equation [32]

2, 2.25
o _ s%e 6x /
D%w(s) = s o(s) F(3.25) + (10

subject to @(0) =0, for a = %, the exact solution is @(s) = s*. Applying the proposed technique for different
values a = 0.65,0.75,0.85,0.95 respectively, we have the following approximate solutions.

(5) = =3 x 107" +3 x 10725 — 3 x 10~°s> + 1.0000000001s"
@(s) =2 x 107" —0.02765359 15 +0.153378821s% + 1.008595542s°

(s) = —4 x 10711 +0.034398374s — 0.1426233144s> +0.9903261389s>
o(s) =1 x 10717 40.07693657s — 0.27700554 15> + 0.9802676637s

(s

(s

Example 2. Consider the fractional Fredholm Integro-differential equation [24]

o _ 8 45 o lg s
Do(s) = 0(5) + 3" 3 +/0 o(1)dt (i

Subject to ®(0) =0, for o = %, the exact solution is @(s) = s>. Applying the proposed technique for different
values a = 0.5,0.65,0.75,0.85 respectively, we have the following approximate solutions.

(s) = 1.16826354 x 1071 —2.83 x 10~"s 4- 1.00000000435> — 3.573844333s x 10~ %s*
(s) = =7.2 x 10711 —0.0928995883s + 0.8741581798s> — 0.1738219395s°
o(s) = —2.7 x 10711 —0.1234325707s +0.7798780867s> — 0.1944653643s°
= —1.9x 10711 —0.1453990287s + 0.6972345157s* — 0.19324867 15>
(s)

Example 3. Consider the fractional Volterra Integro-differential equation [33].

3V 4 2
D1/3a)( ) 4F(13) s3 -5

%(9+7s +/ st—st) (t)dt, (12)

subject to initial conditions ®(0) = 0 with the non-polynomial exact solution @(s) = $3. Applying the pro-
posed technique for different values o = 0.333333,0.35,0.45,0.55,0.65 respectively, we have the following ap-
proximate solutions.

o(s) = 0.1593261367s — 0.5714144863s" +2.492317064s° — 4.5963563615°
+4.735599489s* — 31363746075 4 1.917377053s% +3.601 x 10~ !
o(s) = 0.1468793779s + 2.342527711s° — 4.324730514s> + 4.4646782755"
—0.5389237087s” 4 1.872627517s> —2.979559309s° +5.184 x 10~
o(s) = 0.087607501835s + 1.5400659965° — 2.408 x 10 — 2.864694840s°
+2.987408235s* — 0.3625998682s” + 1.5901903225> — 2.088567904s"
o(s) = 0.048595469755 +0.93146221815° — 1.745512022s° + 1.822787227s*
—0.2276405006s” 4 1.3100791525% — 1.333448084s> — 5.874 x 10~ !
o(s) = 0.02341269350s + 0.5076386080s° — 0.9551665749s> + 0.9749333984s*
—0.1336620560s” + 1.053811826s> — .7390996908s> +2.425 x 107!

In this section, we present the results and discussion of the study. Tables 1-3 shows comparison of the absolute

errors for examples 1-3, while figures 1-3 shows the graphical behaviour of the approximation solutions of example
1-3.
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Table 1. Comparison of the absolute errors for example 1

s Exact Appro. Solu. n=3 Absol. Error atn =3  Absol. Error n=4 [32]

0.0 0.000 —0.00000000003000 3.000E — 11 3.000E -5
0.2 0.008 0.00800000025800 2.580E — 10 3.710E -5
0.4 0.064 0.06400000035000 3.540E — 10 2.400E -5
0.6 0.216 0.21600000030000 3.060E — 10 8.400E —5
0.8 0.512 0.51200000020000 1.620E — 10 4.300E -5
0.1 1.000 1.00000000000000 0.000E + 00 2.800E —5

Table 2. comparison of the absolute errors for example 2

S Exact  Appro. Solu. atn=3  Absol. Errorn=3  Absol. Error [24]

0.0 0.000  0.00000000001168 1.168E — 11 0.000E + 00
0.2 0.040  0.03999999958000 4.169E — 10 1.557E — 04
0.4 0.160  0.15999999930000 6.970E — 10 2.887E —03
0.6 0.360  0.35999999890000 1.000E — 09 1.681E — 02
0.8 0.640  0.63999999860000 1.498E — 09 6.069E — 02
0.1  1.000  0.99999999740000 2.362E — 09 1.683E — 01

Table 3. comparison of the absolute errors for example 3

s Exact Appro. Solu. n=3 Absol. Errorn=3  Absol. Error [33]
0.0 0.0000000000  0.00000000003601 3.601E —11 -
0.2 0.0894427191  0.08972763196000 2.849E — 04 9.8E—-03
0.4  0.2529822128  0.25321979130000 2.376E — 04 4.9E —-03
0.6 0.4647580015  0.46500112560000 2431E —04 32E-03
0.8 0.7155417528  0.71583758500000 2.958E — 04 35E-03
1.0 1.00000000000  1.00047428800000 4.743E — 04 3.5E—-03

0.8

0.6

s)

0.4+

0.2

= ® Exact Solution === = o=0.65 x=0.75

== oc=().85 oc=0.95

Figure 1. Showing the graphical behaviour of the approximation solutions of example 1

Using the collocation method via cubic B-spline wavelets, example 1 was solved by [31] at n = 4, [32] applied
the homotopy analysis transform method for solving example 2, and example 3 was solved by [24] using three
numerical schemes. By comparing the results, it can be seen from tables 1- 3 that the proposed method performed
better when compared with the results obtained by other numerical methods. Also, figures 1-3, demonstrate that
the approximate solutions are in excellent agreement with the exact solutions, and as the values of ¢ increase the
curve tend to zero.
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axs)

0 0.2 0.4 0.6 0.8 1

= = Exact Solution o« =(.5 == o=0(.65
—_— o =().75 o =0.85

Figure 2. Showing the graphical behaviour of the approximation solutions of example 2

0.81
0.61
o(s)

0.4+

0.21

0-F T T T T )
0 0.2 0.4 0.6 0.8 1

N

= = & Exact Solution === = oc = [/3 === oc =().35

—_— x =045 o« =0.55 o« =0.65

Figure 3. Showing the graphical behaviour of the approximation solutions of example 3

