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independently developed by considering various non-integer orders (fractional) derivatives in time, space,

and both time-space domains [19]. The time-fractional diffusion equation, inspired by studies by Metzler

et al. [10], introduces a fractional derivative in the time domain by considering the continuous time

random walk. This equation extends the traditional diffusion equation incorporating time derivative of

fractional order, enabling the description of memory effects and long-range correlations observed in time-

dependent diffusion processes. Similarly, the space fractional diffusion equation, as described in works by

Meerschaert et al. (2006), incorporates a fractional order spatial derivative. It allows for the character-

ization of diffusion processes in non-homogeneous media and fractal geometries. The equation captures

sub-diffusion or super-diffusion phenomena, where the spreading behavior is slower or faster than classical

diffusion, respectively, in spatial domains [8]. Furthermore, the space-time non-integer (fractional) order

diffusion equation, studied by Gorenflo et al. [4], and Meerschaert et al. [9] combines fractional deriva-

tives in both time and space domains. This is particularly relevant for describing anomalous diffusion in

highly heterogeneous environments, where temporal and spatial correlations play significant roles.

Several fundamental methods have been developed by renowned mathematicians for solving non-integer

order diffusion equations. Abbasbandy et al. [1] proposed the variational iteration method (VIM) to con-

struct an approximation solution. Lin et al. [7] employed the finite difference scheme method (FDSM)

for constructing approximations of fractional diffusion. Additionally, other approaches like homotopy

analysis method (HAM) [5], homotopy perturbation transform method (HPTM) [6], natural decomposi-

tion method (NDM), [11], Adomian decomposition method (ADM) [18], and so on have been utilized in

this context [15]. In this this work, we utilize the natural decomposition method to solve the non-integer

order diffusion equations. The natural transform with Adomian decomposition approach for non-linear

partial differential equations was first used by Rawashdesh and Matima [16]. Through our investigation,

we reveal the numerical solution to the time-fractional diffusion equation, which is a critical step toward

developing a general framework to model anomalous diffusion phenomena. This framework captures the

intricacies of long-range correlations, memory effects, and time-dependent system dynamics[19, 20].

1.1 Riemann-Liouville (R-L) Derivative

The Riemann-Liouville (R-L) derivative for non-integer order is defined in terms of the fractional inte-

gration called R-L fractional integral [3]. The R-L integral of ϕ(ξ), ξ ≥ −1 of non-integer order α > 0 is

formulated as [3, 15]

aI
α
ξ (ϕ(ξ)) =

1

Γ(α)

 ξ

a

ϕ(τ)

(ξ − τ)1−α
dτ, α > 0, ξ > a (1)

where Γ is gamma function. With fractional integral, R-L derivative is given by

R
a D

α
ξ (ϕ(ξ)) =




1

Γ(p− α)

dp

dξp
 ξ

a

ϕ(τ)

(ξ − τ)1−p+α
dτ, if α ∈ R+, p− 1 < α < p

dp

dξp
ϕ(ξ), if α = p

1.2 Caputo Derivative

The Caputo definition is defined by interchanging the order of derivative and fractional integration [3].

C
a D

α
ξ (ϕ(ξ)) =





1

Γ(p− α)

 ξ

a

ϕ(p)(u)

(ξ − u)1−p+α
du if α ∈ R+, p− 1 < α < p

ϕ(p)(ξ) if α = p ∈ N

2
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1.3 Natural Transform

The fractional natural transform of a function ϕ(τ) is given by [2, 17]

N +[ϕ(τ)] = ψ(s, u) =

∫ ∞

0

e−sτϕ(uτ)dτ, s, u ∈ R (2)

where the variables s and u represent the transformation variable. The definition of the inverse of natural

transform for a function is [17];

N −[ψ(s, u)] = ϕ(τ) =
1

2πi

∫ a+i∞

a−i∞
esτψ(s, u)ds (3)

where the variables s and u represent the transformation variable, a is a real constant, and the integration

is taken along line Re(P ) = a in a complex plane P = ξ + iτ .

