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Abstract: Farey sequence is a pattern of rational numbers that approximates irrational numbers. In this 
paper, we use the Farey sequence to describe the Ford Circles. Its results and applications are equally 
fascinating as its pattern. Hurwitz Theorem is the main outcome of the approximation of irrational by 
rational numbers. Also, we examine the relationship between the Ford circle and the Farey sequence for 
rational values between 0 and 1. 

Keywords: Farey sequence, Irrational number, Mediant, Approximation, Ford circle, Hurwitz Theorem. 

1.Introduction 

Two-integer fractions with a non-zero denominator can be used to represent rational numbers. If not, it is 
an irrational number. The Farey sequence helps to classify rational and irrational numbers. A brief history 
of the Farey sequences after John Farey, who initially proposed that 𝐹𝐹� can be created from 𝐹𝐹���can be 
found in the work of Hardy and Wright [11]. The Farey sequence [7]was created by John Farey and is an 
outstanding method for producing appropriate fractions in the range[0,1]. The Farey sequence 𝐹𝐹�of order 
𝑛𝑛 is a collection of proper, irreducible, positive fractions with denominators less than or equal to 𝑛𝑛 and 
arranged in ascending order of their values. The Farey sequence is related to various studies, the major of 
which concentrate on fraction theory [11, 13].The Farey sequence connection with rational numbers 
between 0 = ��

�
�and 1 = ��

�
�. A collection of all reduced rational numbers with non-exceeding 

𝑛𝑛denominators, known as the Farey sequence of order 𝑛𝑛, and is arranged in size order and collection of 
all integers of order 2in the following: 

�⋯ ,
−3
1

,
−5
2

,
−2
1

,
−3
2

,
−1
1

,
−1
2

,
0
1

,
1
2

,
1
1

,
3
2

,
2
1

,
5
2

,
3
1

, ⋯ � 

While Mr. Flitcon's concluded that implementation the correct number of elements in 𝐹𝐹��with the 
exception of 0 and 1, it did not give a formula or even a list of those elements. Charles Haros was tasked 
with creating a mathematical table to convert between fractions and decimals after the new French 
government passed legislation going to require that all of France switch to the metric system in place of 
imperial measurements in 1791, it was Charles Haros' responsibility to develop a mathematical table to 
translate between fractions and decimals.  The French Revolution provided an unlikely motivation for the 
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first publication of 𝐹𝐹��in [8]. Charles Haros[1] provided some major sequence-related results in 
conjunction with a description of how the 𝐹𝐹��Farey sequence was built using the mediant property and 
noted that if two numbers ��

��
  and  ��

��
 are Farey neighbors, then |𝑏𝑏�𝑎𝑎� − 𝑎𝑎�𝑏𝑏�| = 1, and  formed 𝐹𝐹�� using 

the mediant property. The two fractions ��
��

  and  ��
��

 are Farey neighbors and appear adjacent to one 

another in some Farey sequence if they have the properties that ��
��

< ��
��

 and 𝑏𝑏�𝑎𝑎� − 𝑎𝑎�𝑏𝑏� = 1,then the 

median [7] of these two fractions is given by��
��

⨁ ��
��

= �����
�����

. The denominator of each term in 𝐹𝐹�, 

though, cannot be greater than 𝑛𝑛.The collection of irreducible rational number��
��

, where 0 ≤ 𝑎𝑎� < 𝑏𝑏� ≤

𝑛𝑛,    (𝑎𝑎�, 𝑏𝑏�) = 1are ordered in ascending order to form the Farey sequence 𝐹𝐹�for every positive integer 𝑛𝑛. 
Except for 𝐹𝐹�, every 𝐹𝐹� has odd numbers of terms, and the middle term is always �

�
. Introduce the mediant 

fraction �
�

⨁ �
�

= ���
���

 between terms �
�
and �

�
, where 𝑞𝑞 + 𝑠𝑠 ≥ 𝑛𝑛[2, 4, 10].When the fractions of 𝐹𝐹�are 

improperly added together, the outcome is �
�

⨁ �
�

= �
�
, which is a new fraction that lies between the first 

two. Adding the first two fractions of  𝐹𝐹� gives the mediant  �
�

⨁ �
�

= �
�
, and the last two fractions of  𝐹𝐹� 

give the mediant  �
�

⨁ �
�

= �
�
, separating them in 𝐹𝐹�. The Farey sequence can be found by repeatedly 

calculating the median between each pair of fractions in the preceding sequence. We can write �
�
 and �

�
in 

the first row 𝐹𝐹�. Since 1 + 1 ≤ 2, we insert ���
���

 between �
�
 and �

�
, to get �

�
, �

�
, �

�
 for the second row 𝐹𝐹�. 

Using this process, we can construct theFarey sequences table in the first eight rows of the following table 
as follows: 

𝐹𝐹� = �
0
1

,
1
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1
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Table No. 1. Iteratively construct Farey sequences up to 8 order 
 
Table No. 1 has several fascinating characteristics, at least up until this row. Every fraction is in its 
reduced form, and every reduced fraction fractions ��

��
 such that 0 ≤ ��

��
≤ 1 and 𝑏𝑏� ≤ 𝑛𝑛appear on the 𝑛𝑛�� 

row. If successive fractions ��
��

 and ��
��

 are found in the 𝑛𝑛�� row, then 𝑏𝑏�𝑎𝑎� − 𝑎𝑎�𝑏𝑏� = 1and 𝑏𝑏� + 𝑏𝑏� ≤

𝑛𝑛.Thus, Table No. 1,gives the rational number ��
��

 with gcd(𝑎𝑎�, 𝑏𝑏�) = 1 is reduced form or lowest terms. 
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2.Main Results  
 

Farey sequences [5, 9] appear in a variety of scientific fields and are connected to the theory of prime 
numbers. Farey sequences also have connections to unsolved mathematical puzzles, such as the Riemann 
hypothesis [3]. The best approximations for irrational numbers can be found using the Stern-Brocot tree 
[7]. Recent research has connected the components of a Farey sequence to the singularities of the Inverse 
Chirp Z-Transform [14], which is a generalization of the Inverse Fast Fourier Transform [15].The Farey 
sequence can be shown using Ford circles. The Stern-Brocot tree, which was created by removing 
unnecessary branches, has a subtree defined by the Farey sequence 𝐹𝐹� [7]. Although the Stern Brocot tree 
was developed independently, it has many similarities with the Farey sequence, which is created by the 
mediant characteristic of the fractions. Stern Brocot tree ranges from 0 to ∞ [1], while the Farey sequence 
is between 0and 1.The Farey sequence with the Ford circle is discussed in detail as follows, along with 
some of the essential characteristics that are important to our paper. 
 

Theorem 2.1: Suppose  ��
��

 and ��
��

are consecutive fractions in any row, then �����
�����

is the only rational 

fraction with the smallest denominator between these two. 
 

