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Abstract: In this paper, the two-dimensional electrostatic potential distribution problem has been
solved numerically using the finite difference approach using Poisson′s equation in polar coordinates with
Dirichlet′s boundary condition inside a unit circular disc. We also use Gauss elimination method to solve
numbers of linear equations to obtain solutions of unknowns at each grid point. The numerical solution
to the same problem is contrasted with the analytic solution . Finally, we examine the absolute errors
throughout a range of iterations to evaluate the accuracy of the schemes.
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1 Introduction

The Poission′s equation is the elliptic partial differential equation (PDE), which bears the name of the
French mathematician and physicist ′Simeon Denis Poission (1781 - 1840)’. It is a generalization of
Laplace equation and most significant PDE in physics. This equation appears in a wide range of physical
circumstances. The electrostatic field may be calculated after the potential field is known, which is the
result of Poisson’s equation for an electric charge distribution. The Laplace equation in two dimension with
electrostatic potential p is [6, 8, 9]

∇2p = 0 (1)

Poisson′s equation is the in-homogeneous counterpart of Laplace equation, that is

∇2p = φ (2)

where p and φ are real or complex-valued functions. Then two dimensional Poisson’s equation in Cartesian
coordinate is [16]

∂2p

∂x2
+

∂2p

∂y2
= φ(x, y) (3)

where φ(x, y) is the source term and p(x, y) is the electrostatic potential.
The Poisson′s equation is reduced into polar coordinates, replacing (x, y) by x = r cos θ, y = r sin θ. Then
Poisson′s equation in polar coordinates form is [7, 14, 15]

1
r
(rpr)r +

1
r2
pθθ = ψ(r, θ) that is ∂2p

∂r2
+ 1

r
∂p
∂r

+ 1
r2

∂2p
∂θ2

= ψ(r, θ) (4)

Two dimensional Poisson′s equation in polar coordinate (4) is to describe the electrostatic field with
homogeneous boundary condition caused by a given electric charge in a unit disc with Dirichlet′s boundary
condition p(1, θ) = g(θ), 0 ≤ θ ≤ 2π.
Now source term ψ(r, θ) and boundary condition g(θ) are given that is ψ(r, θ) = −3 cos θ and g(θ) = 0.
Then the Poisson′s equation on a unit circular disc with homogeneous boundary condition is given by [7]

∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2
∂2p

∂θ2
= −3 cos θ, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

and
p(1, θ) = 0, 0 ≤ θ ≤ 2π (5)
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1.1 Electrostatic Potential Distribution Inside of Unit Circular Disc:

Poisson′s equation arises as the basic equilibrium equation in a remarkable variety of physical systems.
It describes the static electric charge of an object. We may interpret p(r, θ) as the electric charge and
the in-homogeneity i.e. source term ψ(r, θ) = −3 cos θ represents an external forcing of potential field.
Homogeneous Dirichlet′s boundary condition p(1, θ) = 0, θ ∈ [0, 2π] specify the value of p(r, θ) on the
boundary where r = 1.
Poisson’s equation (5) has an analytical solution along the interior of the unit circle with the provided
boundary condition, which is [1, 8]

p(r, θ) = r(1− r) cos θ, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π (6)

1.2 Numerical method: Finite difference scheme

To solve mathematical problems,generally we used two approaches, they are analytical and numerical
methods. Numerical methods are the numerical algorithms, they are finite difference method, finite element
method, finite volume method et al. These methods are useful in engineering,physics, and finance where
analytical solutions are often not feasible or even possible. Numerical methods find the approximate
solutions close to the exact solutions. They are used to solve a wide range of differential equations,like ODEs
and PDEs. All numerical methods used to solve PDEs should have consistency,stability and convergence.
A numerical method is consistent if all the approximation of the derivatives approaches the exact value as
the step size tends to zero. It is stable if the error does not grow with time. Then it is convergent if it is
both stable and consistent. The accuracy of the numerical solution depends on the algorithms used and
the numbers of iterations performed. In this paper, we use finite difference method and Gauss elimination
method [7, 15]. Finite difference method is used to approximate the solutions of PDEs by discretizing the
domain and approximating the derivatives using finite differences [6, 7, 15].

1.2.1 Finite difference grid of unit circular disc

The most common discritization technique for PDEs is the finite difference method. In order to solve PDEs,
the finite difference method discretizes the continuous physical domain into a discrete finite difference grid.
At the points of intersections of these grid curves (lines), numerical solutions to the PDE is obtained by
using finite difference method. Assume that the grid curves be uniformly spaced along r and θ directions,
with �r = h and �θ = k. Then the set of grid points are denoted by (ri, θj), i = 0, 1, 2, ...,M and
j = 0, 1, 2, ..., N , where θN = 2π and rM = 1. On the grid point (ri, θj), a continuous function p(r, θ) which
is changing on (ri, θj) is denoted by the discrete function pi,j , as shown in figure (1)[6].