Conclusion

This work demonstrates a numerical solution of fractional integro-differential equations using collocation
computational technique. Three examples are used to demonstrate the method’s applicability and validity, and
it appears that the method produces favourable results. We confirmed that the proposed method is in excellent
agreement with the exact solutions, the solution obtained using the proposed method is more accurate than the
obtained result in [24,31,32]. On the basis of this work, researchers can extend this technique to some other
fractional integro-differential equations. The research will be valuable in multidisciplinary fields such as science
and engineering, among others. It is helpful because it addresses the challenge of dealing with fractional order
integro-differential problems by employing a simple collocation technique. The method has the advantage of
being more accurate and requiring less computer time to run. Fractional integro-differential equations can be used
to simulate many real life situations.
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Abstract: Fractional diffusion equations serve as fundamental tools for addressing the non-local properties
and long range memory effects that observed in diffusion processes within complex media. This works focuses
on solving non-integer order (fractional) diffusion equations by employing the natural decomposition
approach which gives the solution in series form. Some numerical examples of one dimensional and two
dimensional fractional order diffusion equations are presented to demonstrate its application and obtained
solutions are interpreted with the help of the computational sofiware. Compared to other analytical and
numerical techniques, the fractional natural decomposition method demonstrates advantages such as reduced
computational complexity and faster convergence. Additionally, it can also be readily applied to address
linear as well as non-linear problems. The application of natural decomposition approach to solve non-integer
order (fractional) diffusion equations provides the most comprehensive understanding of the anomalous
diffusion process occurring within complex media, as the fractional model accurately captures the non-local
properties and long-range memory effects associated with such processes. To support the technique, we have
taken into account a few problems and analyzed their solution by fractional natural decomposition method
(FNDM) with solutions for the classical diffusion equations. Keywords: Fractional derivative, Riemann-
Liouwville (R-L) derivative, Caputo derivative, natural transform, Adomian decomposition, Fractional diffusion.

Keywords: Fractional derivative, Riemann-Liouville (R-1) derivative, Caputo derivative, Natural transform,
Adomian decomposition, Fractional diffusion.

1 Introduction:

Diffusion is a common process that is essential to many fields of science, including physics, chemistry, biology,
and engineering [15]. It describes the process by which the particles, energy, or other quantities spread and mix
in a medium due to random thermal motion. Fick’s law, which bears the name of the German scientist Adolf
Fick and was created in the middle of the 19th century, serves as the foundation for the traditional definition of
diffusion [14]. The traditional explanation of diffusion, based on Fick’s law, offers a fundamental framework for
understanding the spreading of substances in homogeneous systems [14]. However, in recent years, researchers
have uncovered anomalous diffusion phenomena that deviate from the classical diffusion behavior, exhibiting
peculiar characteristics, such as non-local behavior, memory effects, and long-range interaction phenomena [15,
20]. To capture and describe these anomalous diffusion processes, a more generalized mathematical framework
is required. This is where fractional calculus and the fractional diffusion process come into play [3, 15]. By
extending the idea of differentiation and integration to non-integer orders, fractional calculus makes it possible to
describe non-local and long-range interaction phenomena [3, 13, 15]. The fractional diffusion equation arises
from the incorporation of fractional derivatives into the classical diffusion equation, providing a mathematical
framework to describe and analyze complex diffusion phenomena in fractal media, heterogeneous environments,
and systems with memory effect. This capability attracted significant interest from a variety of scientific
disciplines [15, 19]. Within the realm of anomalous diffusion, the fractional diffusion equations have been
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independently developed by considering various non-integer orders (fractional) derivatives in time, space,
and both time-space domains [I9]. The time-fractional diffusion equation, inspired by studies by Metzler
et al. [I0], introduces a fractional derivative in the time domain by considering the continuous time
random walk. This equation extends the traditional diffusion equation incorporating time derivative of
fractional order, enabling the description of memory effects and long-range correlations observed in time-
dependent diffusion processes. Similarly, the space fractional diffusion equation, as described in works by
Meerschaert et al. (2006), incorporates a fractional order spatial derivative. It allows for the character-
ization of diffusion processes in non-homogeneous media and fractal geometries. The equation captures
sub-diffusion or super-diffusion phenomena, where the spreading behavior is slower or faster than classical
diffusion, respectively, in spatial domains [8]. Furthermore, the space-time non-integer (fractional) order
diffusion equation, studied by Gorenflo et al. [4], and Meerschaert et al. [9] combines fractional deriva-
tives in both time and space domains. This is particularly relevant for describing anomalous diffusion in

highly heterogeneous environments, where temporal and spatial correlations play significant roles.

Several fundamental methods have been developed by renowned mathematicians for solving non-integer
order diffusion equations. Abbasbandy et al. [I] proposed the variational iteration method (VIM) to con-
struct an approximation solution. Lin et al. [7] employed the finite difference scheme method (FDSM)
for constructing approximations of fractional diffusion. Additionally, other approaches like homotopy
analysis method (HAM) [5], homotopy perturbation transform method (HPTM) [6], natural decomposi-
tion method (NDM), [I1], Adomian decomposition method (ADM) [I8], and so on have been utilized in
this context [I5]. In this this work, we utilize the natural decomposition method to solve the non-integer
order diffusion equations. The natural transform with Adomian decomposition approach for non-linear
partial differential equations was first used by Rawashdesh and Matima [I6]. Through our investigation,
we reveal the numerical solution to the time-fractional diffusion equation, which is a critical step toward
developing a general framework to model anomalous diffusion phenomena. This framework captures the

intricacies of long-range correlations, memory effects, and time-dependent system dynamics[T9] 20].

1.1 Riemann-Liouville (R-L) Derivative

The Riemann-Liouville (R-L) derivative for non-integer order is defined in terms of the fractional inte-
gration called R-L fractional integral [3]. The R-L integral of ¢(§), & > —1 of non-integer order a > 0 is
formulated as 3], [15]

¢ T
o1 (0(8)) = F(la) / G js(T))l_adT, a>0, £>a (1)

where I' is gamma function. With fractional integral, R-L derivative is given by

1 P ¢ ¢(7') .
77fa77ad7', lfa€R+7p_1<a<p
Fog (a(e)) = | Lp — @) 47 =t
@(ﬁ(&), ¢ ey

1.2 Caputo Derivative

The Caputo definition is defined by interchanging the order of derivative and fractional integration [3].