1.4 Adomian Decomposition Method (ADM)

Consider a non-linear ordinary fractional differential equation [11],

c
aD

α
τ ϕ(τ) +Rϕ(τ) +Gϕ(τ) = ψ(τ), p− 1 < α ≤ p, p ∈ N (4)

with initial conditions

ϕ(j)(0) =
djϕ(0)

dτ j
, j = 0, 1, ..., p− 1.

c
aD

α
τ denote the fractional derivative with respect to τ in Caputo sense and it is an invertible linear

operator, R is the operator for liner remainders, G represent the non-linear operator that is considered

as analytic, and ψ(τ) is a known function. As per ADM algorithm, the solution of (4) is an infinite series

ϕ(τ) =

∞∑
i=0

ϕi(τ). (5)

Taking the fractional integral (inverted operator of c
aD

α
τ ) on both side of (5),

Iατ
c
aD

α
τ ϕ(τ) + Iατ Rϕ(τ) + Iατ Gϕ(τ) = Iατ ψ(τ) (6)

Using the initial condition,

ϕ(τ) =

p−1∑
j=0

τ j

j!
ϕ(j)(0) + Iατ ψ(τ)− Iατ Rϕ(t)− Iαt Gϕ(τ) (7)

and the expression for the non linear expression Gϕ(τ) is given by

Gϕ(τ) =

∞∑
k=0

Ak(τ) (8)

where Ak(τ),depending on ϕ0, ϕ1..., are Adomian polynomials and can be calculated for non-linearity

Gϕ = f(ϕ(τ)) as,

Ak(τ) =
1

k!

[
dk

dλk
f

(
k∑

i=0

ϕi(τ)λ
i

)]

λ=0

(9)

From (5), (8) and (9), equation (7) becomes;

∞∑
n=0

ϕn(τ) =

p−1∑
j=0

τ j

j!
ϕ(j)(0) + Iατ [ϕ(τ)]− Iατ

[
R

∞∑
n=0

ϕn(τ)

]
− Iατ

[ ∞∑
k=0

Ak(τ)

]
(10)

Then, from (10), we find the iterative scheme and then the approximate solution to equation (5) is the

sum of thus obtained term.

3
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2 Natural Decomposition Method (NDM)

The fractional natural transform method (FNTM) and Adomian decomposition method (ADM) are

combined to create a new method natural decomposition method (NDM) [12]. Let Ω = S × I, where

S = [0, L] be spatial domain and I = [0, T ] be time domain. Then an equation of one-dimensional

time-fractional diffusion is [7, 11];

cDα
τ U (ξ, τ) = K

∂2U (ξ, τ)

∂ξ2
+ ψ(ξ, τ), (ξ, τ) ∈ Ω, 0 < α ≤ 1 (11)

with initial and boundary conditions

U (ξ, 0) = h(ξ), 0 ≤ ξ ≤ L (12)

U (0, τ) = U (L, τ) = 0, τ > 0 (13)

where cDα
τ =

∂α

∂τα
is non-integer order (fractional) derivative in Caputo sense, U (ξ, τ) is solute concen-

tration , ψ(ξ, τ) is the source function, and K represents the diffusion coefficient (constant or function of

ξ) which controls the anomalous diffusion in complex medium.

The solution of non-integer order diffusion equation by NDM, taking natural transform of (11)

N + [cDα
τ U (ξ, τ)] = N +

[
K

∂2U (ξ, τ)

∂ξ2
+ ψ(ξ, τ)

]
(14)

Using the natural transform’s differentiation property

( s

u

)α

N + [U (ξ, τ)]− sα−1

uα
U (ξ, 0) = N +

[
K

∂2U

∂ξ2
+ ψ(ξ, τ)

]

=⇒ N + [U (ξ, τ)] =
1

s
h(ξ) +

uα

sα
N +

[
K

∂2U

∂ξ2
+ ψ(ξ, τ)

]

U (ξ, τ) can be written as an infinite series by using the ADM technique.

U (ξ, τ) =

∞∑
k=0

Uk(ξ, τ) =

∞∑
k=0

Uk (15)

The Adomian polynomials infinite series is used in this problem to represent any existent non-linear

components

GU (ξ, τ) =
∞∑
k=0

Ak (16)

where Ak =
1

k!

[
dk

dλk
G
[∑∞

k=0(λ
kUk)

]]

λ=0

k = 0, 1, 2..., are adomian polynomials

From equation (15) and (16)

N +

[ ∞∑
k=0

Uk

]
=

1

s
h(ξ) +

uα

sα
N +

[
K

∞∑
k=0

∂2Uk

∂ξ2
+ ψ(ξ, τ)

]

Using the Adomian decomposition and inverse natural transform,

U0(ξ, τ) = N −
[
1

s
h(ξ)

]
+ N −

[
uα

sα
N + [ψ(ξ, τ)]

]
and Uk+1(ξ, τ) = N −

[
uα

sα
N +

[
K

∂2Uk

∂ξ2

]]

for k=0,1,2,..., the NDM method’s solution is derived by substituting the values of Uk(ξ, τ) in (15)

4
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3 Result and Discussion

In this section, we use the NDM approach to illustrate a few time-fractional diffusion equations.

