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Abstract: In this paper, the two-dimensional electrostatic potential distribution problem has been
solved numerically using the finite difference approach using Poisson’s equation in polar
coordinates with Dirichlet’s boundary condition inside a unit circular disc. We also use Gauss
elimination method to solve numbers of linear equations to obtain solutions of unknowns at each
grid point. The numerical solution to the same problem is contrasted with the analytic solution.
Finally, we examine the absolute errors throughout a range of iterations to evaluate the accuracy of
the schemes.
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1 Introduction

The Poission’s equation is the elliptic partial differential equation (PDE), which bears the name of the
French mathematician and physicist 'Simeon Denis Poission (1781 - 1840)’. It is a generalization of
Laplace equation and most significant PDFE in physics. This equation appears in a wide range of physical
circumstances. The electrostatic field may be calculated after the potential field is known, which is the
result of Poisson’s equation for an electric charge distribution. The Laplace equation in two dimension with
electrostatic potential p is [6, 8, 9]

Vip=0 (1)
Poisson’s equation is the in-homogeneous counterpart of Laplace equation, that is
Vip=¢ (2)

where p and ¢ are real or complex-valued functions. Then two dimensional Poisson’s equation in Cartesian
coordinate is [16]

o*p | O%p
i Tl , 3
where ¢(z,y) is the source term and p(z,y) is the electrostatic potential.

The Poisson’s equation is reduced into polar coordinates, replacing (z,y) by © = rcosf, y = rsinf. Then
Poisson’s equation in polar coordinates form is [7, 14, 15]

. 2 2
%(Tpr)r + T%pgg =(r,0) that is % + %% + 7%2% = (r,0) (4)

Two dimensional Poisson’s equation in polar coordinate (4) is to describe the electrostatic field with
homogeneous boundary condition caused by a given electric charge in a unit disc with Dirichlet’'s boundary
condition p(1,0) = g(d), 0 < 8§ < 2m.

Now source term 1 (r,#) and boundary condition g(#) are given that is ¢ (r,8) = —3cosf and g(¢) = 0.
Then the Poisson’s equation on a unit circular disc with homogeneous boundary condition is given by [7]
82]) 19p 162;0_ 0 <r<l1 <6H<2
w‘i’;g‘kﬁﬁ—*scos, 0_7“_ ) 0_ S 2T
and
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1.1 Electrostatic Potential Distribution Inside of Unit Circular Disc:

Poisson’s equation arises as the basic equilibrium equation in a remarkable variety of physical systems.
It describes the static electric charge of an object. We may interpret p(r,0) as the electric charge and
the in-homogeneity i.e. source term ¥ (r,0) = —3 cosf represents an external forcing of potential field.
Homogeneous Dirichlet’s boundary condition p(1,6) = 0, 6 € [0,2n] specify the value of p(r,0) on the
boundary where r = 1.

Poisson’s equation (5) has an analytical solution along the interior of the unit circle with the provided
boundary condition, which is [1, 8]

p(r,0) =r(l—r) cosf, 0<r<1, 0<6<2rm (6)

1.2 Numerical method: Finite difference scheme

To solve mathematical problems,generally we used two approaches, they are analytical and numerical
methods. Numerical methods are the numerical algorithms, they are finite difference method, finite element
method, finite volume method et al. These methods are useful in engineering,physics, and finance where
analytical solutions are often not feasible or even possible. Numerical methods find the approximate
solutions close to the exact solutions. They are used to solve a wide range of differential equations,like ODEs
and PDEs. All numerical methods used to solve PDFEs should have consistency,stability and convergence.
A numerical method is consistent if all the approximation of the derivatives approaches the exact value as
the step size tends to zero. It is stable if the error does not grow with time. Then it is convergent if it is
both stable and consistent. The accuracy of the numerical solution depends on the algorithms used and
the numbers of iterations performed. In this paper, we use finite difference method and Gauss elimination
method [7, 15]. Finite difference method is used to approximate the solutions of PDEs by discretizing the
domain and approximating the derivatives using finite differences [6, 7, 15].