1.2.2 Finite difference schemes of partial derivatives

A. Thom invented the finite difference method, sometimes known as ”the method of square,” in the 1920s
to solve non-linear hydrodynamic equations. A set of grid points in rθ−plane will approximate the values of
the smooth function p(r, θ) if partial derivatives of PDEs are replaced by finite difference schemes. Finite
difference method is used to approximate the solutions of PDEs by discretizing the domain and approxi-
mating the derivatives using finite differences. Some basic finite difference schemes of first and order partial
derivatives in polar coordinate form are [6, 7, 14, 15]

i) Forward schemes

∂p

∂r
(ri, θj) ≈

pi+1,j − pi,j
∆r

and
∂p

∂r
(ri+1/2, θj) ≈

pi+1,j − pi,j
∆r

2
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Figure 1: Finite Difference Grid Points in a Unit Circular Disc

ii) Backward schemes

∂p

∂r
(ri, θj) ≈

pi,j − pi−1,j

∆r

and
∂p

∂r
(ri−1/2, θj) ≈

pi,j − pi−1,j

∆r

iii) Central scheme

∂p

∂r
(ri, θj) ≈

pi+1,j − pi−1,j

2∆r

iv) Second-order difference scheme

∂2p

∂r2
(ri, θj) ≈

pi+1,j − 2pi,j + pi−1,j

(∆r)2

2 Numerical Solution of Poisson’s Equation Inside Unit Circular disc

The Poisson’s equation must be solved in polar coordinates from inside a unit circular disc since there are
many circles in real world. From (5), the model problem in unit circular disc with Dirichlet′s boundary
condition is [2, 6, 15]

3
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the in-homogeneity i.e. source term ψ(r, θ) = −3 cos θ represents an external forcing of potential field.
Homogeneous Dirichlet′s boundary condition p(1, θ) = 0, θ ∈ [0, 2π] specify the value of p(r, θ) on the
boundary where r = 1.
Poisson’s equation (5) has an analytical solution along the interior of the unit circle with the provided
boundary condition, which is [1, 8]

p(r, θ) = r(1− r) cos θ, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π (6)

1.2 Numerical method: Finite difference scheme

To solve mathematical problems,generally we used two approaches, they are analytical and numerical
methods. Numerical methods are the numerical algorithms, they are finite difference method, finite element
method, finite volume method et al. These methods are useful in engineering,physics, and finance where
analytical solutions are often not feasible or even possible. Numerical methods find the approximate
solutions close to the exact solutions. They are used to solve a wide range of differential equations,like ODEs
and PDEs. All numerical methods used to solve PDEs should have consistency,stability and convergence.
A numerical method is consistent if all the approximation of the derivatives approaches the exact value as
the step size tends to zero. It is stable if the error does not grow with time. Then it is convergent if it is
both stable and consistent. The accuracy of the numerical solution depends on the algorithms used and
the numbers of iterations performed. In this paper, we use finite difference method and Gauss elimination
method [7, 15]. Finite difference method is used to approximate the solutions of PDEs by discretizing the
domain and approximating the derivatives using finite differences [6, 7, 15].

1.2.1 Finite difference grid of unit circular disc

The most common discritization technique for PDEs is the finite difference method. In order to solve PDEs,
the finite difference method discretizes the continuous physical domain into a discrete finite difference grid.
At the points of intersections of these grid curves (lines), numerical solutions to the PDE is obtained by
using finite difference method. Assume that the grid curves be uniformly spaced along r and θ directions,
with �r = h and �θ = k. Then the set of grid points are denoted by (ri, θj), i = 0, 1, 2, ...,M and
j = 0, 1, 2, ..., N , where θN = 2π and rM = 1. On the grid point (ri, θj), a continuous function p(r, θ) which
is changing on (ri, θj) is denoted by the discrete function pi,j , as shown in figure (1)[6].

1.2.2 Finite difference schemes of partial derivatives

A. Thom invented the finite difference method, sometimes known as ”the method of square,” in the 1920s
to solve non-linear hydrodynamic equations. A set of grid points in rθ−plane will approximate the values of
the smooth function p(r, θ) if partial derivatives of PDEs are replaced by finite difference schemes. Finite
difference method is used to approximate the solutions of PDEs by discretizing the domain and approxi-
mating the derivatives using finite differences. Some basic finite difference schemes of first and order partial
derivatives in polar coordinate form are [6, 7, 14, 15]

i) Forward schemes

∂p

∂r
(ri, θj) ≈

pi+1,j − pi,j
∆r

and
∂p

∂r
(ri+1/2, θj) ≈

pi+1,j − pi,j
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Figure 1: Finite Difference Grid Points in a Unit Circular Disc

ii) Backward schemes

∂p

∂r
(ri, θj) ≈

pi,j − pi−1,j

∆r

and
∂p

∂r
(ri−1/2, θj) ≈

pi,j − pi−1,j

∆r

iii) Central scheme

∂p

∂r
(ri, θj) ≈

pi+1,j − pi−1,j

2∆r

iv) Second-order difference scheme

∂2p

∂r2
(ri, θj) ≈

pi+1,j − 2pi,j + pi−1,j

(∆r)2

2 Numerical Solution of Poisson’s Equation Inside Unit Circular disc

The Poisson’s equation must be solved in polar coordinates from inside a unit circular disc since there are
many circles in real world. From (5), the model problem in unit circular disc with Dirichlet′s boundary
condition is [2, 6, 15]
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1

r
(rpr)r +

1

r2
pθθ = −3 cos θ

That is
∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2
∂2p

∂θ2
= ψ(r, θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

and

p(1, θ) = 0, 0 ≤ θ ≤ 2π (7)