We will discuss the rational Approximations with the Farey sequence. We have approximate �
�

=

0.318309886183791 with a denominator no larger than 100. Probably 𝟑𝟑𝟑𝟑
���

= �
𝟑𝟑𝟐𝟐

 is the first and simplest 
approximation. The mediant can be used to approximate the Farey sequence. Iterations of the mediant in 
the Farey sequence can be used to find a reasonable approximation for an irrational integer between 0 and 

1.The first Farey sequence occurs in the interval ��
�

, �
�
�. The median that corresponds to this is �

�
. 

Choosing whether  �
�
 lies in ��

�
, �

�,
� or ��

�
, �

�
� is the next stage. As a result of �

�
< �

�
, the new interval is 

��
�

, �
�
�, and �

�
 is the current approximation. With the help of this interval, a new mediant and subsequent 

approximation can be found. The mediant for the new interval ��
�

, �
�
�is �

�
. So, ��

��
 is a rational 

approximation of �
�
. It should be noted that �

��
 is still a better approximation than ��

��
,showing that while a 

different approximation is found after each step, it is not always the most recent fraction that is found 
after each repetition that provides the best approximation. The approximation is ��

���
, which is more 

accurate than �
��

. 
 

Theorem 2.2: If ��
��

 and ��
��

 are Farey fractions contained in 𝐹𝐹� such that they are not connected by another 

Farey fraction of order 𝑛𝑛, then  

�
𝑎𝑎�

𝑏𝑏�
−

𝑎𝑎� + 𝑎𝑎�

𝑏𝑏� + 𝑏𝑏�
� =

1
𝑏𝑏�(𝑏𝑏� + 𝑏𝑏�) ≤

1
𝑏𝑏�(𝑛𝑛 + 1) 

𝑎𝑎𝑛𝑛𝑎𝑎     �
𝑎𝑎�

𝑏𝑏�
−

𝑎𝑎� + 𝑎𝑎�

𝑏𝑏� + 𝑏𝑏�
� =

1
𝑏𝑏�(𝑏𝑏� + 𝑏𝑏�) ≤

1
𝑏𝑏�(𝑛𝑛 + 1) 

Proof: 
Suppose that ��

��
 and ��

��
 are Farey fractions contained in 𝐹𝐹�, then 

�
𝑎𝑎�

𝑏𝑏�
−

𝑎𝑎� + 𝑎𝑎�

𝑏𝑏� + 𝑏𝑏�
� = �

𝑎𝑎�𝑏𝑏� + 𝑎𝑎�𝑏𝑏� − 𝑎𝑎�𝑏𝑏� − 𝑎𝑎�𝑏𝑏�

𝑏𝑏�(𝑏𝑏� + 𝑏𝑏�) � =
1

𝑏𝑏�(𝑏𝑏� + 𝑏𝑏�) 

⇒ �
𝑎𝑎�

𝑏𝑏�
−

𝑎𝑎� + 𝑎𝑎�

𝑏𝑏� + 𝑏𝑏�
� =

1
𝑏𝑏�(𝑏𝑏� + 𝑏𝑏�) 
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first publication of 𝐹𝐹��in [8]. Charles Haros[1] provided some major sequence-related results in 
conjunction with a description of how the 𝐹𝐹��Farey sequence was built using the mediant property and 
noted that if two numbers ��

��
  and  ��

��
 are Farey neighbors, then |𝑏𝑏�𝑎𝑎� − 𝑎𝑎�𝑏𝑏�| = 1, and  formed 𝐹𝐹�� using 

the mediant property. The two fractions ��
��

  and  ��
��

 are Farey neighbors and appear adjacent to one 

another in some Farey sequence if they have the properties that ��
��

< ��
��

 and 𝑏𝑏�𝑎𝑎� − 𝑎𝑎�𝑏𝑏� = 1,then the 

median [7] of these two fractions is given by��
��

⨁ ��
��

= �����
�����

. The denominator of each term in 𝐹𝐹�, 

though, cannot be greater than 𝑛𝑛.The collection of irreducible rational number��
��

, where 0 ≤ 𝑎𝑎� < 𝑏𝑏� ≤

𝑛𝑛,    (𝑎𝑎�, 𝑏𝑏�) = 1are ordered in ascending order to form the Farey sequence 𝐹𝐹�for every positive integer 𝑛𝑛. 
Except for 𝐹𝐹�, every 𝐹𝐹� has odd numbers of terms, and the middle term is always �

�
. Introduce the mediant 

fraction �
�

⨁ �
�

= ���
���

 between terms �
�
and �

�
, where 𝑞𝑞 + 𝑠𝑠 ≥ 𝑛𝑛[2, 4, 10].When the fractions of 𝐹𝐹�are 

improperly added together, the outcome is �
�

⨁ �
�

= �
�
, which is a new fraction that lies between the first 

two. Adding the first two fractions of  𝐹𝐹� gives the mediant  �
�

⨁ �
�

= �
�
, and the last two fractions of  𝐹𝐹� 

give the mediant  �
�

⨁ �
�

= �
�
, separating them in 𝐹𝐹�. The Farey sequence can be found by repeatedly 

calculating the median between each pair of fractions in the preceding sequence. We can write �
�
 and �

�
in 

the first row 𝐹𝐹�. Since 1 + 1 ≤ 2, we insert ���
���

 between �
�
 and �

�
, to get �

�
, �

�
, �

�
 for the second row 𝐹𝐹�. 

Using this process, we can construct theFarey sequences table in the first eight rows of the following table 
as follows: 
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Table No. 1. Iteratively construct Farey sequences up to 8 order 
 
Table No. 1 has several fascinating characteristics, at least up until this row. Every fraction is in its 
reduced form, and every reduced fraction fractions ��
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 such that 0 ≤ ��

��
≤ 1 and 𝑏𝑏� ≤ 𝑛𝑛appear on the 𝑛𝑛�� 

row. If successive fractions ��
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 and ��
��

 are found in the 𝑛𝑛�� row, then 𝑏𝑏�𝑎𝑎� − 𝑎𝑎�𝑏𝑏� = 1and 𝑏𝑏� + 𝑏𝑏� ≤

𝑛𝑛.Thus, Table No. 1,gives the rational number ��
��

 with gcd(𝑎𝑎�, 𝑏𝑏�) = 1 is reduced form or lowest terms. 
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2.Main Results  
 

Farey sequences [5, 9] appear in a variety of scientific fields and are connected to the theory of prime 
numbers. Farey sequences also have connections to unsolved mathematical puzzles, such as the Riemann 
hypothesis [3]. The best approximations for irrational numbers can be found using the Stern-Brocot tree 
[7]. Recent research has connected the components of a Farey sequence to the singularities of the Inverse 
Chirp Z-Transform [14], which is a generalization of the Inverse Fast Fourier Transform [15].The Farey 
sequence can be shown using Ford circles. The Stern-Brocot tree, which was created by removing 
unnecessary branches, has a subtree defined by the Farey sequence 𝐹𝐹� [7]. Although the Stern Brocot tree 
was developed independently, it has many similarities with the Farey sequence, which is created by the 
mediant characteristic of the fractions. Stern Brocot tree ranges from 0 to ∞ [1], while the Farey sequence 
is between 0and 1.The Farey sequence with the Ford circle is discussed in detail as follows, along with 
some of the essential characteristics that are important to our paper. 
 