1 ¢ 0P (u)
€D (3(¢)) = 4 Tp— ) 7 (€~ w17+
¢(p)(§) ¢ apen

du if a€eR', p—1l<a<p
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1.3 Natural Transform

The fractional natural transform of a function ¢(7) is given by [2] [I7]

Ao = () = [ e Totun)in, sueR B
0

where the variables s and u represent the transformation variable. The definition of the inverse of natural

transform for a function is [I7];

a-+100
N [(s,0) = B(r) = / e 1p(s, u)ds (3)

27TZ —ioo

where the variables s and u represent the transformation variable, a is a real constant, and the integration

is taken along line Re(P) = a in a complex plane P = £ + i7.

1.4 Adomian Decomposition Method (ADM)

Consider a non-linear ordinary fractional differential equation [I1],

oD7o(T) + Ro(1) + Go(1) =9(7), p—1<a<p, peN (4)
with initial conditions djgb(O)
(4) — - _
O(0) = == =01 p— 1.

¢D¢ denote the fractional derivative with respect to 7 in Caputo sense and it is an invertible linear
operator, R is the operator for liner remainders, G represent the non-linear operator that is considered

as analytic, and ¥(7) is a known function. As per ADM algorithm, the solution of (4) is an infinite series

) =Y 6i(r). 9

Taking the fractional integral (inverted operator of D¢ ) on both side of (5),
120D o(7) + [T RO(7) + [T G(T) = I74(7) (6)
Using the initial condition,
p—1 s
=2 80O + I74(r) - ITRY(t) — I7Go() (7)
— J!
and the expression for the non linear expression G¢(7) is given by

)= Ak(r) (3)
k=0

where A (7),depending on ¢, ¢1..., are Adomian polynomials and can be calculated for non-linearity

Go = f(o(7)) as
Ap(r) = L wa (Z oi(T )] (9)
A=0

From (5), (8) and (9), equation (7) becomes;

i p1 J oo 00
S on(r) =D 0D (0) + 12 [o(r)] - 12 | R qbn(T)] — 12 S A
=0 =07 n=0 k=0

Then, from (10), we find the iterative scheme and then the approximate solution to equation (5) is the

(10)

sum of thus obtained term.
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2 Natural Decomposition Method (NDM)

The fractional natural transform method (FNTM) and Adomian decomposition method (ADM) are
combined to create a new method natural decomposition method (NDM) [12]. Let Q@ = S x I, where
S = [0, L] be spatial domain and I = [0,7] be time domain. Then an equation of one-dimensional
time-fractional diffusion is [7] [T1];

0% (&, 7)

CDS%(§7T):K87£2+w(£7T)7 (faT)GQa 0<Oé§1 (11)

with initial and boundary conditions

%(£0)=h(§), 0<E{<L (12)
%(0,7)=%(L,7)=0, 7>0 (13)
where ¢D¢ = Hra is non-integer order (fractional) derivative in Caputo sense, % (£, 7) is solute concen-
o
tration , ¥(&, 7) is the source function, and K represents the diffusion coefficient (constant or function of
&) which controls the anomalous diffusion in complex medium.
The solution of non-integer order diffusion equation by NDM, taking natural transform of (11)
U (& 7)

N EDEU (7Y = N [Kag e ﬂ} (14)

Using the natural transform’s differentiation property

a—1 2
A [KW + w(m)]

0¢?
o*U
0¢?

% (€,0)

(2) atiwen) -2

UOL

= N[ T)

e+ St k25 vuien]

% (&, 7) can be written as an infinite series by using the ADM technique.

%(577)12%1@(577):2?4 (15)

k=0 k=0

The Adomian polynomials infinite series is used in this problem to represent any existent non-linear

components
Gu(&7) =) Ak (16)
k=0
here Ay — ~ de P P77 k=0,1,2 domi 1 ials
where Ay = - | =35 [Zk:o( k)} B =0,1,2..., are adomian polynomials
From equation (15) and (16)
> 1 u® > U,
NT .| = ~h — N K
[;) k] WO+ l 2 e +w(£m>]

Using the Adomian decomposition and inverse natural transform,
1 u® u® R

tlr) =4 [0 41~ [ ot ] and tan(en) =~ | [ 72|

for k=0,1,2,..., the NDM method’s solution is derived by substituting the values of %4 (&, 7) in (15)
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3 Result and Discussion

In this section, we use the NDM approach to illustrate a few time-fractional diffusion equations.

Ex.1. Consider the following fractional diffusion equation in one dimension [I1]

0w (&7) _ LUK T)
ore 2 02

&meQ 0<a<l (17)
with initial condition
U(€,0)=¢% 0<E<2 (18)

By employing natural transform on (18)

ou(&,T)] €2 PU
o [ [5 %

Using the differentiation property of natural transform,

1 u® 52 82% 52 u® 52 82%
+ _ 72 R 7
aren = a0+ o [SEE] =S D [0 (19)
Then by ADM algorithm, the solution % (£, 7) can be expressed in infinite series as
UET) =D Ul&T) = U (20)
k=0 k=0
From equation (19) and (20)
o0 2 o 2 % g2
+ _E v | SN0
N |J€Z_%%k(§77-)‘| - S + So‘l/V [2 kZ:O 862
Taking inverse natural transform
o - 3 €2 3 u® N 2 8202/k
SN U(&r) =N [5 NN EZ e
k=0 k=0
By ADM algorithm
2
wien =S| ¢
and €2 922
_ | |6 k -
Ur1(&T) =N [SQJV [2 ez H, for k=0,1,2,...
For all values of £k =0, 1,2, ..., equation (20) becomes;
feY 2 3o ¥
2 T T T T
“E&r) = ¢ (1 TTatr) "TRatrD "TBax D) T@atD ' ) (21)

Using computational software, figure 1 shows that the three-dimensional plot that visually represents
the NDM solution for different values of the variable . On the other hand, figure 2 presents a two-
dimensional plot illustrating the solution for various values of « specifically when 7 is fixed at 1. Notably,
by observing both figures, it becomes evident that as the value of « progressively approaches 1, the
solution curve increasingly converges towards the curve corresponding to o = 1. The figures provide

clear evidence that the non-integer (fractional) order diffusion equation effectively captures the diffusive
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-