Now,
1
r (rpr)r ≈ 1

ri(∆r) [(rpr)i+1/2,j − (rpr)i−1/2,j

=
1

ri(∆r)
[ri+1/2(

pi+1,j − pi,j
∆r

)− ri−1/2(
pi,j − pi−1,j

∆r
)]

=
1

ri(∆r)2
[ri+1/2(pi+1,j − pi,j)− ri−1/2(pi,j − pi−1,j)]

1
r2
pθθ ≈ 1

(ri)2(∆θ)2
(pi,j+1 − 2pi,j + pi, j − 1)

Now substituting in above Poisson′s model problem (7) , we obtain

1
ri(∆r)2

[ri+1/2(pi+1,j − pi,j) − ri−1/2(pi,j − pi−1,j)] +
1

(ri)2(∆θ)2
(pi,j+1 − 2pi,j + pi, j − 1) =

−3 cos θj, i = 1, 2, 3, ...,M, j = 1, 2, 3, ..., N−1. (8)

Due to periodic boundary and periodic relationship, j = 0 and j = N represent the same angle, likewise
for j = 1 and j = N − 1 that is pi,0 = pi,N and pi,1 = pi,N−1 , i = 0, 1, 2, ...,M ,

1
ri(∆r)2

[ri+1/2(pi+1,0−pi,0)−ri−1/2(pi,0−pi−1,0)]+
1

(ri)2(∆θ)2
(pi,1−2pi,0+pi,N−1) = −3 cos θ0

= −3, i = 1, 2, 3, ...,M − 1 (9)

For the case of center of the circle, the set of grid points associated with i = 0, j = 0, 1, 2, ..., N is really
only one point, it is denoted by p0,j for any j, there is only one function value that is p0. Using control
volume approach [15],

4

(∆r)2
p0−

2∆θ

π(∆r)2

N−1∑
j=1

p1,j = F0 = 0, j = 0, 1, ..., N. (10)

We arrange the like terms in (8), we obtain

ri+1/2

ri(∆r)2
pi+1,j − [ 1

ri(∆r)2
+

ri−1/2

ri(∆r)2
+ 2

(ri)2(∆θ)2
]pi,j +

ri−1/2

ri(∆r)2
pi−1,j +

1
(ri)2(∆θ)2

[pi,j+1 + pi,j−1] =

−3 cos θj.

Let ∆r = h, ∆θ = k,
ri+1/2

rih2 = ai,
ri−1/2

rih2 = bi,
1

(ri)2k2
= ci. . Then

aipi+1,j − (ai + bi + 2ci)pi,j + bipi−1,j + ci(pi,j+1 + pi,j−1) = −3 cos θj (11)

Let h = 1
3 , k = π

4 and discrete boundary condition for unit circular disc given in (7), is pM,j = 0, j =
0, 1, ..., N − 1, that is p3,0 = p3,1 = p3,2 = p3,3 = p3,4 = p3,5 = p3,6 = p3,7 = p3,8 = 0 and for i = 0, at the
center p0,j , j = 1, 2, ..., N that is p0,1 = p0,2 = p0,3 = p0,4 = p0,5 = p0,6 = p0,7 = p0,8 = p0.
Each grid point has one unknown and need one algebraic equation, so that numbers of equations and
unknown must be equal. For i = 0, 1, 2, j = 0, 1, 2, ..., 7, there are 17 unknowns, hence there are 17

4
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algebraic equations [2].

When i = 0, from (10), we obtain

36p0 − 4.5p1,1 − 4.5p1,2 − 4.5p1,3 − 4.5p1,4 − 4.5p1,5 − 4.5p1,6 − 4.5p1,7 = 0 (12)

When i = 1, j = 8 and using (11), we obtain

a1 =
r3/2
r1h2 = 0.5

(1/3)(1/9)
= 13.5, b1 =

r1/2
r1h2 = 1/6

(1/3)(1/9)
= 4.5, ci =

1
(r1)2k2

= 1
(1/9)(π2/16)

=

14.5903

Using (11), we obtain

13.5p2,8 − 32.5903p1,8 + 4.5p0,8 + 14.5903(p1,9 + p1,7) = −3 cos 2π

Due to periodic boundary and periodic relationship, using (9), p2,8 = p2,0, p1,8 = p1,0, p1,9 = p1,1. Then