Theorem 2.1: Suppose  ��
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 and ��
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are consecutive fractions in any row, then �����
�����

is the only rational 

fraction with the smallest denominator between these two. 
 

We will discuss the rational Approximations with the Farey sequence. We have approximate �
�

=

0.318309886183791 with a denominator no larger than 100. Probably 𝟑𝟑𝟑𝟑
���

= �
𝟑𝟑𝟐𝟐

 is the first and simplest 
approximation. The mediant can be used to approximate the Farey sequence. Iterations of the mediant in 
the Farey sequence can be used to find a reasonable approximation for an irrational integer between 0 and 

1.The first Farey sequence occurs in the interval ��
�

, �
�
�. The median that corresponds to this is �

�
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Choosing whether  �
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�
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�
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�
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�

, �
�
�is �

�
. So, ��
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 is a rational 

approximation of �
�
. It should be noted that �
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 is still a better approximation than ��
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,showing that while a 

different approximation is found after each step, it is not always the most recent fraction that is found 
after each repetition that provides the best approximation. The approximation is ��
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, which is more 

accurate than �
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Theorem 2.2: If ��
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 and ��
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 are Farey fractions contained in 𝐹𝐹� such that they are not connected by another 

Farey fraction of order 𝑛𝑛, then  
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𝑎𝑎�

𝑏𝑏�
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𝑎𝑎� + 𝑎𝑎�

𝑏𝑏� + 𝑏𝑏�
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𝑏𝑏�(𝑛𝑛 + 1) 

Proof: 
Suppose that ��

��
 and ��

��
 are Farey fractions contained in 𝐹𝐹�, then 

�
𝑎𝑎�

𝑏𝑏�
−

𝑎𝑎� + 𝑎𝑎�

𝑏𝑏� + 𝑏𝑏�
� = �

𝑎𝑎�𝑏𝑏� + 𝑎𝑎�𝑏𝑏� − 𝑎𝑎�𝑏𝑏� − 𝑎𝑎�𝑏𝑏�

𝑏𝑏�(𝑏𝑏� + 𝑏𝑏�) � =
1

𝑏𝑏�(𝑏𝑏� + 𝑏𝑏�) 

⇒ �
𝑎𝑎�

𝑏𝑏�
−

𝑎𝑎� + 𝑎𝑎�

𝑏𝑏� + 𝑏𝑏�
� =

1
𝑏𝑏�(𝑏𝑏� + 𝑏𝑏�) 
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Since (𝑏𝑏� + 𝑏𝑏�) ≥ 𝑛𝑛 + 1 ⇒ �
(�����) ≤ �

���
⇒ �

��(�����) ≤ �
��(���) , 𝑏𝑏� ≠ 0 

Therefore,���
��

− �����
�����

� = �
��(�����)  ≤ �

��(���) 

Similarly, we have ���
��

− �����
�����

� = �
��(�����) ≤ �

��(���) 

 

Theorem 2.3: The inequalities �
��

≥ �
√�

� �
�� + �

��� and �
�(���) ≥ �

√�
� �

�� + �
(���)��  cannot both hold if 𝑢𝑢 

and 𝑣𝑣 are positive integers. 
Proof: 
We have the inequalities  

1
𝑢𝑢𝑣𝑣

≥
1

√5
�

1
𝑢𝑢� +

1
𝑣𝑣�� ⇔  

1
𝑢𝑢𝑣𝑣

≥
1

√5𝑢𝑢�𝑣𝑣�
(𝑣𝑣� + 𝑢𝑢�) ⇔  √5𝑢𝑢𝑣𝑣 ≥ (𝑢𝑢� + 𝑣𝑣�) 

Also, 
1

𝑢𝑢(𝑢𝑢 + 𝑣𝑣) ≥
1

√5
�

1
𝑢𝑢� +

1
(𝑢𝑢 + 𝑣𝑣)�� ⇔

1
𝑢𝑢(𝑢𝑢 + 𝑣𝑣) ≥

1
√5𝑢𝑢�(𝑢𝑢 + 𝑣𝑣)�

((𝑢𝑢 + 𝑣𝑣)� + 𝑢𝑢�) 

                                                                         ⇔  √5𝑢𝑢(𝑢𝑢 + 𝑣𝑣) ≥ ((𝑢𝑢 + 𝑣𝑣)� + 𝑢𝑢�) 
Assume for contradiction that both 

√5𝑢𝑢𝑣𝑣 ≥ (𝑢𝑢� + 𝑣𝑣�)and√5𝑢𝑢(𝑢𝑢 + 𝑣𝑣) ≥ ((𝑢𝑢 + 𝑣𝑣)� + 𝑢𝑢�) are true. 
Adding these two, we have  
√5𝑢𝑢(𝑢𝑢 + 2𝑣𝑣) ≥ ((𝑢𝑢 + 𝑣𝑣)� + 2𝑢𝑢� + 𝑣𝑣�) 

⇔ √5(𝑢𝑢� + 2𝑢𝑢𝑣𝑣) ≥ 3𝑢𝑢� + 2𝑢𝑢𝑣𝑣 + 2𝑣𝑣� ⇔ 3𝑢𝑢� + 2𝑢𝑢𝑣𝑣 + 2𝑣𝑣�√5(𝑢𝑢� + 2𝑢𝑢𝑣𝑣) 
⇔ �3 − √5�𝑢𝑢� − 2�√5 − 1�𝑢𝑢𝑣𝑣 + 2𝑣𝑣� ≤ 0 ⇔   �6 − 2√5�𝑢𝑢� − 4�√5 − 1�𝑢𝑢𝑣𝑣 + 4𝑣𝑣� ≤ 0 

⇔ �5 − √5 + 1�𝑢𝑢� − 4�√5 − 1�𝑢𝑢𝑣𝑣 + 4𝑣𝑣� ≤ 0 ⇔  �√5 − 1�
�

𝑢𝑢� − 4�√5 − 1�𝑢𝑢𝑣𝑣 + 4𝑣𝑣� ≤ 0  

⇔  �2𝑣𝑣 − �√5 − 1�𝑢𝑢�
�

≤ 0 ⇔  2𝑣𝑣 − �√5 − 1�𝑢𝑢 = 0 ⇔  √5 =
2𝑣𝑣 + 𝑢𝑢

𝑢𝑢
 

But that contradicts √5 is irrational. Hence, the inequalities 
�

��
≥ �

√�
� �

�� + �
��� and �

�(���) ≥ �
√�

� �
�� + �

(���)�� 

cannot both hold if 𝑢𝑢 and 𝑣𝑣 are positive integers. 
 

Theorem 2.4: (Hurwitz’s Theorem[12]) 
Given that there are an infinite number of rational integers �

�
that satisfy the condition  

�𝛼𝛼 −
𝑢𝑢
𝑣𝑣� <

1
√5𝑣𝑣�

                                                                                                              (1) 

where𝛼𝛼 is an irrational number. 
Proof 
Suppose that 𝑛𝑛 > 0and the Farey sequence of order n contains the fractions ��

��
 and ��

��
in succession, such 

that ��
��

< 𝛼𝛼 < ��
��

. We assert that one of the three fractions ��
��

, ��
��

,and �����
�����

 can operate as �
�
 in (1). 