1.2.1 Finite difference grid of unit circular disc

The most common discritization technique for PD FE's is the finite difference method. In order to solve PDEs,
the finite difference method discretizes the continuous physical domain into a discrete finite difference grid.
At the points of intersections of these grid curves (lines), numerical solutions to the PDFE is obtained by
using finite difference method. Assume that the grid curves be uniformly spaced along r and 6 directions,
with Ar = h and A9 = k. Then the set of grid points are denoted by (r;,6;), ¢ = 0,1,2,...,M and
j=0,1,2,..., N, where 6 = 27 and 73y = 1. On the grid point (74, 6;), a continuous function p(r, #) which
is changing on (r;,0;) is denoted by the discrete function p; ;, as shown in figure (1)[6].

1.2.2 Finite difference schemes of partial derivatives

A. Thom invented the finite difference method, sometimes known as ”the method of square,” in the 1920s
to solve non-linear hydrodynamic equations. A set of grid points in 70—plane will approximate the values of
the smooth function p(r, ) if partial derivatives of PDEs are replaced by finite difference schemes. Finite
difference method is used to approximate the solutions of PDEs by discretizing the domain and approxi-
mating the derivatives using finite differences. Some basic finite difference schemes of first and order partial
derivatives in polar coordinate form are [6, 7, 14, 15]

i) Forward schemes

dp Pit1,j — Piyj
— ri? 9 ~ —r -

8r( ) Ar
and

Op Piv1,5 — Piyj
—(r; 0.) g —122 -
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Figure 1: Finite Difference Grid Points in a Unit Circular Disc

ii) Backward schemes
P e
—p(ﬁ',@j) ~ Pij — Pi-1,
or Ar

and 5
p Dij — Pi-1

(97“( i-1/2,0;) Ar
iii) Central scheme

Op Pit1,5 — Di-1,5
Ly, 0;) ~ 2L i—1.j
8r(r’ j) 2Ar

iv) Second-order difference scheme

*p _ Pit1j — 2pij +Pic1

gp2 T 09) ~ (Ar)?

2 Numerical Solution of Poisson’s Equation Inside Unit Circular disc

The Poisson’s equation must be solved in polar coordinates from inside a unit circular disc since there are
many circles in real world. From (5), the model problem in unit circular disc with Dirichlet’'s boundary
condition is [2, 6, 15]
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1 1
;(Tpr)r + gPoo = —3cost
That is ) 5
0°p 10p 1 0%
i T 0 0<r<1, 0<0<L2
o2 v or T2 a0 W (r, ), =r=h UeUsem
and
p(1,0) =0, 0<0<2r (7)
Now,

%(Tpr)r ~ ﬁ[(rpr)ﬂrl/zj - (Tpr)ifl/Q,j

1 Dit1,; — Pij Dij — Di—1,j
—ri(Ar) [ris1/2 Ar ) = ricay2( Ar )
1

m[ﬁﬂp(%ﬂg —pz',j) - 7‘1'71/2(1%‘,3‘ _pi—l,j)]

,ﬂizpae ~ W(pmﬂ —2pij +pi,j—1)

Now substituting in above Poisson’s model problem (7) , we obtain

m[ri—&-l/Z(pi—&-l,j — Dij) — Ti1/2(Pij — Pi-14)] + W(pi,jﬂ —2pi; +pij—1) =
—3cosl;, i=1,2,3.. M, j=123 . N—1. (8)

Due to periodic boundary and periodic relationship, j = 0 and 5 = NN represent the same angle, likewise

forj=1and j=N —1thatisp,o=p;n and p;1 =pin-1 ,i1=0,1,2,..., M,
m [7i1/2(Pit1,0 — Pio) — Tie1/2(Pio — Pi—1,0)] + W(pm —2p;o+pin—1) = —3cosb
=-3, 1=12,3,...M—1 (9)