4.5p0 − 32.5903p1,0 + 13.5p2,0 + 14.5903p1,1 + 14.5903p1,7 = −3 (13)

Similarly, when i = 1, j = 2, 3, 4, 5, 6, 7 we obtain

4.5p0 + 14.5903p1,0 − 32.5903p1,1 + 14.5903p1,2 + 13.5p2,1 = −3 cosπ/4 = −2.1213 (14)

4.5p0 + 14.5903p1,1 − 32.5903p1,2 + 14.5903p1,3 + 13.5p2,2 = −3 cosπ/2 = 0 (15)

4.5p0 + 14.5903p1,2 − 32.5903p1,3 + 14.5903p1,4 + 13.5p2,3 = −3 cos 3π/4 = 2.1213 (16)

4.5p0 + 14.5903p1,3 − 32.5903p1,4 + 14.5903p1,5 + 13.5p2,4 = −3 cosπ = 3 (17)

4.5p0 + 14.5903p1,4 − 32.5903p1,5 + 14.5903p1,6 + 13.5p2,5 = −3 cos 5π/4 = 2.1213 (18)

4.5p0 + 14.5903p1,5 − 32.5903p1,6 + 14.5903p1,7 + 13.5p2,6 = −3 cos 3π/2 = 0 (19)

4.5p0 + 14.5903p1,0 + 14.5903p1,6 − 32.5903p1,7 + 13.5p2,7 = −3 cos 7π/4 = −2.1213 (20)

When i = 2, j = 1, 2, 3, 4, 5, 6, 7, and a2 = 11.25, b2 = 6.75, c2 = 3.6476. Then

6.75p1,1 + 3.6476p2,0 − 21.6476p2,1 + 3.6476p2,2 = −2.1213 (21)

6.75p1,2 + 3.6476p2,1 − 21.6476p2,2 + 3.6476p2,3 = 0 (22)

6.75p1,3 + 3.6476p2,2 − 21.6476p2,3 + 3.6476p2,4 = 2.1213 (23)

6.75p1,4 + 3.6476p2,3 − 21.6476p2,4 + 3.6476p2,5 = 3 (24)

6.75p1,5 + 3.6476p2,4 − 21.6476p2,5 + 3.6476p2,6 = 2.1213 (25)

6.75p1,6 + 3.6476p2,5 − 21.6476p2,6 + 3.6476p2,7 = 0 (26)

6.75p1,7 + 3.6476p2,0 + 3.6476p2,6 − 21.6476p2,7 = 2.1213 (27)

6.75p1,0 − 21.6476p2,0 + 3.6476p2,1 + 3.6476p2,7 = −3 (28)

From above system of linear equations (12)- (28, we obtain a linear sparse system [14, 15]

AP = B

P =
(
p0 p1,0 p1,1 . . . p1,7 p2,0 p2,1 . . . p2,7

)T

B =
(
0 −3 −2.1213 . . . 0 −2.1213 . . . −3

)T

Using Gaussian elimination method in MATLAB, we obtain
p0 = 0.0231, p1,0 = 0.8901, p1,1 = 0.5564, p1,2 = −0.0175, p1,3 = −0.4854, p1,4 = −0.5832, p1,5 =
−0.2792, p1,6 = .2312, p1,7 = 0.7625, p2,0 = 0.4934, p2,1 = 0.2353, p2,2 = −0.1267, p2,3 =
−0.3731, p2,4 = −0.3670, p2,5 = −0.1442, p2,6 = 0.0280, p2,7 = 0.4642.
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1

r
(rpr)r +

1

r2
pθθ = −3 cos θ

That is
∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2
∂2p

∂θ2
= ψ(r, θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

and

p(1, θ) = 0, 0 ≤ θ ≤ 2π (7)

Now,
1
r (rpr)r ≈ 1

ri(∆r) [(rpr)i+1/2,j − (rpr)i−1/2,j

=
1

ri(∆r)
[ri+1/2(

pi+1,j − pi,j
∆r

)− ri−1/2(
pi,j − pi−1,j

∆r
)]

=
1

ri(∆r)2
[ri+1/2(pi+1,j − pi,j)− ri−1/2(pi,j − pi−1,j)]

1
r2
pθθ ≈ 1

(ri)2(∆θ)2
(pi,j+1 − 2pi,j + pi, j − 1)

Now substituting in above Poisson′s model problem (7) , we obtain

1
ri(∆r)2

[ri+1/2(pi+1,j − pi,j) − ri−1/2(pi,j − pi−1,j)] +
1

(ri)2(∆θ)2
(pi,j+1 − 2pi,j + pi, j − 1) =

−3 cos θj, i = 1, 2, 3, ...,M, j = 1, 2, 3, ..., N−1. (8)

Due to periodic boundary and periodic relationship, j = 0 and j = N represent the same angle, likewise
for j = 1 and j = N − 1 that is pi,0 = pi,N and pi,1 = pi,N−1 , i = 0, 1, 2, ...,M ,