Ex.1. Consider the following fractional diffusion equation in one dimension [11]

∂αU (ξ, τ)

∂τα
=

ξ2

2

∂2U (ξ, τ)

∂ξ2
, (ξ, τ) ∈ Ω, 0 < α ≤ 1 (17)

with initial condition

U (ξ, 0) = ξ2, 0 ≤ ξ ≤ 2 (18)

By employing natural transform on (18)

N +

[
∂αU (ξ, τ)

∂τα

]
= N +

[
ξ2

2

∂2U

∂ξ2

]

Using the differentiation property of natural transform,

N + [U (ξ, τ)] =
1

s
U (ξ, 0) +

uα

sα
N +

[
ξ2

2

∂2U

∂ξ2

]
=

ξ2

s
+

uα

sα
N +

[
ξ2

2

∂2U

∂ξ2

]
(19)

Then by ADM algorithm, the solution U (ξ, τ) can be expressed in infinite series as

U (ξ, τ) =

∞∑
k=0

Uk(ξ, τ) =

∞∑
k=0

Uk (20)

From equation (19) and (20)

N +

[ ∞∑
k=0

Uk(ξ, τ)

]
=

ξ2

s
+

uα

sα
N +

[
ξ2

2

∞∑
k=0

∂2Uk

∂ξ2

]

Taking inverse natural transform

∞∑
k=0

Uk(ξ, τ) = N −
[
ξ2

s

]
+ N −

[
uα

sα
N +

[
ξ2

2

∞∑
k=0

∂2Uk

∂ξ2

]]

By ADM algorithm

U0(ξ, τ) = N −
[
ξ2

s

]
= ξ2

and

Uk+1(ξ, τ) = N −
[
uα

sα
N +

[
ξ2

2

∂2Uk

∂ξ2

]]
, for k = 0, 1, 2, ...

For all values of k = 0, 1, 2, ..., equation (20) becomes;

U (ξ, τ) = ξ2
(
1 +

τα

Γ(α+ 1)
+

τ2α

Γ(2α+ 1)
+

τ3α

Γ(3α+ 1)
+

τ4α

Γ(4α+ 1)
+ ...

)
(21)

Using computational software, figure 1 shows that the three-dimensional plot that visually represents

the NDM solution for different values of the variable α. On the other hand, figure 2 presents a two-

dimensional plot illustrating the solution for various values of α specifically when τ is fixed at 1. Notably,

by observing both figures, it becomes evident that as the value of α progressively approaches 1, the

solution curve increasingly converges towards the curve corresponding to α = 1. The figures provide

clear evidence that the non-integer (fractional) order diffusion equation effectively captures the diffusive

5
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Figure 1: 3D plot of numerical solution of

example 1 for different values α

Figure 2: 2D plot of solution of example 1 at τ = 1

behavior in continuous time. This property enables it to accurately represent the non-local nature and

long-range memory effects observed in anomalous diffusion processes occurring within complex medium.

When α = 1, (21) gives;

U (ξ, τ) = ξ2
(
1 + τ +

τ2

2!
+

τ3

3!
+

τ4

4!
+ ...

)

This is the somewhat like exact solution in closed form

U (ξ, τ) = ξ2eτ

By computational software,

Figure 3 shows that three-dimensional plot illustrating the error of the solution across different values

of the variable α. This plot visually demonstrates how the error changes with varying α. On the other

hand, Figure 4 presents a two-dimensional graph that specifically focuses on the error of the solution for

different α values when τ is fixed at 1. Notably, both figures provide clear evidence that as α approaches

1, the corresponding error consistently decreases. This observation suggests a strong correlation between

the proximity of α to 1 and the reduction of error in the solution.

Ex.3. Consider following two dimensional fractional diffusion equation [11]

∂αU (ξ, y, τ)

∂τα
=

y2

2

∂2U (ξ, y, τ)

∂ξ2
+

ξ2

2

∂2U (ξ, y, τ)

∂y2
, (ξ, y, τ) ∈ Ω, 0 < α ≤ 1 (22)

with initial

U (ξ, y, 0) = y2, 0 ≤ y ≤ 1 (23)

Applying the natural transform on both side of (23)

N +

[
∂αU

∂τα

]
= N +

[
y2

2

∂2U

∂ξ2
+

ξ2

2

∂2U

∂y2

]

By differentiation property of natural transform and using initial condition

N + [U (ξ, y, τ)] =
y2

s
+

uα

sα
N +

[
y2

2

∂2U

∂ξ2
+

ξ2

2

∂2U

∂y2

]
(24)

6
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Figure 3: Error plots of the solution by NDM for different α in 3D.