I b = 1 =1
[ Japha=038 a=08
- pha =07 =07
-alpha:D 5 ar

Figure 1: 3D plot of numerical solution of Figure 2: 2D plot of solution of example 1 at 7 =1

example 1 for different values «

behavior in continuous time. This property enables it to accurately represent the non-local nature and

long-range memory effects observed in anomalous diffusion processes occurring within complex medium.
When a =1, (21) gives;

7_2 7_3 7_4
wET) = & <1+T+§+§+I+--->

This is the somewhat like exact solution in closed form
U, T) =%

By computational software,

Figure 3 shows that three-dimensional plot illustrating the error of the solution across different values
of the variable a. This plot visually demonstrates how the error changes with varying . On the other
hand, Figure 4 presents a two-dimensional graph that specifically focuses on the error of the solution for
different a values when 7 is fixed at 1. Notably, both figures provide clear evidence that as a approaches
1, the corresponding error consistently decreases. This observation suggests a strong correlation between
the proximity of a to 1 and the reduction of error in the solution.

Ex.3. Consider following two dimensional fractional diffusion equation [I1]

U (&, y, 1)  OPUE,y,T) Uy, T)
) > <
ore 5 o2 T3 ogp 0 GuTEd O<asl (22)

with initial
U y,0)=y? 0<y<1 (23)

Applying the natural transform on both side of (23)

OU _ i [POPU U
are 2 0 " 2 9y

o [
By differentiation property of natural transform and using initial condition

2 L a 2 92 2 52
Y u yroruU & o0U
N [%(f’yﬁ)]:—s +g A {2 o2 2 Byz]

SOC

72



Nepal Journal of Mathematical Sciences (NJMS), Vol. 4, No. 2, 2023 (August): 67-76

Error (o= 0.8) Error (o.=0.7)

Errar (m=1)

Figure 3: Error plots of the solution by NDM for different « in 3D.

o
0

Figure 4: Error plots of the solution by NDM for 7 = 1
in 2D.

Using ADM algorithm, solution % (£, y, 7) is given by infinite series

Uy, T Z% &y, 7 (25)

From equation (24) and (25)

> 2 a% R
o [Ee]-f s IS SE S

Taking inverse natural transform
= 2 0*U o*u
SN w =" H}Jﬁ/[s [ Z ag; Z kH
k=o k=0

By ADM algorithm

(& y,7) =N~ [y} =y2

and

ey 7 929
Uiir(6,y,7) = N~ [ZO/V* ly F2r) %Z %l for k=012,
k=

2 0g?

putting different values of k

) ,7_(21971)04
WUop.— = ‘or k=1,2,...
2k 1(€7y77—) 5 F((Qk:—l)oz—i—l)’ fOT y Ay
and
T(2k72)a
Ust—2(&,y,7) = y? for k=1,2,...

T2k —2)a+1)’
From all above, equation (25) becomes;

T 3a

- ,7_204 7—404
“&wm) =€ (F(a T TBatD) > v (1 TTRa+D) T Tlav1) )
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-m= 1
=08
[ lx=07
| PR

Figure 5: Solution of two dimensional fractional diffusion Equation by NDM

Now, by using computational software,

Figure 5 shows that the three-dimensional plot that visually represents the NDM solution of two dimen-
sional fractional order diffusion equation for different values of the variable o. Notably, by observing
figure, it becomes evident that whenever value of « progressively approaches 1, the solution curve in-
creasingly converges towards the curve corresponding to & = 1 and at a = 1 it coincides with the exact

solution in closed form.
When a = 1, above gives;

of T, T 2 ™ 2 2
UEy,T) = =+=—+...]+y(1++—+..) =&sinh7+y*coshr.
1 3! 21 4!
This is the somewhat like exact solution in closed form Plotting the error by using computational software

Figure 6 shows that three-dimensional plot illustrating the error of the solution of two dimensional

Errar (= 0.8) Errar (.= 0.7)

PN

ey

5 Stiet el
E 05 1R
w S

Figure 6: Error plot of the solution by NDM

diffusion equation by NDM across different values of the variable ae. This plot visually demonstrates how
the error changes with varying «. Notably, figures provide clear evidence that as a approaches 1, the
corresponding error consistently decreases. This observation suggests a strong correlation between the

proximity of o to 1 and the reduction of error in the solution.
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4 Conclusion

In this work, we have examined the numerical analysis of the non-integer (fractional) order diffusion
equation by employing the natural decomposition method (NDM). Proposed method offers a valuable
approach for approximating solutions to fractional differential equations, including the fractional diffusion
equation, which exhibits anomalous diffusion behavior. The fractional diffusion equations are the best
tools to capture the diffusion in complex media where non-local property and and long-range memory
effect plays a crucial role. Through the application of the NDM, we have successfully illustrated the
numerical solutions for one dimensional and two dimensional fractional diffusion equations and from
the result we discovered that whenever on-integer order o tends towards integer order, the non-integer
order solutions converge rapidly close to exact solution. Therefore the accuracy and convergence of the
NDM have been validated through our numerical experiments. The application of NDM to illustrative
instances has further proved that, when comparing the integer-order model with fractional order model,
it becomes apparent that the fractional-order mathematical model provides the most effective approach
for capturing the non-local property and long-range memory effect that exhibit by anomalous diffusion
process. In conclusion, the non integer order diffusion equation offers a best mathematical framework
to capture the anomalous diffusion process in complex media and the fractional natural decomposition
method (NDM) is regarded as the best tool for solving linear as well as non-linear fractional partial

differential equations due to its superior convergence and accuracy compared to other methods.
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Abstract: The concept of summability of infinite series has been utilized in virtually every field of
scientific application, including the enhancement of signals in filters, the acceleration of the rate of
convergence, orthogonal series, and approximation theory, to name just a few. In addition, by making
use of the main theorem, a collection of new well-known arbitrary findings have been obtained.
Taking into account the appropriate conditions of a prior result, which result was produced, verifies
the conclusions of the current study.
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1. Introduction