1
ri(∆r)2

[ri+1/2(pi+1,0−pi,0)−ri−1/2(pi,0−pi−1,0)]+
1

(ri)2(∆θ)2
(pi,1−2pi,0+pi,N−1) = −3 cos θ0

= −3, i = 1, 2, 3, ...,M − 1 (9)

For the case of center of the circle, the set of grid points associated with i = 0, j = 0, 1, 2, ..., N is really
only one point, it is denoted by p0,j for any j, there is only one function value that is p0. Using control
volume approach [15],

4

(∆r)2
p0−

2∆θ

π(∆r)2

N−1∑
j=1

p1,j = F0 = 0, j = 0, 1, ..., N. (10)

We arrange the like terms in (8), we obtain

ri+1/2

ri(∆r)2
pi+1,j − [ 1

ri(∆r)2
+

ri−1/2

ri(∆r)2
+ 2

(ri)2(∆θ)2
]pi,j +

ri−1/2

ri(∆r)2
pi−1,j +

1
(ri)2(∆θ)2

[pi,j+1 + pi,j−1] =

−3 cos θj.

Let ∆r = h, ∆θ = k,
ri+1/2

rih2 = ai,
ri−1/2

rih2 = bi,
1

(ri)2k2
= ci. . Then

aipi+1,j − (ai + bi + 2ci)pi,j + bipi−1,j + ci(pi,j+1 + pi,j−1) = −3 cos θj (11)

Let h = 1
3 , k = π

4 and discrete boundary condition for unit circular disc given in (7), is pM,j = 0, j =
0, 1, ..., N − 1, that is p3,0 = p3,1 = p3,2 = p3,3 = p3,4 = p3,5 = p3,6 = p3,7 = p3,8 = 0 and for i = 0, at the
center p0,j , j = 1, 2, ..., N that is p0,1 = p0,2 = p0,3 = p0,4 = p0,5 = p0,6 = p0,7 = p0,8 = p0.
Each grid point has one unknown and need one algebraic equation, so that numbers of equations and
unknown must be equal. For i = 0, 1, 2, j = 0, 1, 2, ..., 7, there are 17 unknowns, hence there are 17
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algebraic equations [2].

When i = 0, from (10), we obtain

36p0 − 4.5p1,1 − 4.5p1,2 − 4.5p1,3 − 4.5p1,4 − 4.5p1,5 − 4.5p1,6 − 4.5p1,7 = 0 (12)

When i = 1, j = 8 and using (11), we obtain

a1 =
r3/2
r1h2 = 0.5

(1/3)(1/9)
= 13.5, b1 =

r1/2
r1h2 = 1/6

(1/3)(1/9)
= 4.5, ci =

1
(r1)2k2

= 1
(1/9)(π2/16)

=

14.5903

Using (11), we obtain

13.5p2,8 − 32.5903p1,8 + 4.5p0,8 + 14.5903(p1,9 + p1,7) = −3 cos 2π

Due to periodic boundary and periodic relationship, using (9), p2,8 = p2,0, p1,8 = p1,0, p1,9 = p1,1. Then

4.5p0 − 32.5903p1,0 + 13.5p2,0 + 14.5903p1,1 + 14.5903p1,7 = −3 (13)

Similarly, when i = 1, j = 2, 3, 4, 5, 6, 7 we obtain

4.5p0 + 14.5903p1,0 − 32.5903p1,1 + 14.5903p1,2 + 13.5p2,1 = −3 cosπ/4 = −2.1213 (14)

4.5p0 + 14.5903p1,1 − 32.5903p1,2 + 14.5903p1,3 + 13.5p2,2 = −3 cosπ/2 = 0 (15)

4.5p0 + 14.5903p1,2 − 32.5903p1,3 + 14.5903p1,4 + 13.5p2,3 = −3 cos 3π/4 = 2.1213 (16)

4.5p0 + 14.5903p1,3 − 32.5903p1,4 + 14.5903p1,5 + 13.5p2,4 = −3 cosπ = 3 (17)

4.5p0 + 14.5903p1,4 − 32.5903p1,5 + 14.5903p1,6 + 13.5p2,5 = −3 cos 5π/4 = 2.1213 (18)

4.5p0 + 14.5903p1,5 − 32.5903p1,6 + 14.5903p1,7 + 13.5p2,6 = −3 cos 3π/2 = 0 (19)

4.5p0 + 14.5903p1,0 + 14.5903p1,6 − 32.5903p1,7 + 13.5p2,7 = −3 cos 7π/4 = −2.1213 (20)

When i = 2, j = 1, 2, 3, 4, 5, 6, 7, and a2 = 11.25, b2 = 6.75, c2 = 3.6476. Then

6.75p1,1 + 3.6476p2,0 − 21.6476p2,1 + 3.6476p2,2 = −2.1213 (21)

6.75p1,2 + 3.6476p2,1 − 21.6476p2,2 + 3.6476p2,3 = 0 (22)

