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The majority of fractional integro-diffrential equations (FIDEs) cannot be solved analytically; hence, extensive
research has been done to find approximations and numerical methods of solving FIDEs.

Fractional Fredholm IDEs are solved using Laguerre polynomials in [13] and Bernstein polynomials as the
basis function in [14, 15] to approximate the solution of FIDEs. In [16–18], collocation techniques were used
to solve FIDEs using various basis functions. In [19], the Sumudu transform method and the Hermite spectral
collocation method are used to solve FIDEs; When solving Volterra fractional IDEs, [20] used Bernstein modified
homotopy perturbation approach; and in [21], approximate solutions of Volterra-Fredholm IDEs of fractional
order are introduced. Using Galerkin method and Taylor series expansion, as well as a quick numerical algorithm
based on the second kind of Chebyshev polynomials, [22, 23] investigated the numerical solution of fractional
singular IDEs. [24, 25] used the least-squares method to solve FIDEs. [26] investigated the solution of linear
fractional Fredholm integro-differential equation by using second kind Chebyshev wavelet and [27] employed
numerical techiques for the solution of nonlinear integro-differential equations. [28] proposed and investigate a
spectral approximation for numerical solutions of fractional integro-differential equations with weakly kernels. In
order to eliminate the solution’s singularity, the original equations are changed into an equivalent weakly singular
Volterra integral equation by incorporating some relevant smoothing transformations. The above work serves as
the motivation for the present study.

In this study, we present an innovative and precise numerical method for addressing fractional integro-differential
equation systems. Our approach employs the collocation computational technique, utilizing first-kind Chebyshev
polynomials as the basis functions for solving these fractional IDEs. This method results in less demanding work
in terms of computational cost and better accuracy.

The rest of the paper is structured as follows: Section 2 deals with some relevant basic definitions, section
3 deals with the demonstration of the suggested method. Numerical examples which demonstrate the method’s
applicability and validity is given in section 4, section 5 deals with results and discussion of results. Finally, the
conclusion of the study is presented in section 6. The general form of the class of problem considered in this work
is given as:

Dα ω(s) = p(s)ω(s) f (s)+
∫ s

0
K(s, t)ω(t)dt;0 ≤ s, t ≤ 1, (1)

with the following supplementary conditions:

ω( j)(0) = ω j; j = 0,1,2, ...n−1;n−1 < α ≤ n,n ∈ N. (2)

Where Dα ω(s) is the α th Caputo fractional derivative of ω(s); p(s), f (s) and K(s, t) are given smooth functions,
ω j are real constant, and s are real variables varying [0, 1] and ω(s) is the unknown function to be determined.

Some relevant basic definitions

Definition 1. Fractional integro-differential equation is an equation in which the unknown ω(s) appears under the
integral sign and contain fractional derivatives Dα ω(s) as well. According to [29], a standard fractional integro-
differential equations is defined as:

Dα ω(s) = f (s)+λ
∫ h(s)

g(s)
K(s, t)ω(s)dt,

where K(s, t) is a function of two variables s and t known as the kernel or the nucleus of the integral equation, g(s)
and h(s) are the limits of integration, λ is a constant parameter.

Definition 2. The Caputo Factional Derivative is defined as [30]

Dα ω(s) =
1

Γ(r−α)

∫ s

0
(s− t)r−α−1ωr(t)dt (3)

n is non-negative integer such that, r−1 < α < n. For example, if 0 < α < 1, the Caputo fractional derivative is

Dα ω(s) =
1

Γ(1−α)

∫ s

0
(s− t)r−α−1ω

′
(t)dt. (4)

Definition 3. The Chebyshev polynomials [31] of degree r over [0,1] is defined by the relation

υ∗
r (s) = cos

{
Cos−1(2s−1)

}
;n ≥ 0.

The recurrence relation is given as,

υ∗
r+1(s) = 2(2s−1)υ∗

r (s)−υ∗
r−1(s);r ≥ 1,

where
υ∗

0 (s) = 1,υ∗
1 (s) = 2s−1.
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Implementation of the method

The study considered an estimated solution represented in the form of first-kind Chebyshev polynomials:

ω(s) =
r

∑
i=0

υ∗
i (s)ai, (5)

Here, the constants ai for i = 0(1)r represent the undisclosed coefficients of the shifted Chebyshev polynomials
that need to be ascertained. The approach relies on the approximation of the unknown function ω(s) by employing
equation (3) to equation (1). Additionally, substituting equation (5) into (1) yields,

1
Γ(1−α)

 s

0
(s− t)r−α−1 dr

dtr (
r

∑
i=0

υ∗
i (t))aidt − p(x)υ∗

i (s)−
 s

0
k(s, t)υ∗

i (t)dt = f (s) (6)

Let ζ (s) =
1

Γ(1−α)

 s

0
(s− t)r−α−1 dr

dtr (
r

∑
i=0

υ∗
i (t))aidt,

η(s) =
 s

0
k(s, t)υ∗

i (t).