Cauchy's monumental "course d'analyses algebriaic" published in 1821 and Abel's investigations (see
[8, 10-18]) into the binomial series (published in 1826) provided a solid foundation for the antiquated
and esoteric concept of convergence infinite series. In Dynamical Astronomy, in particular, there were
a few non-convergent series that gave close to the right answers. In 1890, a theory of divergent series
was formulated for the first time by Cesdro, who wrote a paper on the multiplication of a series. From
there, the theory of series emerged as the hub of mathematical analysts' ingenuity, explaining why the
sequence of partial sums of a function varies in a periodic fashion. Mathematicians like Holder,
Hausdorff, Riesz, Norlund, etc. worked tirelessly to develop effective solutions, and only in the last
decade of the twentieth century and the first year of the twenty-first century have they succeeded.
Cauchy's idea of convergence is intended to have a tight relationship with this method through
process. In a fair fashion, we can refer to these values as their sums. The process of linking
generalized sums, known as summability (Szasz 1946; Hardy 1949), offers a natural generalization of
the classical notion of convergence (Hobson 1909).

2. Definitions
Before proceeding with the main work, we now give some notations and definitions that are used in

the paper.
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2.1 Regular triangular matrix (see [17])

The matrix of triangles (A) = (1, ) wherea=0,1,2,3,...and »=0, 1, 2, 3, ...and 7,;, = 0 for
0 < a < 1,(defines a regular sequence-to-sequence transformation) b, is regular) if

o 14, =0, for every fixed b; (1)
Yb=0l7ap | < K, independent of a; )
and e o Tap = 1. 0

2.2 Strongly summable (see [5,17]);
An infinite series ), v, with the sequence of partial sums { S} is said to be strongly summable (A ) to
a fixed finite sums S, if X _ 75 | Sp —S|=0(1), asa— oo. 4

2.3 We have the following three cases (see [5,20,21]);

1
@T1ap =5 (b= a)

1
T S
) 7ap {0 +D) Thogg } ( :

1

:(1—b+a) > o

- (b<a)

m+1

(C) ra,b

Summability (A) becomes respectively Cesaro summability, Riesz summability and Nérlund
summability.

2.4 Ultraspherical series (see [5,20,21]);

Let f(6,¢ ) be a function defined in range 0 <0 < m and 0< ¢ < 2m. The ultraspherical series

corresponding to f (0, ) on the sphere S is given by

1 woo £ .0 )™ (cosw) sin®’ o’ de’
FO.0) ~=T5ga+ayfy L) @) sind’ do" G
[sin20’ sin? (¢ — ¢')] 2
Where, cos ® = cos 8 cos 0’ + sin 0 sin 8’ cos (¢ -P") . (6)

2.5 Ultraspherical polynomial (see [18,20]);

The ultraspherical polynomial Qf;*)( x ) is defined by generating function

(1-2xt+t2)"* =320 t70(x), a >0 NG
A generalized mean value of (6, ¢) on the sphere S has been defined Gupta (see [4]) as follows:
f(al’cl)l) ds’ (8)

1-2a

© [sin 20’ sin? (p—' )] 2

_ 1
f(('o) N 2m(sin w)zo‘fc

where the integral is taken along the small circle C whose center is (6, ) on the sphere S and whose
curvilinear radius is .

The series (5) reduces to

f(6,¢) ~ ﬁz;ﬁo(a + ) fonf(o)) sin?¢ o)ng) (cos ) do . )

Also, we write

d(@) = {f(w) —A} (sinw)?** (10)
where 4 is a fixed constant.

Various researchers have explored various intriguing generalizations; here we list just a handful (see
[1-9, 19-21]). The following theorem on the summability of Laguerre series in matrices was proved
by them (see [6]):
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2.6 Known Theorem:
Let the non- negative real sequence {r, , } be none decreasing with respect to b

and
o hap =1 ..y
If | ) | is integrable in the sense of Lebesgue integral in any bounded interval (0, ®)

and if,

o -1
J; e*z5 | d(2)] dz < 0. (12)
Then for —2<2a < —1, the Leguerre series corresponding to the function f € L [0,00] given by
) ~ Zemo v L () (3
where

a—+ o
o

v ={T(a+ 1) ( )}_1 7 e 220 ()L (2) dz (4

and Lff‘)(z) denotes the a™ Laguerre polynomial of order —a < 1 which is defined as

—Xw

oo L) ot = (1 - w) " letw s
and
b (@) =(I'(a+ 1)) e ?z%{f(2) — f(0)} ... (16)

is summable ( A) at x = 0 to the sum f(0).
3. Main Theorem
We prove the following theorem

3.1 Theorem:

Let {ra,b} be non-negative, monotone increasing sequence with respect to b, and

aﬁngzo ra,b =1. e (17)
Let p be a large constant and 8 be such that
I>a(14+6) >a, ae(0,1). (18)

Let ¢ be a function @ which is bounded variation in open interval (§, ) i.e.|dp(w)| € (§, m)where £ is

defined as follows:

E=pad (0<g<m . (19)
and, if

Jy 1d(w) [do =05+, ast>0 (20)
andg =222 1, 2n

Then the given ultraspherical series correspondingf (0, ) on the sphere S is strongly summable (A)
to the sum 4.

3.2 Lemmas:
The following lemmas are necessary for us to prove our theorem:

Lemma 1 ( see [22]) : We have for a > 0,
£ (cos8)=6"%0(a%"),2<0<7 Q)

and,
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Q5" (c0s 8)= 0 (5). 0< B < =
Lemma 2 (see [22]) : For a= 0, we have
100 1 =200 ),
Where le) (x)=0
Lemma 3 : Under the condition of theorem, we have
X5=0Tap K471 =0(a*™),
and similarly,
Y8 _oTap K21 =0( a2t ), asg— oo,
The proof obviously follows on using (17).
3.3 Proof of the theorem:

Let g, denote the at”* partial sum of the series (5) .Then we have ( see [22]).