For the case of center of the circle, the set of grid points associated with ¢ =0, 7 =0,1,2,..., N is really
only one point, it is denoted by pg ; for any j, there is only one function value that is py. Using control
volume approach [15],

4 A0 <~ ,
(AT)QPO_T‘.(AT)Q ;Pl,y’ =F=0, 7=0,1,..,N. (10)

We arrange the like terms in (8), we obtain

Tit1/2 Ti—1/2 Ti—1/2

3”(A22pi+1,j - [ri(Alr)z +anae T (Ti)2%A9)2]pi,j + n@aneli-1g T W[Pi,ﬁl + pij-1] =
—3cosb;.

Let Ar=h, A=k, =5 =a;, “3 =bi Gyme =Ci . Then
aipit1,; — (@i + b +2¢;)pij + bipi—1j + ¢i(pijs1 + pij—1) = —3cosb; (11)

Let h = %, k = T and discrete boundary condition for unit circular disc given in (7), is par; =0, j =
0,1,...,N —1, that is p3 0 = p31 = P32 = P33 =P34 = P35 = P36 = p3,7 = p3g = 0 and for i = 0, at the
center po j, j=1,2,...,N that is po.1 = po2 = Po,3 = Poa = Po,5 = Po,6 = Po,7 = Po,s = Po-

Each grid point has one unknown and need one algebraic equation, so that numbers of equations and
unknown must be equal. For ¢ = 0,1,2, j = 0,1,2,...,7, there are 17 unknowns, hence there are 17
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algebraic equations [2].
When ¢ = 0, from (10), we obtain

36pg — 4.5p1,1 — 4.5p1,2 —4.5p13 —4.5p1,4 — 4.5p15 —4.5p1 6 —4.5p17 =0 (12)

When i =1, j = 8 and using (11), we obtain

— 32 _ 05 _ — My 16 _
“=E = e - B b= e = amam - 40 C
14.5903

e 1 — 1 _
()R (1/9)(2/16)

Using (11), we obtain

13.5p2 s — 32.5903p1 5 + 4.5po,s + 14.5903(p1,9 + p1,7) = —3cos 2w

Due to periodic boundary and periodic relationship, using (9), p2,s = p2,0,P1,8 = P1,0,P1,9 = P1,1. Then

4.5pg — 32.5903p1,0 + 13.5p2 ¢ + 14.5903p1 1 + 14.5903p1 7 = —3 (13)
Similarly, when i = 1,5 = 2,3,4,5,6,7 we obtain

4.5p0 + 14.5903p1o — 32.5903p1 1 + 14.5903py 2 + 13.5ps1 = —3cos /4 = —2.1213 (14)
4.5p0 + 14.5903py 1 — 32.5903p1 5 + 14.5903py 5 + 13.5p2.2 = —3cos /2 = 0 (15)
4.5po + 14.5903p1 5 — 32.5903py 5 + 14.5903py 4 + 13.5ps.3 = —3cos 3m/4 = 2.1213 (16)
4.5pg + 14.5903p; 5 — 32.5903py 4 + 14.5903py 5 + 13.5pas = —3cosm = 3 (17)
4.5pg + 14.5903p1 4 — 32.5903p1 5 + 14.5903p; 6 + 13.5p2 5 = —3 cos5m /4 = 2.1213 (18)
4.5py + 14.5903p1 5 — 32.5903p1 6 + 14.5903p1 7 + 13.5ps6 = —3cos3m/2 =0 (19)
4.5p0 + 14.5903p1. o + 14.5903py 6 — 32.5903py 7 + 13.5pa.7 = —3cos Tr/d = —2.1213 (20)