Assume that this is false,either 𝛼𝛼 < �����
�����

   or 𝛼𝛼 > �����
�����

 

Case -I. If 𝛼𝛼 < �����
�����

 

Assume that 𝛼𝛼 − ��
��

≥ �
√���

� , �����
�����

− 𝛼𝛼 ≥ �
(�����)�√�

,   ��
��

− 𝛼𝛼 ≥ �
√���

� 

Adding the first and last inequalities  
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𝛼𝛼 −
𝑎𝑎�

𝑏𝑏�
+

𝑎𝑎�

𝑏𝑏�
− 𝛼𝛼 ≥

1
√5𝑏𝑏�

� +
1

√5𝑏𝑏�
� ⇒

𝑎𝑎�

𝑏𝑏�
−

𝑎𝑎�

𝑏𝑏�
≥

1
√5

�
1

𝑏𝑏�
� +

1
𝑏𝑏�

�� 

                                                                ⇒
𝑎𝑎�𝑏𝑏� − 𝑎𝑎�𝑏𝑏�

𝑏𝑏�𝑏𝑏�
≥

1
√5

�
1

𝑏𝑏�
� +

1
𝑏𝑏�

�� 

                                                               ⇒
1

𝑏𝑏�𝑏𝑏�
≥

1
√5

�
1

𝑏𝑏�
� +

1
𝑏𝑏�

��                                                         (2) 

Adding first and second inequalities 

𝛼𝛼 −
𝑎𝑎�

𝑏𝑏�
+

𝑎𝑎� + 𝑎𝑎�

𝑏𝑏� + 𝑏𝑏�
− 𝛼𝛼 ≥

1
√5𝑏𝑏�

� +
1

(𝑏𝑏� + 𝑏𝑏�)�√5
 

⇒
−𝑎𝑎�𝑏𝑏� − 𝑎𝑎�𝑏𝑏� + 𝑎𝑎�𝑏𝑏� + 𝑎𝑎�𝑏𝑏�

𝑏𝑏�(𝑏𝑏� + 𝑏𝑏�) ≥
1

√5
�

1
𝑏𝑏�

� +
1

(𝑏𝑏� + 𝑏𝑏�)�� 

⇒
𝑎𝑎�𝑏𝑏� − 𝑎𝑎�𝑏𝑏�

𝑏𝑏�(𝑏𝑏� + 𝑏𝑏�) ≥
1

√5
�

1
𝑏𝑏�

� +
1

(𝑏𝑏� + 𝑏𝑏�)�� 

⇒
1

𝑏𝑏�(𝑏𝑏� + 𝑏𝑏�) ≥
1

√5
�

1
𝑏𝑏�

� +
1

(𝑏𝑏� + 𝑏𝑏�)��                                                                 (3) 

These inequalities (2) and (3) contradict theorem 3. Therefore, at least one of ��
��

, ��
��

, �����
�����

 will operate 

as �
�
 in inequalities (1). 

Case-II. If 𝛼𝛼 > �����
�����

 

Assume that 𝛼𝛼 − ��
��

≥ �
√���

� , 𝛼𝛼 −   �����
�����

≥ �
(�����)�√�

,   ��
��

− 𝛼𝛼 ≥ �
√���

� 

Adding the first and last inequalities  

𝛼𝛼 −
𝑎𝑎�

𝑏𝑏�
+

𝑎𝑎�

𝑏𝑏�
− 𝛼𝛼 ≥

1
√5𝑏𝑏�

� +
1

√5𝑏𝑏�
� ⇒

1
𝑏𝑏�𝑏𝑏�

≥
1

√5
�

1
𝑏𝑏�

� +
1

𝑏𝑏�
��                                                                                       (4) 

Adding the second and last inequalities 

𝛼𝛼 −   
𝑎𝑎� + 𝑎𝑎�

𝑏𝑏� + 𝑏𝑏�
+

𝑎𝑎�

𝑏𝑏�
− 𝛼𝛼 ≥

1
(𝑏𝑏� + 𝑏𝑏�)�√5

+
1

√5𝑏𝑏�
� 

⇒
𝑎𝑎�

𝑏𝑏�
−   

𝑎𝑎� + 𝑎𝑎�

𝑏𝑏� + 𝑏𝑏�
≥

1
√5

�
1

(𝑏𝑏� + 𝑏𝑏�)� +
1

𝑏𝑏�
�� 

⇒
1

𝑏𝑏�(𝑏𝑏� + 𝑏𝑏�) ≥
1

√5
�

1
(𝑏𝑏� + 𝑏𝑏�)�  +

1
𝑏𝑏�

��                                                                  (5) 

These inequalities (4) and (5) contradict theorem 3. Therefore, at least one of ��
��

, ��
��

, �����
�����

 will operate 

as �
�
 in inequalities (1).  

The existence of �
�
 fulfills the requirements that we have established the inequalities (1). Our choice of 𝑛𝑛 

will affect this �
�
. In actuality, �

�
 is either ��

��
, ��

��
or �����

�����
, where ��

��
 and ��

��
 are successive fractions in the 

Farey sequence of order 𝑛𝑛 and ��
��

< 𝛼𝛼 < ��
��

. Using Theorem 2, we have 

�𝛼𝛼 −
𝑢𝑢
𝑣𝑣� < �

𝑎𝑎�

𝑏𝑏�
−

𝑎𝑎�

𝑏𝑏�
� ≤ �

𝑎𝑎�

𝑏𝑏�
−

𝑎𝑎� + 𝑎𝑎�

𝑏𝑏� + 𝑏𝑏�
� + �

𝑎𝑎� + 𝑎𝑎�

𝑏𝑏� + 𝑏𝑏�
−

𝑎𝑎�

𝑏𝑏�
�  ≤

1
𝑏𝑏�(𝑛𝑛 + 1) +

1
𝑏𝑏�(𝑛𝑛 + 1) ≤

2
𝑛𝑛 + 1

 

⇒ �𝛼𝛼 −
𝑢𝑢
𝑣𝑣� ≤

2
𝑛𝑛 + 1
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Since (𝑏𝑏� + 𝑏𝑏�) ≥ 𝑛𝑛 + 1 ⇒ �
(�����) ≤ �

���
⇒ �

��(�����) ≤ �
��(���) , 𝑏𝑏� ≠ 0 

Therefore,���
��

− �����
�����

� = �
��(�����)  ≤ �

��(���) 

Similarly, we have ���
��

− �����
�����

� = �
��(�����) ≤ �

��(���) 

 

Theorem 2.3: The inequalities �
��

≥ �
√�

� �
�� + �

��� and �
�(���) ≥ �

√�
� �

�� + �
(���)��  cannot both hold if 𝑢𝑢 

and 𝑣𝑣 are positive integers. 
Proof: 
We have the inequalities  

1
𝑢𝑢𝑣𝑣

≥
1

√5
�

1
𝑢𝑢� +

1
𝑣𝑣�� ⇔  

1
𝑢𝑢𝑣𝑣

≥
1

√5𝑢𝑢�𝑣𝑣�
(𝑣𝑣� + 𝑢𝑢�) ⇔  √5𝑢𝑢𝑣𝑣 ≥ (𝑢𝑢� + 𝑣𝑣�) 