Substituting ζ (s) and η(s) in equation (6), gives

ζ (s)− p(s)υ∗
i (x)−η(s) = f (s). (7)

Collocating (7) at equally spaced point si = a + (b−a)i
r , (i = 0(1)(r)) results into linear system algebraic of

equations in (r+1) unknown constants a′is. Also, additional equations are also derived from (2) and are represented
in matrix form:




Q11 Q12 Q13 · · · · · · · · · Q1r
Q21 Q22 Q23 · · · · · · · · · Q2r

...
...

...
...

...
...

...
...

Qm1 Qm2 Qm3 · · · · · · · · · Qmr
Q0

11 Q0
12 Q0

13 · · · · · · · · · Q0
1r

Q1
21 Q1

22 Q1
23 · · · · · · · · · Q1

2r
...

...
...

...
...

...
...

...
Qr−1

m1 Qr−1
m2 Qr−1

m3 · · · · · · · · · Qr−1
mr







a0
a1
...
...
...
...
...
...

ar




=




R11
R22

...

...
Rmr
R0

11

R1
22

...
...

Rr−1
mr




(8)

where Qis and Qr−1
is are the coefficients of ais and Ris are values of f (si)

The matrix inversion approach is then used to solve the system of equations in order to obtain the unknown
constants. 



a0
a1
...
...
...
...
...
...

ar




=




Q11 Q12 Q13 · · · · · · · · · Q1r
Q21 Q22 Q23 · · · · · · · · · Q2r

...
...

...
...

...
...

...
...

Qm1 Qm2 Qm3 · · · · · · · · · Qmr
Q0

11 Q0
12 Q0

13 · · · · · · · · · Q0
1r

Q1
21 Q1

22 Q1
23 · · · · · · · · · Q1

2r
...

...
...

...
...

...
...

...
Qr−1

m1 Qr−1
m2 Qr−1

m3 · · · · · · · · · Qn−1
mn




−1


R11
R22

...

...
Rmr
R0

11

R1
22

...
...

Rr−1
mr




(9)

The sought-after approximate solution is derived through the solution of equation (9), followed by the insertion
of the determined constant values into the assumed approximate solution.
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Numerical examples with results and discussion

In this section, three numerical problems are presented to test the efficiency and simplicity of the suggested
method. We perform the computation with the help of Maple 18 software.

Example 1. Consider the fractional Volterra integro-differential equation [32]

Dα ω(s) =
s2es

5
ω(s)+

6x2.25

Γ(3.25)
+

∫ s

0
tω(t)dt, (10)

subject to ω(0) = 0, for α = 3
4 , the exact solution is ω(s) = s3. Applying the proposed technique for different

values α = 0.65,0.75,0.85,0.95 respectively, we have the following approximate solutions.

ω(s) =−3×10−11 +3×10−9s−3×10−9s2 +1.0000000001s3

ω(s) = 2×10−11 −0.027653591s+0.153378821s2 +1.008595542s3

ω(s) =−4×10−11 +0.034398374s−0.1426233144s2 +0.9903261389s3

ω(s) = 1×10−10 +0.07693657s−0.277005541s2 +0.9802676637s3

Example 2. Consider the fractional Fredholm Integro-differential equation [24]

Dα ω(s) = ω(s)+
8

3Γ(0.5)
s1.5 − s2 − 1

3
s3 +

∫ s

0
ω(t)dt (11)

Subject to ω(0) = 0, for α = 1
2 , the exact solution is ω(s) = s2. Applying the proposed technique for different

values α = 0.5,0.65,0.75,0.85 respectively, we have the following approximate solutions.

ω(s) = 1.16826354×10−11 −2.83×10−9s+1.0000000043s2 −3.573844333s×10−9s3

ω(s) =−7.2×10−11 −0.0928995883s+0.8741581798s2 −0.1738219395s3

ω(s) =−2.7×10−11 −0.1234325707s+0.7798780867s2 −0.1944653643s3

ω(s) =−1.9×10−11 −0.1453990287s+0.6972345157s2 −0.193248671s3

Example 3. Consider the fractional Volterra Integro-differential equation [33].

D1/3ω(s) =
3
√

π
4Γ( 13

6 )
s

4
3 − 2

63
s

9
2 (9+7s2)+

∫ s

0
(st − s2t2)ω(t)dt, (12)

subject to initial conditions ω(0) = 0 with the non-polynomial exact solution ω(s) = s
3
2 . Applying the pro-

posed technique for different values α = 0.333333,0.35,0.45,0.55,0.65 respectively, we have the following ap-
proximate solutions.