6.75p1,3 + 3.6476p2,2 − 21.6476p2,3 + 3.6476p2,4 = 2.1213 (23)

6.75p1,4 + 3.6476p2,3 − 21.6476p2,4 + 3.6476p2,5 = 3 (24)

6.75p1,5 + 3.6476p2,4 − 21.6476p2,5 + 3.6476p2,6 = 2.1213 (25)

6.75p1,6 + 3.6476p2,5 − 21.6476p2,6 + 3.6476p2,7 = 0 (26)

6.75p1,7 + 3.6476p2,0 + 3.6476p2,6 − 21.6476p2,7 = 2.1213 (27)

6.75p1,0 − 21.6476p2,0 + 3.6476p2,1 + 3.6476p2,7 = −3 (28)

From above system of linear equations (12)- (28, we obtain a linear sparse system [14, 15]

AP = B

P =
(
p0 p1,0 p1,1 . . . p1,7 p2,0 p2,1 . . . p2,7

)T

B =
(
0 −3 −2.1213 . . . 0 −2.1213 . . . −3

)T

Using Gaussian elimination method in MATLAB, we obtain
p0 = 0.0231, p1,0 = 0.8901, p1,1 = 0.5564, p1,2 = −0.0175, p1,3 = −0.4854, p1,4 = −0.5832, p1,5 =
−0.2792, p1,6 = .2312, p1,7 = 0.7625, p2,0 = 0.4934, p2,1 = 0.2353, p2,2 = −0.1267, p2,3 =
−0.3731, p2,4 = −0.3670, p2,5 = −0.1442, p2,6 = 0.0280, p2,7 = 0.4642.
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3 Error Analysis

We require approximate values since it is not always possible to utilize the exact and precise values while
doing mathematical calculations. The result is unreliable as a result of approximation, and we can say that
error was introduced throughout the calculations.The distinction between the problem’s analytic solution
and its approximation solution is, in fact, absolute error. There are three primary sources of computational
errors, which are truncation error, rounding error and human error. A truncation error is the difference
between the exact solution and the value that was truncated. In general, computational error is the trun-
cation error incorporating with rounding error. The expansion for the truncation error of the forward
difference is

E(r, θ : h, k) = p′(r, θ)−p(r+h,θ)−p(r,θ)
h

= p′(r, θ)−p(r,θ)+hp′(r,θ)+h2/2 p′′(ξ,θ)−p(r,θ)
h

= −h
2
p′′(ξ, θ)

for some ξ ∈ (r, r + h) (first order approximation).

Similarly, the expansion for the truncation error of the backward difference is

E(r, θ : h, k) = h
2
p′′(ξ, θ) for some ξ ∈ (r − h, r) (first order approximation).

The expansion for the truncation error of the backward difference is

E(r, θ : h, k) = p′(r, θ)− p(r+h,θ)−p(r−h,θ)
2h

= p′(r, θ)− 1
2h
[p(r, θ) + hp′(r, θ) + h2/2 p′′(r, θ) + h3/6 p′′′(ξ1, θ)

- p(r, θ) + hp′(r, θ)− h2/2 p′′(r, θ) + h3/6 p′′′(ξ2, θ)]

= −h2

6
[p′′(ξ1, θ) + p′′(ξ2, θ]

= −h2

6
p′′(η, θ) for some η ∈ (r − h, r + h) (second order approximation).

Similarly, the expansion for the truncation error of second order partial derivative is also second or-

der approximation. Therefore forward, backward, central and second-order schemes respectively are [14, 15]

∂p

∂r
(ri, θj) =

pi+1,j − pi,j
∆r

+ ◦(h)

∂p

∂r
(ri, θj) =

pi,j − pi−1,j

∆r
+ ◦(h)

∂p

∂r
(ri, θj) =

pi+1,j − pi−1,j

2∆r
+ ◦(h2)

∂2p

∂r2
(ri, θj) =

pi+1,j − 2pi,j + pi−1,j

(∆r)2
+ ◦(h2)

Using above approximations, truncation error of the Poisson′s equation is [◦(h2) + ◦(k2)].
If there exists a constant M independent of h and k and order of an approximation are p = 2 and q = 2.
Then error in Poission equation is

|E(r, θ : h, k)| ≤ Mh2k2

for sufficiently small h > 0, k > 0.
The error is useful for evaluating the accuracy of numerical methods when solution is known. When the
precise solution to the problem is unknown, the true absolute error cannot be estimated, in this situation
different methods are used to assess the accuracy of a numerical solution [3, 4]. Truncation error can be
minimized by performing repeated iteration and incorporating as many as terms in the approximation as
possible. In this paper, absolute errors of the analytic and numerical solutions of the above model problem
of Poisson′s equation when i = 0, 1, 2 j = 0, 1, 2, ..., 7, as shown in the following table.
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3 Error Analysis

We require approximate values since it is not always possible to utilize the exact and precise values while
doing mathematical calculations. The result is unreliable as a result of approximation, and we can say that
error was introduced throughout the calculations.The distinction between the problem’s analytic solution
and its approximation solution is, in fact, absolute error. There are three primary sources of computational
errors, which are truncation error, rounding error and human error. A truncation error is the difference
between the exact solution and the value that was truncated. In general, computational error is the trun-
cation error incorporating with rounding error. The expansion for the truncation error of the forward
difference is

E(r, θ : h, k) = p′(r, θ)−p(r+h,θ)−p(r,θ)
h

= p′(r, θ)−p(r,θ)+hp′(r,θ)+h2/2 p′′(ξ,θ)−p(r,θ)
h

= −h
2
p′′(ξ, θ)

for some ξ ∈ (r, r + h) (first order approximation).