(o T (o) ; 2
Ua—ﬁﬂz;gﬁ)fQOZ%dﬁm4ﬂﬂQa (cos ®) (sinw )*“do
(o)

a

- \/—I"(oc+

Therefore, with view of (10), we have

)f G(@) == { Q) (cos w )+ @SV (cos w) } do

r'(a)

%a _\/—F(

~A=0[f] d() == (@, (cos ) dw ]+ O [ [ d(w) == (0L (cos w)) do),

=1 +1,,
In order to establish our theorem, we must demonstrate that
Yh=0Tab | g, — A | P =Q(1), as a— oo.

Now applying Minkowski’s inequality, we get

1 1 1
(8 oTap |00 —A P < (feotap | L |PYP + {28 0ran |1 ]|P}?

1 1

=(M)» +(N)»  (say)

Let us first consider [,
| |=00f; [ o) ] |- (0SS, (cos w) | do]
=0 LU+ I [ o (o) | |20 (cosw) |do

=0(L;1)+0(hLy2), (say) .
We have,

I @] = 10 (cos o) | do
= fOE | d(w) | 2a | Qg:l)( cos ® ) | , using ( 24)
=¥ | d(w) | 2001 (b +1)2**! } do, using ( 23)

=0 (b2 [7 | $() | do
=0 (b2t O (&1, using ( 20).
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Hence,

Yh=0Tap Ol 1) = Xh=o Ta,bo(bzaﬂ) oE*h
=0 (X5=0Tap b***1) OF™Y)
= 0(a?**1) O(a~3E+D), using( 26) and (19)
— O( a20(+1—85—8)
=0(1), as a— oo, using (21) .

Again,

— (™ | | d (@
L= fg d(w) | | —c1Qpy1(cos © ) do

= [P(@) Q3 (cos )]F - [ db(w) QT (cos w) do
=0(b* 1) £, using ( 22)
and ¢(w) € BV(E ).
Hence,
Yh=0Tap OU12) = X5-0TapOb* 1) E7
=0 (Xh=oTapb*HE
=0 (a*) (na~8)~%, using ( 25) and (19)
=0( aa—1+a5)
=0(1), asa— o by (27) and (19).
Therefore, M =35 _o7ap |11 |7 = 0188 o7 ap}
(M)% =0(l),asa—» o by (3).

We can also demonstrate that
1
(N)»=0(1) asn— .
Combining (34) and (35), we get the required result (29).

Conclusion

(32)

(33)

(34

(35)

In this article, we have used the Generalization procedure to establish advanced systems. Summability
methods are instructed to reduce the error. Some new result can be generated by using suitable
conditions in the main result. The results [10-22] can be found by applying conditions on the main

result.

Acknowledgement

Authors are highly thankful to the referee for his valuable suggestions in improvement of this paper.

Data Availability

All the data used in this study “Degree of approximation of signals by strong summability of

ultraspherical series” supports the findings and are cited within the article.

References

[1] Alladi, S. (2019). A Multiplier theorem for ultraspherical polynomials, Studia Mathematica, 47:1-43.

[2] El- Hawary, H.M., Salim,M.S. and Hussien, H.S.. (2000). An optional ultraspherical
approximation of integrals, Int. J. Comput. Math., 76(2): 219-237.

[3] Elbert,A., A.Loforgia, and P. Siafarikas, (2001). A conjecture of the zeros of ultraspherical
polynomial, Journal of Computational and Applied Mathematics, 133(1): 684.

81



SK Sahani, JK Pokharel, GP Paudel & SK Tiwari/ On a New Application of Almost Increasing Sequence ....

[4] Gupta, D.P. (1962). The absolute summability (A) of ultraspherical series, Annali di Mathematica
pura ed Applicata, 59: 179-188.

[5] Hamilton, H.J. and Hill, J.D. (1938). On strong summability, The American Journal of
Mathematics, 60(3): 588-594.

[6] Khare, S.P., Srivastava, P.K., and Mishra, N.P. (1994). Matrix summability of Laguerre series,
Proc. N. A. S, 64(A)(11), 223-227.

[7] Krasikov, 1. (2017). On approximation of ultraspherical polynomials in the oscillatory
region, Journal of Approximation Theory, 222: 143-156.

[8] Nigam, H.K. (2013). Birth and growth of summability and approximation theory, International
Journal of Pure and Applied Mathematics, 83(5): 639-641.

[9] Prasad, K. (1980). On the strong matrix summability of ultraspherical series, Indian Journal of
Pure Applied Math., 11(9): 1170-1175.

[10] Sahani, S.K.,Mishra, V.N.,and Pahari,N.P. (2021).Some problems on approximation of function

(Signals ) in matrix summability of Legendre series, Nepal Journal of Mathematical Sciences,2(1): 43-50.

[11] Sahani, S.K.,Mishra, V.N.,and,Pahari,N.P. (2020). On the degree of approximations of a
function by Norlund means of its Fourier Laguerre series, Nepal Journal of Mathematical
Sciences, 1: 65-70.

[12] Sahani, S.K.and Mishra,L.N. (2021).Degree of approximation of signals by Norlund
summability of derived Fourier series, The Nepali Math.Sc.Report, 38(2):13-19.

[13] Sahani, S.K., Paudel,Paudel,G.P.,and Thakur, A.K. (2022). On a new application of positive

and decreasing sequences to double Fourier series associated with ( N,p,(;),p,(lz)) Journal of
Neapl Mathematicial Society,5(2): 58-64.

[14] Sahani, S.K. et al. (2022). On certain series to series transformation and analytic continuation
by matrix method, Nepal Journal of Mathematical Sciences,3(1): 75-80.

[15] Sahani, S.K.and Mishra, V.N. (2023).Degree of approximation of function by Nérlund summability of
double Fourier series, Mathematical Sciences and Applications E- Notes,11(2): 80-88.

[16] Sahani, S.K. and Jha, D. (2021). A certain studies on degree of approximation of functions by
matrix transformation, The Mathematics Education, LV(2): 21-33.

[17] Sahani, S.K. and Prasad, K.S. (2022). On a new application of almost non-increasing
sequence to ultrasphericial series associated with (N ,p, q ), means , XXIV(1):1-11.

[18] Sahani, S.K.,Mishra, V.N., and Rathour,L. (2022). On Nérlund summability of double Fourier

series, Open Journal of Mathematical Sciences, 6(1): 99-107.

[19] Sharapudinov, 1. (2003). Mixed series in ultraspherical polynomials and their approximation
properties, Russian Academy of Science Sbornik Mathematics, 194(3): 423- 456.