When i=2,j=1,2,3,4,5,6,7, and ay = 11.25,b3 = 6.75, co = 3.6476. Then

6.75p1.1 + 3.6476p0 — 21.6476py. 1 + 3.6476pg 5 = —2.1213 (21)
6.75p1.2 + 3.6476ps.1 — 21.6476py 5 + 3.6476py5 = 0 (22)
6.75p1.3 -+ 3.6476ps 2 — 21.6476ps 5 + 3.6476ps 4 = 2.1213 (23)
6.75p1.4 + 3.6476py 5 — 21.6476py 4 + 3.6476py 5 = 3 (24)
6.75p1.5 + 3.6476ps 4 — 21.6476ps 5 + 3.6476py ¢ = 2.1213 (25)
6.75p1.6 + 3.6476p; 5 — 21.6476py ¢ + 3.6476py 7 = 0 (26)
6.75p1.7 + 3.6476ps 0 + 3.6476p c — 21.6476py 7 = 2.1213 (27)
6.75p1.0 — 21.6476ps o + 3.6476ps.1 + 3.6476ps 7 = —3 (28)

From above system of linear equations (12)- (28, we obtain a linear sparse system [14, 15]

AP=1B

T
P = (po P1o Pii--- D17 P20 P21--- p2,7)

B=(0 -3 —21213... 0 —21213... —3)T
Using Gaussian elimination method in M AT LAB, we obtain
po = 0.0231, p1o=0.8901, pi1 =0.5564, pi2=—0.0175, pi 3= —0.4854, p;4=—0.5832, p15=
—0.2792, p1g = 2312, pi1r = 0.7625, pao = 04934, py; = 0.2353, p2o = —0.1267, py3 =
—0.3731, poy = —0.3670, pos=—0.1442, pog =0.0280, po7 = 0.4642.
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3 Error Analysis

We require approximate values since it is not always possible to utilize the exact and precise values while
doing mathematical calculations. The result is unreliable as a result of approximation, and we can say that
error was introduced throughout the calculations. The distinction between the problem’s analytic solution
and its approximation solution is, in fact, absolute error. There are three primary sources of computational
errors, which are truncation error, rounding error and human error. A truncation error is the difference
between the exact solution and the value that was truncated. In general, computational error is the trun-
cation error incorporating with rounding error. The expansion for the truncation error of the forward
difference is

E(r,0:h, k) =p/(r,0)— M p(r,0)—" p(r.0)+hp’ (r0)+h2/2 P (E0)-p(r8) _ )

for some & € (r,r + h) (first order approximation).

Similarly, the expansion for the truncation error of the backward difference is
E(r,0:h k)= h p"(&,0) for some & € (r — h,r) (first order approximation).

The expansion for the truncation error of the backward difference is

E(r,0 : h, k) =p'(r,0) — p(r+h0) (T h.9)
=p'(r.0) - 5p (?" 0) +hp'(r,0) +h?/2 p"(r,0) + h*/6 p" (&1, 0)
(7“>29)+hp (7‘7 0) —h?/2 p"(r,0) +1°/6 p"(&,0)]
= e [p"(61,0) + p'(&2, 0]

=—% p"(n,0) for some n € (r —h,r + h) (second order approximation).

Similarly, the expansion for the truncation error of second order partial derivative is also second or-
der approximation. Therefore forward, backward, central and second-order schemes respectively are [14, 15]

dp _ Pit1,5 — Diy
5(%9]) Y v o(h)
@(7’- 0.) = Dij —Pi-1 +o(h)
or> " Ar

dp

P, . N _ Pit1j —Pi-1 2
ar(rhej) QA’T’ +O<h‘ )

; 0.) = 11, 2,J 1—1, h2
a ) (T ) ) (AT’)Q + O( )

Using above approximations, truncation error of the Poisson’s equation is [o(h?) + o(k?)].
If there exists a constant M independent of A and k and order of an approximation are p = 2 and ¢ = 2.
Then error in Poission equation is

|E(r,0: h, k)| < Mh*E?

for sufficiently small h > 0, &k > 0.

