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Abstract: The hypergeometric functions are one of the most important and special functions in 
mathematics. They are the generalization of the exponential functions. Particularly the ordinary 
hypergeometric function );;,(12 zcbaF is represented by hypergeometric series and is a solution to a 
second order differential equation. Similarly, Laplace transform is a form of integral transform that 
converts linear differential equations to algebraic equations. This paper aims to study the convergence of 
hypergeometric function and Laplace transform of some hypergeometric functions. Moreover, some 
relationships between Laplace transformation and hypergeometric functions is established in the 
concluding section of this paper. 

Keywords: Hypergeometric function, Laplace transformation, Gamma function 

1. Introduction 

Hypergeometric functions are one of the oldest transcendental functions. Normally exponential functions 
are generalized in terms of hypergeometric functions. They can be manipulated analytically as well 
[1].The hypergeometric series plays a significant role in the number system, partition theory, graph 
theory, Lie algebra, etc. [10].  According to Rao [9], John Wallis (1616-1703) extended the ordinary 
geometric series  

....1 65432  xxxxx        (1) 
The above expression can be expressed in the Hommer’s series[9] of the form  
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to the hypergeometric series of the form  
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Whose nth term is given by 
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At b =1, the representation (4) can be written in the form 
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For n is a non-negative integer. The equation (5) is called the Pochhammer function (see.[10],[13]). In 
1707-83 Leonhard Euler introduced the power series expansion of the form 
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The series (6) Can be represented in the Hommer’s form as 
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The Pochhamer symbol (5) can be written in terms of gamma function as 
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The equation (6) is called the hypergeometric function with two numerator parameters a, and b and the 
denominator parameter c. This can be expressed as  
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Hypergeometric functions are not only expressed as the Euler Hypergeometric functions but are also the 
solutions of the second order differential equation  
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In term of operator the above equation can be expressed as  
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where
dz
dz . The series is convergent if  |z| <1 and divergent for |z| >1 and z =1 for R(cab)>0 

 

Some classical summation for the hypergeometric series and generalized hypergeometric series as 
mentioned by Rainville [8] are as follows: 
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In 1908, Barn used the generalized hypergeometric function with p numerator parameters and q 
denominator (p and q) being non negative integers) with the notation of the form. (see,[8][11]) 
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is convergent for all |z| < ∞ if p ≤ q and for |z | < 1 if p = q + 1 while it is divergent for all z ≠ 0 if  
p > q + 1. When |z| = 1 with p = q + 1, the series (5) converges absolutely if 
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Where p and q are integers in the application such that q=p+1. 
 

2. Laplace Transformation of Hypergeometric Functions 

Transform theory in mathematics relates a function in a domain to the other function in the next domain. 
The transformation is done to yield the mathematical solution of the complex problems from a simple 
function. To start with the transformation, it is known that  
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The sum on the right hand side of (20) is a terminating hypergeometric series so from (13) we get, 
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Definition 2.1 : Let f(t) be the function of a variable t which is defined for all value of t. Then the Laplace 
transform of f(t) is defined as 

L[f(t)] =𝐹𝐹(𝑠𝑠) = 




0

)( dttfe st                            (22) 

provided that the integral exists in the Lebesgue sense. In this case, the inverse of Laplace transform is 
represented as L-1[F(s)]= f(t). Laplace transformation is used to solve the ordinary differential equations 
having the constant coefficients. Laplace transforms are tested and evaluated according to the criteria of 
application of the problems to various types of functions for numerical accuracy, computational efficacy 
and ease of programming and implementation [6] 
Definition 2.2 : The Laplace Transform, in terms of Gamma function, is expressed as 
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          provided that R(s) > 0 and R(𝛼𝛼) > 0. 
 

Many researches are done to find out the Laplace transformation of the hypergeometric functions. Herz 
used a Laplace transformation (and inverse Laplace transformation) to transform from qp F to qp F1

hypergeometric functions. Rathie studied the Laplace transform for the generalized hypergeometric 
function 22 F  and 33 F  (see, [6],[7]). The convergence of the hypergeometric series, Laplace transforms 
and their relations are briefly introduced/ reviewed in this paper. 
 

3. Main Results 

The hypergeometric series in terms of power series is given in (2) then the nth term is given by  
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Then the (n+1)th term is given by  
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For the test of convergence, using De Alembert’s ratio test[5] from (24) and (25) 
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3.1 The convergence of Laplace transform 

For a complex exponential function ),()( tetf at for 1)( t we have  
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Here jwte  is sinusoidal a  is positive. The exponential will be a negative power which will tend to 
infinity cause the function tends to zero as t tends to infinity If a is negative or zero, the exponential 
will not be a negative power which will prevent it from tending to zero and the system will not converge. 
So the condition of convergence is Re(s) > a and the condition of anti-casual convergence is Re(s) < a. 
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will not be a negative power which will prevent it from tending to zero and the system will not converge. 
So the condition of convergence is Re(s) > a and the condition of anti-casual convergence is Re(s) < a. 
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3.2 Laplace transforms of some Hypergeometric functions 
Now we will present the results involving the hypergeometric function and the Laplace transforms. 