Similarly, the expansion for the truncation error of the backward difference is

E(r, θ : h, k) = h
2
p′′(ξ, θ) for some ξ ∈ (r − h, r) (first order approximation).

The expansion for the truncation error of the backward difference is

E(r, θ : h, k) = p′(r, θ)− p(r+h,θ)−p(r−h,θ)
2h

= p′(r, θ)− 1
2h
[p(r, θ) + hp′(r, θ) + h2/2 p′′(r, θ) + h3/6 p′′′(ξ1, θ)

- p(r, θ) + hp′(r, θ)− h2/2 p′′(r, θ) + h3/6 p′′′(ξ2, θ)]

= −h2

6
[p′′(ξ1, θ) + p′′(ξ2, θ]

= −h2

6
p′′(η, θ) for some η ∈ (r − h, r + h) (second order approximation).

Similarly, the expansion for the truncation error of second order partial derivative is also second or-

der approximation. Therefore forward, backward, central and second-order schemes respectively are [14, 15]

∂p

∂r
(ri, θj) =

pi+1,j − pi,j
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+ ◦(h)

∂p

∂r
(ri, θj) =

pi,j − pi−1,j
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+ ◦(h)

∂p

∂r
(ri, θj) =
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2∆r
+ ◦(h2)

∂2p

∂r2
(ri, θj) =

pi+1,j − 2pi,j + pi−1,j

(∆r)2
+ ◦(h2)

Using above approximations, truncation error of the Poisson′s equation is [◦(h2) + ◦(k2)].
If there exists a constant M independent of h and k and order of an approximation are p = 2 and q = 2.
Then error in Poission equation is

|E(r, θ : h, k)| ≤ Mh2k2

for sufficiently small h > 0, k > 0.
The error is useful for evaluating the accuracy of numerical methods when solution is known. When the
precise solution to the problem is unknown, the true absolute error cannot be estimated, in this situation
different methods are used to assess the accuracy of a numerical solution [3, 4]. Truncation error can be
minimized by performing repeated iteration and incorporating as many as terms in the approximation as
possible. In this paper, absolute errors of the analytic and numerical solutions of the above model problem
of Poisson′s equation when i = 0, 1, 2 j = 0, 1, 2, ..., 7, as shown in the following table.
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Table 1: Absolute errors
Values of (r, θ) Analytic solutions Numerical solutions Absolute Errors

(0, 0) 0 0.0231 0.0231
(1/3, 0) 0.2222 0.8901 0.6679

(1/3, π/4) 0.1571 0.5564 0.4047
(1/3, π/2) 0 -0.0175 0.0175
(1/3, 3π/4) -0.1571 -0.4854 0.3283
(1/3, π) -0.2222 -0.5832 0.3610

(1/3, 5π/4) -0.1571 -0.2792 0.1221
(1/3, 3π/2) 0 0.2312 0.2312
(1/3, 7π/4) 0.1571 0.7625 0.6054
(2/3, 0) 0.2222 0.4934 0.2712

(2/3, π/4) 0.1571 0.2353 0.0782
(2/3, π/2) 0 -0.1267 0.1267
(2/3, 3π/4) -0.1571 -0.3731 0.2160
(2/3, π) -0.2222 -0.3670 0.1448

(2/3, 3π/4) -0.1571 -0.1442 0.0129
(2/3, 3π/2) 0 0.0280 0.0280
(2/3, 7π/4) 0.1571 0.4642 0.3071

4 Comparative Study of Results

4.1 Two dimensional and three Dimensional figures of analytical solution

The following figures (2) are the electrostatic potential distribution in a unit circular disc with given
Dirichlet′s boundary values analytically [3, 4, 12];

Figure 2: Potential Distribution on a Unit Circular Disc in 2D and 3D Analytically

4.2 Two dimensional and three dimensional figures of numerical solution and
error

The following figures (3, 4) represent the electrostatic potential distribution in a unit circular disc with
Dirichlet′s boundary condition including errors. We performed 25 iterations, as shown in Figure (3), and
we can see that there is some errors. The error further decreases as we increase the number of iterations
to 50, as shown in the figures (4). For the figure (4), we performed 50 iterations, and the electric charge
distribution in a unit circular disc is nearly identical to the analytical distribution shown in figure (2), with
an error that goes toward zero[3, 7, 4, 12].
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Figure 3: Potential Distribution With Error in a Unit Circular Disc of Iteration 25