[20] Singhai, B.C. (1961). On the Cesaro summability of the ultraspherical series, Bulletino dell’

Vnione Mathematica Italiana,16(3): 207-217.
[21] Singhai, B.C. (1962). On the Cesaro summability of the ultraspherical serie, Annali di

Mathematica pura ed Applicata, 59: 27-39.

[22] Szegd G. (1959). Orthogonal polynomials colloq. Publ., Amer. Math. Soc. New Y ork.
00

82



Nepal Journal of Mathematical Sciences (NJMS) Research Article

ISSN: 2738-9928 (online), 2738-9812 (print) Received Date: August 7,2023
Vol. 4, No. 2, 2023 (August): 83-88 Accepted Date: August 25,2023
DOI: https://doi.org/10.3126/njmathsci.v4i2.60177 Published Date: August 30,2023

©School of Mathematical Sciences,
Tribhuvan University, Kathmandu, Nepal

Connection Formulas on Kummer’s Solutions and their
Extension on Hypergeometric Function

Madhav Prasad Poudell’4,Narayan Prasad Pahari’, Ganesh Bahadur Basnet’, & Resham Poudel’

'School of Engineering, Pokhara University, Pokhara-30, Kaski, Nepal
*Central Department of Mathematics, Tribhuvan University, Kirtipur, Kathmandu, Nepal
3Deparl‘ment of Mathematics, Tribhuvan University, Tri-Chandra Campus, Kathmandu, Nepal

*Nepal Sanskrit University, Beljhundi, Dang, Nepal
Corresponding Author: Madhav Prasad Poudel

Email: ' pdmadav@gmail.com, *nppahari@gmail.com *gbbmath@gmail.com, & *reshamprdpaudel@gmail.com

Abstract:  Hypergeometric functions are transcendental functions that are applicable in various
branches of mathematics, physics, and engineering. They are solutions to a class of differential equations
called hypergeometric differential equations. Kummer obtained six solutions for the hypergeometric
differential equation and twenty connection formulae. This research work has extended those connection

Jormulas to other six solutions y,(x),y,(x),y;(x),y,(x),ys(x),and y,(x) to show that each solution

can be expressed in terms of linear relationship among three of the other solutions.
Keywords: Hypergeometric function, Kummer’s formula, Connection formula
1. Introduction and Motivation

Before Proceeding with the main work, we shall now introduce some basic notations,definitions and
preliminaries that are used in this paper.

1.1 Hypergeometric Function[12]

The Gaussian hypergeometric function ,F(a,b;c;x) is a special function represented by the
hypergeometric series,

a b; (a), (D), x
F (a,b;c;x)=,F, =1+ L(1.1.1
2 Fi(a,bse;x) =, 1|: c: :| ; ©. n! ( )
Where (a), is called the Pochhammer symbol and is defined as
() (@), =a(a+1)(a+2)(a+3)..a+(n-1) = H(a +k—1) :% ..(1.1.2)
k=1 a

(i) (a), = 1,fora # o
If the value of a,b,ce Z" in (1.1.1) then it is convergent for ‘Z‘ <1[13] and if a,and b are the positive

integers, ¢ € {0,—1,...,a +1}and c € {0,—1,...,b + 1}, then the hypergeometric series (1.1.1) is a
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polynomial of degree |a| or |b ,If ¢ = a and b = ¢ then it is not possible to define , F| (a,b;c; z) [3]. In this

case,

(),
|

r x* =(1-x)" (1.1.3)

Fi(a,bie;x) =Y
k=0

If Re(c—a—>b)>0,Re(c)>Re(b)>0in (1.1.1) then it can be expressed in the form of gamma
function through the Guass Kummer identity;

I'e)'(c—a-b)

I'(c—a)'(c-b)

.. (1.1.4)

The series (1.1.1) is a solution of a second-order linear ordinary hypergeometric differential equation
known as Guass Hypergeometric differential equation[12],

x(I-x)y"+(c—(a+b+1)x)y'—aby =0 ...(1.1.5)

1.2 The solutions at the singularities

The equation (1.1.5) has a regular singularity at x =0, 1, and infinity [5, 16]. The table given below,

commonly known as Riemann Scheme table, shows the of local exponents of the hypergeometric
differential equations at the variate values of x

x=0 x=1 X =00
0 0
a

1-c c—

N

-b b

According to Riemann scheme, the difference of the local exponent is not an integer. This condition is
called the generic condition. In this condition the fundamental system of solutions are defined at each
singular points.[4]. The fundamental solutions of this differential equation in different singular points are
as below.[2]

(1) For singularity at x =0,

(%)=, F (a,b;c;x) ..(1.2.1)
and y,(x)=x",F(a-c+1,b—c+1;2—c;x) ...(1.2.2)
(i1) For singularity at x =1,
yi(x)=,F (a,b;a+b+1-c;1—x) ...(1.2.3)
and v4(2) :x”’“’b2Fl(c—a,c—b;c—a—b+l;1—x) (1.2.4)
(i)  For singularity at x = oo,
1
yvs(x)=x"“,F(a,a-c+l,a-b+1;—) ...(1.2.5)
X
1
and ye(X)=x",F(bb—c+Lb—a+1;—) (1.2.6)
X

1.3 Local Solutions and Connection formula

These six solutions published by Kummer, has four forms related to one another by Euler transformation
giving twenty four forms in total [11]. These twenty four solutions are known as Kummer’s solution of
hypergeometric differential equation. For details, we refer [2, 8].
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1.4 Connection Formulas

The six formulas as mentioned by Kummer [2, 8] for three parameters a, b, ¢ and combination of three
solutions,[14,15] with the property (1.1.4) will give C, =20 connection formulae as the principle
branches of Kummer’s solution[1, 2, 10]. They are listed as follows;

I'l-cl'(a+b—c+1) (x) + I'c-DI'(a+b—c+1)
Ta—c+Dlb—c+1)" T (@)(b)

I'c-DI'(c—a-b+1)

y;(x) = »,(x) .. (1.4.1)

I'l-c)l'(c—a-b+1)

Y4(x) = F—a)(—b) yi(x)+ Fle—a)(c—b) Y, (x) ... (14.2)
_I'-ol'(a-b+1) enm Le=DI'(a—b+1)