Also, 
1

𝑢𝑢(𝑢𝑢 + 𝑣𝑣) ≥
1

√5
�

1
𝑢𝑢� +

1
(𝑢𝑢 + 𝑣𝑣)�� ⇔

1
𝑢𝑢(𝑢𝑢 + 𝑣𝑣) ≥

1
√5𝑢𝑢�(𝑢𝑢 + 𝑣𝑣)�

((𝑢𝑢 + 𝑣𝑣)� + 𝑢𝑢�) 

                                                                         ⇔  √5𝑢𝑢(𝑢𝑢 + 𝑣𝑣) ≥ ((𝑢𝑢 + 𝑣𝑣)� + 𝑢𝑢�) 
Assume for contradiction that both 

√5𝑢𝑢𝑣𝑣 ≥ (𝑢𝑢� + 𝑣𝑣�)and√5𝑢𝑢(𝑢𝑢 + 𝑣𝑣) ≥ ((𝑢𝑢 + 𝑣𝑣)� + 𝑢𝑢�) are true. 
Adding these two, we have  
√5𝑢𝑢(𝑢𝑢 + 2𝑣𝑣) ≥ ((𝑢𝑢 + 𝑣𝑣)� + 2𝑢𝑢� + 𝑣𝑣�) 

⇔ √5(𝑢𝑢� + 2𝑢𝑢𝑣𝑣) ≥ 3𝑢𝑢� + 2𝑢𝑢𝑣𝑣 + 2𝑣𝑣� ⇔ 3𝑢𝑢� + 2𝑢𝑢𝑣𝑣 + 2𝑣𝑣�√5(𝑢𝑢� + 2𝑢𝑢𝑣𝑣) 
⇔ �3 − √5�𝑢𝑢� − 2�√5 − 1�𝑢𝑢𝑣𝑣 + 2𝑣𝑣� ≤ 0 ⇔   �6 − 2√5�𝑢𝑢� − 4�√5 − 1�𝑢𝑢𝑣𝑣 + 4𝑣𝑣� ≤ 0 

⇔ �5 − √5 + 1�𝑢𝑢� − 4�√5 − 1�𝑢𝑢𝑣𝑣 + 4𝑣𝑣� ≤ 0 ⇔  �√5 − 1�
�

𝑢𝑢� − 4�√5 − 1�𝑢𝑢𝑣𝑣 + 4𝑣𝑣� ≤ 0  

⇔  �2𝑣𝑣 − �√5 − 1�𝑢𝑢�
�

≤ 0 ⇔  2𝑣𝑣 − �√5 − 1�𝑢𝑢 = 0 ⇔  √5 =
2𝑣𝑣 + 𝑢𝑢

𝑢𝑢
 

But that contradicts √5 is irrational. Hence, the inequalities 
�

��
≥ �

√�
� �

�� + �
��� and �

�(���) ≥ �
√�

� �
�� + �

(���)�� 

cannot both hold if 𝑢𝑢 and 𝑣𝑣 are positive integers. 
 

Theorem 2.4: (Hurwitz’s Theorem[12]) 
Given that there are an infinite number of rational integers �

�
that satisfy the condition  

�𝛼𝛼 −
𝑢𝑢
𝑣𝑣� <

1
√5𝑣𝑣�

                                                                                                              (1) 

where𝛼𝛼 is an irrational number. 
Proof 
Suppose that 𝑛𝑛 > 0and the Farey sequence of order n contains the fractions ��

��
 and ��

��
in succession, such 

that ��
��

< 𝛼𝛼 < ��
��

. We assert that one of the three fractions ��
��

, ��
��

,and �����
�����

 can operate as �
�
 in (1). 

Assume that this is false,either 𝛼𝛼 < �����
�����

   or 𝛼𝛼 > �����
�����

 

Case -I. If 𝛼𝛼 < �����
�����

 

Assume that 𝛼𝛼 − ��
��

≥ �
√���

� , �����
�����

− 𝛼𝛼 ≥ �
(�����)�√�

,   ��
��

− 𝛼𝛼 ≥ �
√���

� 

Adding the first and last inequalities  
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𝛼𝛼 −
𝑎𝑎�

𝑏𝑏�
+

𝑎𝑎�

𝑏𝑏�
− 𝛼𝛼 ≥

1
√5𝑏𝑏�

� +
1

√5𝑏𝑏�
� ⇒

𝑎𝑎�

𝑏𝑏�
−

𝑎𝑎�

𝑏𝑏�
≥

1
√5

�
1

𝑏𝑏�
� +

1
𝑏𝑏�

�� 

                                                                ⇒
𝑎𝑎�𝑏𝑏� − 𝑎𝑎�𝑏𝑏�

𝑏𝑏�𝑏𝑏�
≥

1
√5

�
1

𝑏𝑏�
� +

1
𝑏𝑏�

�� 

                                                               ⇒
1

𝑏𝑏�𝑏𝑏�
≥

1
√5

�
1

𝑏𝑏�
� +

1
𝑏𝑏�

��                                                         (2) 

Adding first and second inequalities 

𝛼𝛼 −
𝑎𝑎�

𝑏𝑏�
+

𝑎𝑎� + 𝑎𝑎�

𝑏𝑏� + 𝑏𝑏�
− 𝛼𝛼 ≥

1
√5𝑏𝑏�

� +
1

(𝑏𝑏� + 𝑏𝑏�)�√5
 

⇒
−𝑎𝑎�𝑏𝑏� − 𝑎𝑎�𝑏𝑏� + 𝑎𝑎�𝑏𝑏� + 𝑎𝑎�𝑏𝑏�

𝑏𝑏�(𝑏𝑏� + 𝑏𝑏�) ≥
1

√5
�

1
𝑏𝑏�

� +
1

(𝑏𝑏� + 𝑏𝑏�)�� 

⇒
𝑎𝑎�𝑏𝑏� − 𝑎𝑎�𝑏𝑏�

𝑏𝑏�(𝑏𝑏� + 𝑏𝑏�) ≥
1

√5
�

1
𝑏𝑏�

� +
1

(𝑏𝑏� + 𝑏𝑏�)�� 

⇒
1

𝑏𝑏�(𝑏𝑏� + 𝑏𝑏�) ≥
1

√5
�

1
𝑏𝑏�

� +
1

(𝑏𝑏� + 𝑏𝑏�)��                                                                 (3) 

These inequalities (2) and (3) contradict theorem 3. Therefore, at least one of ��
��

, ��
��

, �����
�����

 will operate 

as �
�
 in inequalities (1). 