Figure 4: Potential Distribution With Error in a Unit Circular Disc of Iteration 50

5 Conclusions

In real life, we are facing many circular phenomena so that electrostatic potential distribution inside a
unit circle plays a leading role in the field of application. Because of the several complicated theories
involved, including the variable separation method, the Sturm−Liouville equation, and the Cauchy−Euler
equation, finding an analytical solution to Poisson′s equation in a polar coordinate system is not only
challenging but also time-consuming. In contrast, the numerical approach is fast and simple for the same
problem. For the numerical solution of the given model problem in this study, which is the polar coordinate
form of the Poisson’s equation inside a unit circular disc with the Dirichlet boundary condition, we used
the Gauss-elimination procedure in MATLAB. We identify the errors at each node by comparing the
analytical solution with the corresponding numerical solution. Actually, we did not find minimum errors,
we took i = 0, 1, 2, j = 0, 1, 2, ..., 7. But we are confident that if we increase the numbers of iterations,
surely absolute error nearly tends to zero, as shown in figures (3) and (4). Hence, if increase the numbers of
iterations sufficiently large, numerical solution of the given model problem is more accurate and sufficiently
near to the exact solutions.
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to 50, as shown in the figures (4). For the figure (4), we performed 50 iterations, and the electric charge
distribution in a unit circular disc is nearly identical to the analytical distribution shown in figure (2), with
an error that goes toward zero[3, 7, 4, 12].
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Figure 3: Potential Distribution With Error in a Unit Circular Disc of Iteration 25

Figure 4: Potential Distribution With Error in a Unit Circular Disc of Iteration 50

5 Conclusions

In real life, we are facing many circular phenomena so that electrostatic potential distribution inside a
unit circle plays a leading role in the field of application. Because of the several complicated theories
involved, including the variable separation method, the Sturm−Liouville equation, and the Cauchy−Euler
equation, finding an analytical solution to Poisson′s equation in a polar coordinate system is not only
challenging but also time-consuming. In contrast, the numerical approach is fast and simple for the same
problem. For the numerical solution of the given model problem in this study, which is the polar coordinate
form of the Poisson’s equation inside a unit circular disc with the Dirichlet boundary condition, we used
the Gauss-elimination procedure in MATLAB. We identify the errors at each node by comparing the
analytical solution with the corresponding numerical solution. Actually, we did not find minimum errors,
we took i = 0, 1, 2, j = 0, 1, 2, ..., 7. But we are confident that if we increase the numbers of iterations,
surely absolute error nearly tends to zero, as shown in figures (3) and (4). Hence, if increase the numbers of
iterations sufficiently large, numerical solution of the given model problem is more accurate and sufficiently
near to the exact solutions.
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Abstract: Farey sequence is a pattern of rational numbers that approximates irrational numbers. In this 
paper, we use the Farey sequence to describe the Ford Circles. Its results and applications are equally 
fascinating as its pattern. Hurwitz Theorem is the main outcome of the approximation of irrational by 
rational numbers. Also, we examine the relationship between the Ford circle and the Farey sequence for 
rational values between 0 and 1. 

Keywords: Farey sequence, Irrational number, Mediant, Approximation, Ford circle, Hurwitz Theorem. 

1.Introduction 

Two-integer fractions with a non-zero denominator can be used to represent rational numbers. If not, it is 
an irrational number. The Farey sequence helps to classify rational and irrational numbers. A brief history 
of the Farey sequences after John Farey, who initially proposed that 𝐹𝐹� can be created from 𝐹𝐹���can be 
found in the work of Hardy and Wright [11]. The Farey sequence [7]was created by John Farey and is an 
outstanding method for producing appropriate fractions in the range[0,1]. The Farey sequence 𝐹𝐹�of order 
𝑛𝑛 is a collection of proper, irreducible, positive fractions with denominators less than or equal to 𝑛𝑛 and 
arranged in ascending order of their values. The Farey sequence is related to various studies, the major of 
which concentrate on fraction theory [11, 13].The Farey sequence connection with rational numbers 
between 0 = ��

�
�and 1 = ��

�
�. A collection of all reduced rational numbers with non-exceeding 

𝑛𝑛denominators, known as the Farey sequence of order 𝑛𝑛, and is arranged in size order and collection of 
all integers of order 2in the following: 
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While Mr. Flitcon's concluded that implementation the correct number of elements in 𝐹𝐹��with the 
exception of 0 and 1, it did not give a formula or even a list of those elements. Charles Haros was tasked 
with creating a mathematical table to convert between fractions and decimals after the new French 
government passed legislation going to require that all of France switch to the metric system in place of 
imperial measurements in 1791, it was Charles Haros' responsibility to develop a mathematical table to 
translate between fractions and decimals.  The French Revolution provided an unlikely motivation for the 