Figure 4: Error plots of the solution by NDM for τ = 1

in 2D.

Using ADM algorithm, solution U (ξ, y, τ) is given by infinite series

U (ξ, y, τ) =

∞∑
k=o

Uk(ξ, y, τ) (25)

From equation (24) and (25)

N +

[ ∞∑
k=o

Uk

]
=

y2

s
+

uα

sα
N +

[
y2

2

∞∑
k=0

∂2Uk

∂ξ2
+

ξ2

2

∞∑
k=0

∂2Uk

∂y2

]

Taking inverse natural transform

∞∑
k=o

Uk = N −
[
y2

s

]
+ N −

[
uα

sα
N +

[
y2

2

∞∑
k=0

∂2Uk

∂ξ2
+

ξ2

2

∞∑
k=0

∂2Uk

∂y2

]]

By ADM algorithm

U0(ξ, y, τ) = N −
[
y2

s

]
= y2

and

Uk+1(ξ, y, τ) = N −

[
uα

sα
N +

[
y2

2

∂2Uk(ξ, τ)

∂ξ2
+

ξ2

2

∞∑
k=0

∂2Uk

∂y2

]]
, for k = 0, 1, 2, ...

putting different values of k

U2k−1(ξ, y, τ) = ξ2
τ (2k−1)α

Γ((2k − 1)α+ 1)
, for k = 1, 2, ...

and

U2k−2(ξ, y, τ) = y2
τ (2k−2)α

Γ((2k − 2)α+ 1)
, for k = 1, 2, ...

From all above, equation (25) becomes;

U (ξ, y, τ) = ξ2
(

τα

Γ(α+ 1)
+

τ3α

Γ(3α+ 1)
+ ...

)
+ y2

(
1 +

τ2α

Γ(2α+ 1)
+

τ4α

Γ(4α+ 1)
+ ...

)

7
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Figure 5: Solution of two dimensional fractional diffusion Equation by NDM

Now, by using computational software,

Figure 5 shows that the three-dimensional plot that visually represents the NDM solution of two dimen-

sional fractional order diffusion equation for different values of the variable α. Notably, by observing

figure, it becomes evident that whenever value of α progressively approaches 1, the solution curve in-

creasingly converges towards the curve corresponding to α = 1 and at α = 1 it coincides with the exact

solution in closed form.

When α = 1, above gives;

U (ξ, y, τ) = ξ2
(
τ

1!
+

τ3

3!
+ ...

)
+ y2

(
1 +

τ2

2!
+

τ4

4!
+ ...

)
= ξ2 sinh τ + y2 cosh τ.

This is the somewhat like exact solution in closed form Plotting the error by using computational software

Figure 6 shows that three-dimensional plot illustrating the error of the solution of two dimensional

Figure 6: Error plot of the solution by NDM

diffusion equation by NDM across different values of the variable α. This plot visually demonstrates how

the error changes with varying α. Notably, figures provide clear evidence that as α approaches 1, the

corresponding error consistently decreases. This observation suggests a strong correlation between the

proximity of α to 1 and the reduction of error in the solution.
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4 Conclusion

In this work, we have examined the numerical analysis of the non-integer (fractional) order diffusion

equation by employing the natural decomposition method (NDM). Proposed method offers a valuable

approach for approximating solutions to fractional differential equations, including the fractional diffusion

equation, which exhibits anomalous diffusion behavior. The fractional diffusion equations are the best

tools to capture the diffusion in complex media where non-local property and and long-range memory

effect plays a crucial role. Through the application of the NDM, we have successfully illustrated the

numerical solutions for one dimensional and two dimensional fractional diffusion equations and from

the result we discovered that whenever on-integer order α tends towards integer order, the non-integer

order solutions converge rapidly close to exact solution. Therefore the accuracy and convergence of the

NDM have been validated through our numerical experiments. The application of NDM to illustrative

instances has further proved that, when comparing the integer-order model with fractional order model,

it becomes apparent that the fractional-order mathematical model provides the most effective approach

for capturing the non-local property and long-range memory effect that exhibit by anomalous diffusion

process. In conclusion, the non integer order diffusion equation offers a best mathematical framework

to capture the anomalous diffusion process in complex media and the fractional natural decomposition

method (NDM) is regarded as the best tool for solving linear as well as non-linear fractional partial

differential equations due to its superior convergence and accuracy compared to other methods.
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