Case-II. If 𝛼𝛼 > �����
�����

 

Assume that 𝛼𝛼 − ��
��

≥ �
√���

� , 𝛼𝛼 −   �����
�����

≥ �
(�����)�√�

,   ��
��

− 𝛼𝛼 ≥ �
√���

� 

Adding the first and last inequalities  

𝛼𝛼 −
𝑎𝑎�

𝑏𝑏�
+

𝑎𝑎�

𝑏𝑏�
− 𝛼𝛼 ≥

1
√5𝑏𝑏�

� +
1

√5𝑏𝑏�
� ⇒

1
𝑏𝑏�𝑏𝑏�

≥
1

√5
�

1
𝑏𝑏�

� +
1

𝑏𝑏�
��                                                                                       (4) 

Adding the second and last inequalities 

𝛼𝛼 −   
𝑎𝑎� + 𝑎𝑎�

𝑏𝑏� + 𝑏𝑏�
+

𝑎𝑎�

𝑏𝑏�
− 𝛼𝛼 ≥

1
(𝑏𝑏� + 𝑏𝑏�)�√5

+
1

√5𝑏𝑏�
� 

⇒
𝑎𝑎�

𝑏𝑏�
−   

𝑎𝑎� + 𝑎𝑎�

𝑏𝑏� + 𝑏𝑏�
≥

1
√5

�
1

(𝑏𝑏� + 𝑏𝑏�)� +
1

𝑏𝑏�
�� 

⇒
1

𝑏𝑏�(𝑏𝑏� + 𝑏𝑏�) ≥
1

√5
�

1
(𝑏𝑏� + 𝑏𝑏�)�  +

1
𝑏𝑏�

��                                                                  (5) 

These inequalities (4) and (5) contradict theorem 3. Therefore, at least one of ��
��

, ��
��

, �����
�����

 will operate 

as �
�
 in inequalities (1).  

The existence of �
�
 fulfills the requirements that we have established the inequalities (1). Our choice of 𝑛𝑛 

will affect this �
�
. In actuality, �

�
 is either ��

��
, ��

��
or �����

�����
, where ��

��
 and ��

��
 are successive fractions in the 

Farey sequence of order 𝑛𝑛 and ��
��

< 𝛼𝛼 < ��
��

. Using Theorem 2, we have 

�𝛼𝛼 −
𝑢𝑢
𝑣𝑣� < �

𝑎𝑎�

𝑏𝑏�
−

𝑎𝑎�

𝑏𝑏�
� ≤ �

𝑎𝑎�

𝑏𝑏�
−

𝑎𝑎� + 𝑎𝑎�

𝑏𝑏� + 𝑏𝑏�
� + �

𝑎𝑎� + 𝑎𝑎�

𝑏𝑏� + 𝑏𝑏�
−

𝑎𝑎�

𝑏𝑏�
�  ≤

1
𝑏𝑏�(𝑛𝑛 + 1) +

1
𝑏𝑏�(𝑛𝑛 + 1) ≤

2
𝑛𝑛 + 1

 

⇒ �𝛼𝛼 −
𝑢𝑢
𝑣𝑣� ≤

2
𝑛𝑛 + 1
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We need proof that the number of satisfying the inequalities (1), �
�
 is infinite. Assuming thatinequalities 

(1) holds to any ��
��

, then �𝛼𝛼 − ��
��

� > 0 and choose  

𝑛𝑛 >
2

�𝛼𝛼 − ��
��

�
⇒ �𝛼𝛼 −

𝑢𝑢�

𝑣𝑣�
� >

2
𝑛𝑛

⇒
2
𝑛𝑛

< �𝛼𝛼 −
𝑢𝑢�

𝑣𝑣�
� ⇒

2
𝑛𝑛 + 1

<
2
𝑛𝑛

< �𝛼𝛼 −
𝑢𝑢�

𝑣𝑣�
� 

                 ⇒
2

𝑛𝑛 + 1
< �𝛼𝛼 −

𝑢𝑢�

𝑣𝑣�
� 

Then, the Farey sequence of order 𝑛𝑛 produces �
�
 that satisfiesinequalities (1) and is such that  

�𝛼𝛼 −
𝑢𝑢
𝑣𝑣� ≤

2
𝑛𝑛 + 1

< �𝛼𝛼 −
𝑢𝑢�

𝑣𝑣�
� 

It follows that there are infinitely many rational integer�
�
 that satisfy inequality (1). 

 

Theorem 2.5:If a large value is used to replace √5, then Theorem 2.4 does not hold. 
Proof: 
In order to display, we need to verify that √5 cannot be changed by a large value. 

Let us consider 𝛼𝛼 = ���√��
�

. Then, 

(𝑥𝑥 − 𝛼𝛼) �𝑥𝑥 − ��√�
�

� = �𝑥𝑥 − ��√�
�

� �𝑥𝑥 − ��√�
�

� = 𝑥𝑥� − 𝑥𝑥 − 1. 
For integers 𝑢𝑢, 𝑣𝑣with 𝑣𝑣 > 0, we have 

�
𝑢𝑢
𝑣𝑣

− 𝛼𝛼� �
𝑢𝑢
𝑣𝑣

− 𝛼𝛼 + √5� = ��
𝑢𝑢
𝑣𝑣

− 𝛼𝛼� �
𝑢𝑢
𝑣𝑣

−
�1 + √5�

2
+ √5�� 

                                         = ��
𝑢𝑢
𝑣𝑣

− 𝛼𝛼� �
𝑢𝑢
𝑣𝑣

−
�1 − √5�

2 �� = ��
𝑢𝑢
𝑣𝑣

−
�1 + √5�

2 � �
𝑢𝑢
𝑣𝑣

−
�1 − √5�

2 �� 

                                        = �
𝑢𝑢�

𝑣𝑣� −
𝑢𝑢
𝑣𝑣

− 1� = �
𝑢𝑢�

𝑣𝑣� −
𝑢𝑢
𝑣𝑣

− 1� =
1

𝑣𝑣� |𝑢𝑢� − 𝑢𝑢𝑣𝑣 − 𝑣𝑣�|                                 (6) 

As a result, of the irrationality of 𝛼𝛼and √5 − 𝛼𝛼, the expression on the left in (6) is not zero. Therefore, the 
integer |𝑢𝑢� − 𝑢𝑢𝑣𝑣 − 𝑣𝑣�| is non-negative. It gives in |𝑢𝑢� − 𝑢𝑢𝑣𝑣 − 𝑣𝑣�| ≥ 1.  Thus, expression (6) can be 
written as 

�
𝑢𝑢
𝑣𝑣

− 𝛼𝛼� �
𝑢𝑢
𝑣𝑣

− 𝛼𝛼 + √5� ≥
1

𝑣𝑣� ⇒
1

𝑣𝑣� ≤ �
𝑢𝑢
𝑣𝑣

− 𝛼𝛼� �
𝑢𝑢
𝑣𝑣

− 𝛼𝛼 + √5�                                                  (7) 

Assume that the infinite sequence ��
��

 and 𝑣𝑣� > 0 contains 𝑘𝑘 positive real numbers and a rational number 
such that 
    ���

��
− 𝛼𝛼� < �

���
�                                                                                                                                               (8) 

                 ⇒ −
1

𝑘𝑘𝑣𝑣�
� <

𝑢𝑢�

𝑣𝑣�
− 𝛼𝛼 <

1
𝑘𝑘𝑣𝑣�

� ⇒ −
1

𝑘𝑘𝑣𝑣�
< 𝑢𝑢� − 𝛼𝛼𝑣𝑣� <

1
𝑘𝑘𝑣𝑣�

 