The error is useful for evaluating the accuracy of numerical methods when solution is known. When the
precise solution to the problem is unknown, the true absolute error cannot be estimated, in this situation
different methods are used to assess the accuracy of a numerical solution [3, 4]. Truncation error can be
minimized by performing repeated iteration and incorporating as many as terms in the approximation as
possible. In this paper, absolute errors of the analytic and numerical solutions of the above model problem
of Poisson’s equation when i =0,1,2 5 =0,1,2,...,7, as shown in the following table.
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Table 1: Absolute errors
Values of (r,0) Analytic solutions Numerical solutions  Absolute Errors

(0,0) 0 0.0231 0.0231
(1/3,0) 0.2222 0.8901 0.6679
(1/3,7/4) 0.1571 0.5564 0.4047
(1/3,7/2) 0 -0.0175 0.0175
(1/3,37/4) -0.1571 -0.4854 0.3283
(1/3,7) -0.2222 -0.5832 0.3610
(1/3,57/4) -0.1571 -0.2792 0.1221
(1/3,37/2) 0 0.2312 0.2312
(1/3,77/4) 0.1571 0.7625 0.6054
(2/3,0) 0.2222 0.4934 0.2712
(2/3,7/4) 0.1571 0.2353 0.0782
(2/3,7/2) 0 -0.1267 0.1267
(2/3,37/4) -0.1571 -0.3731 0.2160
(2/3,7) -0.2222 -0.3670 0.1448
(2/3,37/4) -0.1571 -0.1442 0.0129
(2/3,37/2) 0 0.0280 0.0280
(2/3,71/4) 0.1571 0.4642 0.3071

4 Comparative Study of Results

4.1 Two dimensional and three Dimensional figures of analytical solution

The following figures (2) are the electrostatic potential distribution in a unit circular disc with given
Dirichlet’'s boundary values analytically [3, 4, 12];

Analytical Analytical

1
0.8
06 1
0.4 05
02
0
0
02 0.5
04
4
08 100
-0.8
20 40 60 80 100
r

Figure 2: Potential Distribution on a Unit Circular Disc in 2D and 3D Analytically

4.2 Two dimensional and three dimensional figures of numerical solution and
error

The following figures (3, 4) represent the electrostatic potential distribution in a unit circular disc with
Dirichlet’s boundary condition including errors. We performed 25 iterations, as shown in Figure (3), and
we can see that there is some errors. The error further decreases as we increase the number of iterations
to 50, as shown in the figures (4). For the figure (4), we performed 50 iterations, and the electric charge
distribution in a unit circular disc is nearly identical to the analytical distribution shown in figure (2), with
an error that goes toward zero[3, 7, 4, 12].
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Figure 3: Potential Distribution With Error in a Unit Circular Disc of Iteration 25
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Figure 4: Potential Distribution With Error in a Unit Circular Disc of Iteration 50

5 Conclusions

In real life, we are facing many circular phenomena so that electrostatic potential distribution inside a
unit circle plays a leading role in the field of application. Because of the several complicated theories
involved, including the variable separation method, the Sturm— Liouville equation, and the Cauchy— Euler
equation, finding an analytical solution to Poisson’s equation in a polar coordinate system is not only
challenging but also time-consuming. In contrast, the numerical approach is fast and simple for the same
problem. For the numerical solution of the given model problem in this study, which is the polar coordinate
form of the Poisson’s equation inside a unit circular disc with the Dirichlet boundary condition, we used
the Gauss-elimination procedure in M ATLAB. We identify the errors at each node by comparing the
analytical solution with the corresponding numerical solution. Actually, we did not find minimum errors,
we took i = 0,1,2, j = 0,1,2,...,7. But we are confident that if we increase the numbers of iterations,
surely absolute error nearly tends to zero, as shown in figures (3) and (4). Hence, if increase the numbers of
iterations sufficiently large, numerical solution of the given model problem is more accurate and sufficiently
near to the exact solutions.
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