0= L iy e L ) (143)
_I'd-or(b—a+1) e L(e=DI'(b—a+1)

e T L AT s O . (144)

r'e)'(c—a-b) rera+b-c)
Fe—a)T(c—b) yi(x)+ @) b) y,(x) ... (1.4.5)
Ire-col'(c—a->b) Ire-col(a+b--c)

i (x)=

2= ara—s Y Ta—erpr—ce ™ o (149
() =% v, (x)+% Yo () (149)
Py (x) = 7 rz(f ;)cr)(rbai : ?1) s(x) + et rz(f ;)Cr)(ra(“_; i )1) V(%) .. (1.4.10)

T(a+b-c+)I(b-a) uT(@+b—c+D)I(a—b)

y;(x)=e" FOTG—ctD ys(x)+e @@ —c+]) ye(x) ...(1.4.11)
)= ey e Ry 04
e BT O g
Y2 = e +r1§2—_c?f)(ra()1 e —Fljz-k_l)cl“);(i)c s a1y
ya) = e T(a +Fz§2—_c?1r)(rb()1 et e T —Fcf i]ﬁgi Ty o) (1416)
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_ eam T(@@I(1-b) cam L(T(1-b)

M= s e—a b ra i —a) Y - (1417
_ (c-bya I'(e)'(1-a) —bri [(e)'(1-a)

» )= e —a—bn T T axre—n) Y - (14.18)

won  T@=0)T(c—b) I'(2-c)[(c-b)

) = e e—a- b0 T papr@optY 4
_ by I'2-ol'(c—a) m L(2—0)(c—a)
P = G v re—a—b 0" T Toarpra—p Y 1420

2. Research Objective

In 1837, Kummer introduced the solution to the Kummer differential equation which is known as
Confluent hypergeometric function. In the meantime he had discovered twenty four solutions for the
same, which subsequently formed the twenty formulas as the branches of Kummer solution [13]. They are
listed in relations (1.4.1-1.4.20). In this paper, our objective is to find the relations between any four sets

of solutions and also to express any one of them as the linear combination of the other three solutions.

3. Main Result

In section 1.4, the connection formulas for six different solutions, each consisting of two different
solutions are presented. The extension of connection formula refers to the combination of any three
solutions for a given solution. Each extension formulas is obtained as the combination of three different

solutions. The combination of six formulas taken four at a time constitute of °C, =12 solutions. The six

extension of connection formula are already evaluated by Poudel et.al [9] The remaining six connection
formulas will be obtained in this research paper. Those results are presented as follows.

2.1 Extension formula

i 1(b—a)

e ——————y(x)

L _Ta—c+)[b—c+)|  THIb-c+) oL
S [(1—0) I ) @ [(c-1) - T
T@a—c+)’ " Tare)
—am L0 =)l (a) om L(a=b)I'(D)
5 N T ern W ey T 212)
IR (1 - )[ ()T (B)
- T »(x)
(a—c+DI'(b-c+1)
| D [(-a)y,(x) Lo [{-a)y,(x)
Ta+b—c+D(c—b) T(h)(c—a—b+) T(b—a+D{c—b)
3. »@= .(2.1.3)
Ha—c+1) o Ha—c+1)y;(x)
[ (a—b+]) i
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el [(b—c+1)y;(x) 4 pAaom [(b-c+1)y,(x)

4. y4(x):F(a)F(c—a—b+l) Ia+b—c+DI'(c—a) I'(@I'(b—a+1) 21.4)
[(1-b) oo L(1-D)y(x)
I'(a—b+DI'(c—a)
(e (€e—a)y ()|
i Ta=b+D)Tb—c+1)| [b—c+Dc—a—b+1)  T(b—a+DI(1-b)
5. ys(o)=e (beiyi .(2.1.5)
[2-0la) (e M)y, (x)
| Da+b—c+)I1-b) |
L(c—a—-b)y,(x) N Ha+b—c)y,(x)
6. (9= [1-b)(a—c+1)| T1-a)(-b) T(a—c+)(b—c+1) 1

Ta=b) | _ aos_ TO-0y;(»
I-al(b—c+1)

The proof of the above extension formulas are as follows;

2.1 Derivation of the extension formula for (2.1.1)
From (1.4.1) and (1.4.11), we get

rl-ol(a+b—-c+1) Ic-DI'(a+b—-c+1)

Fa—cr DI —crn @7 T (a)(b) »>(*)
_ o Ia ; b—c+DI'(b-a) o)+ e [(a+b—c+DI(a-b) ()
BT (b—c+1) F(@)(a—c+1)
* Ta- cz(ll)}f; oy
e r(b)rr(?b_—az A e r(a)rr(?a_—bc) e %E(B)y :()
o 1) F(a_c;(ll)f(c]; - {eﬂ r(b)rr(fb_—?ﬂ) e r(a)r(r?a_—bc)ﬂ) X0 rr(izc);(lz)z) & (X)}

This proves the extension formula (2.1.1).

Applying the similar derivations from the given relations we obtain the formulae (2.1.2)-(2.1.6). From

formulas (1.4.2) and (1.4.12), we get the connection formula for y,(x)in(2.1.2), Similarly using the
formulas (1.4.13) and (1.4.18) we get the connection formula for y,(x)in (2.1.3),from (1.4.14) and
(1.4.17), we get the connection formula for y,(x)in(2.1.4), from (1.4.15) and (1.4.20), we get the
connection formula for y.(x)in (2.1.5) and finally from (1.4.6) and (1.4.10), we get the formula for

Ve (x)in (2.1.6).
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The hypergeometric function is the solution of the Gaussian hypergeometric differential equation[1].
Kummer has obtained six solutions and twenty connecting formulas for the second-order hypergeometric
differential equation. By the help of these formulas listed in (1.3.1-1.7.6) and (1.4.1-1.4.20) respectively,
for the hypergeometric differential equation, we have obtained additional six extensions [(2.1.1)-(2.1.6)]

of

expressed as the linear combination of other three solutions. These solutions are highly applicable in
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3. Conclusion

the connecting formulas for y,(x), y,(x) y;(x), y,(x), ys(x) and y,(x). Every solution are

various branches of applied sciences.
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