⇒ 𝛼𝛼𝑣𝑣� −
1

𝑘𝑘𝑣𝑣�
< 𝑢𝑢� <

1
𝑘𝑘𝑣𝑣�

+ 𝛼𝛼𝑣𝑣� 

This means that for each value of 𝑣𝑣�, there are a finite number of 𝑢𝑢�.As a result, we have, as 𝑖𝑖 → ∞, 𝑣𝑣� →
∞. According to the triangle inequality and the expressions (7) and (8), we have 

1
𝑣𝑣�

� ≤ �
𝑢𝑢�

𝑣𝑣�
− 𝛼𝛼� �

𝑢𝑢�

𝑣𝑣�
− 𝛼𝛼 + √5� <

1
𝑘𝑘𝑣𝑣�

� �
1

𝑘𝑘𝑣𝑣�
� + √5� 

⇒ 1 <
1
𝑘𝑘 �

1
𝑘𝑘𝑣𝑣�

� + √5� ⇒ 𝑘𝑘 < �
1

𝑘𝑘𝑣𝑣�
� + √5� 

Nepal Journal of Mathematical Sciences (NJMS), Vol. 4, No. 1,2023 (February): 69-76 
 

75 
 

⇒ 𝑘𝑘 ≤ lim
�→�

�
1
𝑘𝑘𝑘𝑘��

+ √5� = √5 

⇒ 𝑘𝑘 ≤ √5 
Therefore, if a large value is used to replace √5, then Theorem 4 does not hold. Hence √5 is the most 
important role in the Hurwitz Theorem. 

Consider the centers of the circle are ��
�
, �
���

� and ���
��
, �
����

�. By using the Pythagorean Theorem, one may 

calculate the length between the centers of two circles. Then 

��
𝑎𝑎
𝑏𝑏
−
𝑎𝑎�
𝑏𝑏�
�
�
+ �

1
2𝑏𝑏�

−
1
2𝑏𝑏��

�
�

= �
1

𝑏𝑏�𝑏𝑏��
+

1
4𝑏𝑏�

−
1

2𝑏𝑏�𝑏𝑏��
+

1
2𝑏𝑏��

= ��
1
2𝑏𝑏�

+
1
2𝑏𝑏��

�
�

=
1
2𝑏𝑏�

+
1
2𝑏𝑏��

 

This shows that the distance between two circle centers is determined by adding their radii together. It 
follows that the circles are tangent. Ford proposed the idea in the article Fractions[6], where it was given 
the name of the Ford circles. 

The Ford circle 𝐶𝐶(𝑢𝑢, 𝑘𝑘) is a circle with a center at ��
�
, �
���

� and a radius of �
���

 for every rational number �
�
 

in lowest terms. Thus, 𝐶𝐶(𝑢𝑢, 𝑘𝑘) is the circle with radius �
���

  that is tangent to the x-axis at 𝑥𝑥 = �
�
. 

The Ford circles generate a maximal arrangement of circles, in which each circle is above but tangent to 
the x-axis at a rational integer, with disjoint interiors, and no more circles of such a type can be added. 
They are applied in the circle approach of Ramanujan and Hardy [6] and provide a geometric perspective 
on continued fractions. They also provide a natural way to understand the Diophantine approximation of 
real numbers by rational. We build Ford circles for each Farey sequence in the lowest terms �

�
 and give a 

circle with radii �
���

  above but tangent to the x-axis at �
�
. Observe that there are infinitely many Ford circle 

tangent points occurring in every small interval of the x-axis in fig. no. 1. 

 
 

Fig. No. 1. Infinitely many Ford circle tangents at the x-axis 

Consider a Farey sequence 𝐹𝐹� in which terms ��
��
, ��
��
, ��
��

are three consecutive terms. Then the circles 

𝐶𝐶(𝑎𝑎�, 𝑏𝑏�)𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶(𝑎𝑎�, 𝑏𝑏�)are tangent at 𝑢𝑢� = ����
��
− ��

�����������
� , �

���������
�.  

Similarly, the circles 𝐶𝐶(𝑎𝑎�, 𝑏𝑏�)  and 𝐶𝐶(𝑎𝑎�, 𝑏𝑏�)  are tangent at 𝑘𝑘� = ����
��
+ ��

�����������
� , �

���������
�. 

Furthermore, 𝑢𝑢� and 𝑘𝑘� are located on semicircles with diameters of ��
��
− ��

��
and ��

��
− ��

��
, respectively [4], 

which is the relation between Ford circles and the Farey sequence.Assume that Ford circles with tangents 
are 𝐶𝐶(𝑎𝑎�, 𝑏𝑏�)and 𝐶𝐶(𝑎𝑎�, 𝑏𝑏�).  
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We need proof that the number of satisfying the inequalities (1), �
�
 is infinite. Assuming thatinequalities 

(1) holds to any ��
��

, then �𝛼𝛼 − ��
��

� > 0 and choose  

𝑛𝑛 >
2

�𝛼𝛼 − ��
��

�
⇒ �𝛼𝛼 −

𝑢𝑢�

𝑣𝑣�
� >

2
𝑛𝑛

⇒
2
𝑛𝑛

< �𝛼𝛼 −
𝑢𝑢�

𝑣𝑣�
� ⇒

2
𝑛𝑛 + 1

<
2
𝑛𝑛

< �𝛼𝛼 −
𝑢𝑢�

𝑣𝑣�
� 

                 ⇒
2

𝑛𝑛 + 1
< �𝛼𝛼 −

𝑢𝑢�

𝑣𝑣�
� 

Then, the Farey sequence of order 𝑛𝑛 produces �
�
 that satisfiesinequalities (1) and is such that  

�𝛼𝛼 −
𝑢𝑢
𝑣𝑣� ≤

2
𝑛𝑛 + 1

< �𝛼𝛼 −
𝑢𝑢�

𝑣𝑣�
� 

It follows that there are infinitely many rational integer�
�
 that satisfy inequality (1). 

 

Theorem 2.5:If a large value is used to replace √5, then Theorem 2.4 does not hold. 
Proof: 
In order to display, we need to verify that √5 cannot be changed by a large value. 