ω(s) = 0.1593261367s−0.5714144863s7 +2.492317064s6 −4.596356361s5

+4.735599489s4 −3.136374607s3 +1.917377053s2 +3.601×10−11

ω(s) = 0.1468793779s+2.342527711s6 −4.324730514s5 +4.464678275s4

−0.5389237087s7 +1.872627517s2 −2.979559309s3 +5.184×10−11

ω(s) = 0.08760750183s+1.540065996s6 −2.408×1011 −2.864694840s5

+2.987408235s4 −0.3625998682s7 +1.590190322s2 −2.088567904s3

ω(s) = 0.04859546975s+0.9314622181s6 −1.745512022s5 +1.822787227s4

−0.2276405006s7 +1.310079152s2 −1.333448084s3 −5.874×10−11

ω(s) = 0.02341269350s+0.5076386080s6 −0.9551665749s5 +0.9749333984s4

−0.1336620560s7 +1.053811826s2 − .7390996908s3 +2.425×10−11

In this section, we present the results and discussion of the study. Tables 1-3 shows comparison of the absolute
errors for examples 1-3, while figures 1-3 shows the graphical behaviour of the approximation solutions of example
1-3.

8



63

Nepal Journal of Mathematical Sciences (NJMS), Vol. 4, No. 2, 2023 (August): 59-66Nepal Journal of Mathematical Sciences (NJMS), Vol. 4, No. 2, 2023 (August): 5–12

Table 1. Comparison of the absolute errors for example 1

s Exact Appro. Solu. n=3 Absol. Error at n =3 Absol. Error n=4 [32]
0.0 0.000 −0.00000000003000 3.000E −11 3.000E −5
0.2 0.008 0.00800000025800 2.580E −10 3.710E −5
0.4 0.064 0.06400000035000 3.540E −10 2.400E −5
0.6 0.216 0.21600000030000 3.060E −10 8.400E −5
0.8 0.512 0.51200000020000 1.620E −10 4.300E −5
0.1 1.000 1.00000000000000 0.000E +00 2.800E −5

Table 2. comparison of the absolute errors for example 2

s Exact Appro. Solu. at n=3 Absol. Error n=3 Absol. Error [24]
0.0 0.000 0.00000000001168 1.168E −11 0.000E +00
0.2 0.040 0.03999999958000 4.169E −10 1.557E −04
0.4 0.160 0.15999999930000 6.970E −10 2.887E −03
0.6 0.360 0.35999999890000 1.000E −09 1.681E −02
0.8 0.640 0.63999999860000 1.498E −09 6.069E −02
0.1 1.000 0.99999999740000 2.362E −09 1.683E −01

Table 3. comparison of the absolute errors for example 3

s Exact Appro. Solu. n=3 Absol. Error n=3 Absol. Error [33]
0.0 0.0000000000 0.00000000003601 3.601E −11 −
0.2 0.0894427191 0.08972763196000 2.849E −04 9.8E −03
0.4 0.2529822128 0.25321979130000 2.376E −04 4.9E −03
0.6 0.4647580015 0.46500112560000 2.431E −04 3.2E −03
0.8 0.7155417528 0.71583758500000 2.958E −04 3.5E −03
1.0 1.00000000000 1.00047428800000 4.743E −04 3.5E −03

Figure 1. Showing the graphical behaviour of the approximation solutions of example 1

Using the collocation method via cubic B-spline wavelets, example 1 was solved by [31] at n = 4, [32] applied
the homotopy analysis transform method for solving example 2, and example 3 was solved by [24] using three
numerical schemes. By comparing the results, it can be seen from tables 1- 3 that the proposed method performed
better when compared with the results obtained by other numerical methods. Also, figures 1-3, demonstrate that
the approximate solutions are in excellent agreement with the exact solutions, and as the values of α increase the
curve tend to zero.
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Figure 2. Showing the graphical behaviour of the approximation solutions of example 2

Figure 3. Showing the graphical behaviour of the approximation solutions of example 3

Conclusion

This work demonstrates a numerical solution of fractional integro-differential equations using collocation
computational technique. Three examples are used to demonstrate the method’s applicability and validity, and
it appears that the method produces favourable results. We confirmed that the proposed method is in excellent
agreement with the exact solutions, the solution obtained using the proposed method is more accurate than the
obtained result in [24, 31, 32]. On the basis of this work, researchers can extend this technique to some other
fractional integro-differential equations. The research will be valuable in multidisciplinary fields such as science
and engineering, among others. It is helpful because it addresses the challenge of dealing with fractional order
integro-differential problems by employing a simple collocation technique. The method has the advantage of
being more accurate and requiring less computer time to run. Fractional integro-differential equations can be used
to simulate many real life situations.
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