Let us consider 𝛼𝛼 = ���√��
�

. Then, 

(𝑥𝑥 − 𝛼𝛼) �𝑥𝑥 − ��√�
�

� = �𝑥𝑥 − ��√�
�

� �𝑥𝑥 − ��√�
�

� = 𝑥𝑥� − 𝑥𝑥 − 1. 
For integers 𝑢𝑢, 𝑣𝑣with 𝑣𝑣 > 0, we have 

�
𝑢𝑢
𝑣𝑣

− 𝛼𝛼� �
𝑢𝑢
𝑣𝑣

− 𝛼𝛼 + √5� = ��
𝑢𝑢
𝑣𝑣

− 𝛼𝛼� �
𝑢𝑢
𝑣𝑣

−
�1 + √5�

2
+ √5�� 

                                         = ��
𝑢𝑢
𝑣𝑣

− 𝛼𝛼� �
𝑢𝑢
𝑣𝑣

−
�1 − √5�
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2 � �
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𝑢𝑢�
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𝑢𝑢
𝑣𝑣
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𝑢𝑢�

𝑣𝑣� −
𝑢𝑢
𝑣𝑣

− 1� =
1

𝑣𝑣� |𝑢𝑢� − 𝑢𝑢𝑣𝑣 − 𝑣𝑣�|                                 (6) 

As a result, of the irrationality of 𝛼𝛼and √5 − 𝛼𝛼, the expression on the left in (6) is not zero. Therefore, the 
integer |𝑢𝑢� − 𝑢𝑢𝑣𝑣 − 𝑣𝑣�| is non-negative. It gives in |𝑢𝑢� − 𝑢𝑢𝑣𝑣 − 𝑣𝑣�| ≥ 1.  Thus, expression (6) can be 
written as 
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𝑢𝑢
𝑣𝑣

− 𝛼𝛼 + √5� ≥
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𝑣𝑣� ≤ �
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Assume that the infinite sequence ��
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 and 𝑣𝑣� > 0 contains 𝑘𝑘 positive real numbers and a rational number 
such that 
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− 𝛼𝛼� < �

���
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                 ⇒ −
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𝑘𝑘𝑣𝑣�
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𝑘𝑘𝑣𝑣�
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𝑘𝑘𝑣𝑣�

 

⇒ 𝛼𝛼𝑣𝑣� −
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𝑘𝑘𝑣𝑣�
< 𝑢𝑢� <

1
𝑘𝑘𝑣𝑣�

+ 𝛼𝛼𝑣𝑣� 

This means that for each value of 𝑣𝑣�, there are a finite number of 𝑢𝑢�.As a result, we have, as 𝑖𝑖 → ∞, 𝑣𝑣� →
∞. According to the triangle inequality and the expressions (7) and (8), we have 

1
𝑣𝑣�

� ≤ �
𝑢𝑢�

𝑣𝑣�
− 𝛼𝛼� �

𝑢𝑢�

𝑣𝑣�
− 𝛼𝛼 + √5� <

1
𝑘𝑘𝑣𝑣�

� �
1

𝑘𝑘𝑣𝑣�
� + √5� 

⇒ 1 <
1
𝑘𝑘 �

1
𝑘𝑘𝑣𝑣�

� + √5� ⇒ 𝑘𝑘 < �
1

𝑘𝑘𝑣𝑣�
� + √5� 

Nepal Journal of Mathematical Sciences (NJMS), Vol. 4, No. 1,2023 (February): 69-76 
 

75 
 

⇒ 𝑘𝑘 ≤ lim
�→�

�
1
𝑘𝑘𝑘𝑘��

+ √5� = √5 

⇒ 𝑘𝑘 ≤ √5 
Therefore, if a large value is used to replace √5, then Theorem 4 does not hold. Hence √5 is the most 
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Consider a Farey sequence 𝐹𝐹� in which terms ��
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are three consecutive terms. Then the circles 
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��
+ ��

�����������
� , �

���������
�. 

Furthermore, 𝑢𝑢� and 𝑘𝑘� are located on semicircles with diameters of ��
��
− ��

��
and ��

��
− ��

��
, respectively [4], 

which is the relation between Ford circles and the Farey sequence.Assume that Ford circles with tangents 
are 𝐶𝐶(𝑎𝑎�, 𝑏𝑏�)and 𝐶𝐶(𝑎𝑎�, 𝑏𝑏�).  
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The largest Ford circle 𝐶𝐶(𝑎𝑎� + 𝑎𝑎�, 𝑏𝑏� + 𝑏𝑏�), is connected to the mediant [4], which connects the Largest 
Ford circle between tangent Ford circles. Also, the Farey sequence 𝐹𝐹�and the set of Ford circles 𝐶𝐶� have a 
one-to-one correspondence. The circles with radius �

���
 that are tangent to the x-axis at the fraction �

�
∈ 𝐹𝐹� 

are defined as Ford circles of order 𝑛𝑛 and denoted𝐶𝐶�. So, the corresponding Ford circles are tangent if the 
Farey fractions �

�
 and ��

��
 are adjacent.  

 

3.Conclusions 
 

There are many fascinating patterns in mathematics, and much more Mathematics involves Farey 
sequences. The Farey sequence can be found in a variety of mathematical structures, including Ford 
circles, and the Stern-Brocot tree. Additionally, they can be used to approximate irrational numbers 
rationally. Ford circles are infinitely many, with one for each rational number. We aim to demonstrate 
both the mathematical aspect of the Farey sequence and its application to the Ford Circle, rational 
approximation, and the Stern-Brocot tree. Specially, the use of the Farey sequence in the rational 
approximation of real numbers by the Hurwitz Theorem, and the Ford circle to approximate rational 
numbers. 
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Abstract: In the present work, we introduce the difference sequence spaces WI
0 (|| . , . ||, M, , a, ), 

WI (|| . , . ||, M, , a, ) and W I
 (|| . , . ||, M, , a, ) in 2-normed space using Orlicz function and ideal 

convergence. We will examine some of their topological properties.  
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1. Introduction 
 In functional analysis and related areas of mathematics, a sequence space is a special case of 

function space if the domain is restricted to the set of natural numbers ℕ. It is a vector space 
whose elements are infinite sequences of real or complex numbers. Equivalently, the set  of 
all functions from the set of natural numbers ℕ to the field K of real or complex numbers can 
be turned into a vector space. A sequence space is defined as a linear subspace of ω. Let ,c0 
and c be the linear spaces of bounded, null and  convergent  sequences with complex terms 

respectively and the norm is given by ||x|| = 
sup
k  |xk|, where k ℕ. 

 Before proceeding to the main results, we recall some definitions and notations that are used in 
this paper. 

Definition 1.1: An Orlicz function is a function M : [0, )  [0, ) which is convex, continuous and 
non-decreasing with M(0) = 0, M(x) > 0 for x > 0 and M(x)  as x.(Krasnosel'skiî and 
Rutickiî, [11]) 

Definition 1.2:An Orlicz function M is said to satisfy 2-condition for all values of x if there exists a 
constant L > 0 such that M(2x) LM(x) for all x 0. It is equivalent to the condition  

             M(Kt) Q KM(t), t and K > 1.  

           The function M(t) = tp, 1 < p < and t  0 is an Orlicz function which does not satisfy the 2-
condition but the function M(t) =  |t|p, 1 < p < and t  0  is an Orlicz function which satisfies 
the 2-condition since M(2t) =  2p |t|p = 2pM(t). (Krasnosel'skiî and Rutickiî, [11]) 

 

Definition 1.3: Lindenstrauss and Tzafriri [12] used the idea of Orlicz function to construct the  
scalar-valued sequence space  M  of scalars  (xk) such that  

M  =








x–  = (xk)   : 
k = 1


 .M 



 | xk |

    < for some > 0  .

 The space  M  endowed with a  norm 

|x–||M = inf








 > 0:   
k = 1


 .M 



 

|xk |
      1   