Now using the Laplace transform in (10), Rathie[12] has obtained the results which are given below. 
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provided that  (i) If p < q, R(v) >0, R (s) >R(w)  and w is the arbitrary or 

 (ii) p = q > 0 R (v) > 0, and R (s) >R (w) 

Especially  (iii) If p = q > 0, s = w, R (v) > 0, R (s)> 0 and  
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   Laplace transform for Kummer’s confluent Function 1F1 

In particular if p = q = 1 in (31), The Laplace transformation of the Kummer’s confluent hypergeometric 

function 1F1, is  
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provided that  (i) R(b) > 0, R (s) >max{ R (w); 0}  and w is the arbitrary or 

 (ii) s = w, R (s) > 0, and R (c – a  b) >0 

       Laplace transform for generalized Hypergeometric Function 2F2 

When p = q = 2 in (22) then the Laplace transformation of the generalized hypergeometric function is 

given by  

 















 


 s
w

bb
aav

Fsvwt
b
a

b
a

Fte vvst

;2,1

;21
23

2

2

1

1

0
22

1 ,,
)(

;
;

,
,

   (33) 

Provided that  (i) R(v) > 0, and  R (s) >max{ R (w); 0}  and w is the arbitrary or 

 (ii) s = w, R (s) > 0, and R (b1+b2a1a2v) >0. 

       Laplace transform for generalized Hypergeometric Function 3F3 
Now replacing p = q = 3 in (22) then the Laplace transformation of the generalized hypergeometric 
function is given by  
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provided that  (i) R(v) > 0, and  R (s) >max{ R (w); 0}  and w is the arbitrary or 

 (ii) s = w, R (s) > 0, and R (b1+b2 b3a1a2a3v) >0. 

By using these theorems Kim et.al [12] has obtained a large number of Laplace transform s for the 
confluent hypergeometric functions 1F1 and generalized Hypergeometric function 2F2. These are listed as 
follows; 
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provided that R(b) > 0, and  R (s) > 0 

     Laplace Transform for 2F1 (a, b; c ; t) 

The Laplace transformation for the Hypergeometric series 2F1 as mentioned by Weinstein[14], is  
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This relation is valid if 11  n . 
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  Laplace transform on Generalized Hypergeometric Function  
The generalized form of the hypergeometric function pFq is 
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  Laplace transform for Guass Function 2F2 

The Laplace Transform for the Guass function [13] is  
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provided that (i) R(c) > 0, and  R (s) > 0  

                    (ii) R (2cab)) > 1. 

Also, dtts
caba

ba
Fte cst














;1);1(
;

0
22

1  

 
     

   cbacabaa

cbacabaac
s c







 






 







 






 

 

1
2
11

2
111

2
1111

2
11

  (43) 

provided that (i) R(c) > 0, and  R (s) > 0 (ii) R (a2b2c) > 2 
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provided that(i) R(c) > 0, and  R (s) > 0  
                    (ii) 1+b=1, d + e=1+2c 
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4. Application of Shifting Theorems 
 

 Shifting theorem of Laplace transform on 2F1 
The Laplace transform of a generalized hypergeometric function is 
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5. Conclusion: 

This paper aims to establish the Laplace transformation of some hypergeometric functions. The 
nature of convergence of Laplace Transform and Hypergeometric function is observed in 3.1.The Laplace 
transform of Hypergeometric series of Kummer’s confluent function 1F1, Generalized Hypergeometric 
Function 2F2 and 3F3, Kummer’s Hypergeometric function 1F1 and 2F1 in 3.2.It has also shown the 
relationship between Laplace transform and Hypergeometric function. The application of first shifting 
theorem of Laplace transform to Hypergeometric Function 2F1 and the Laplace transform of att n sin  are 
well illustrated in section 4. The list of formulae presented here are applicable in Mathematics, 
Engineering, Biology and Applied Physics. 
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Abstract: In this article, a new distribution having three called Modified Generalized Exponential 
Distribution is proposed. Important statistical properties of the proposed model like survival function, 
hazard rate function, the probability density function (PDF), the cumulative distribution function (CDF), 
quantile function, skewness, and kurtosis are discussed here.  Least Square Estimation (LSE), Cramer-
Von Mises (CVM) and Maximum Likelihood estimators (MLE) methods are used for estimation of 
parameters using R programming software. A data set is discussed and performed the goodness-of-fit to 
assess the applications of the proposed distribution. Various methods of model comparison and model 
validation are also used. The proposed model Modified Generalized Exponential Distribution is more 
applicable as compared to some existing probability model. 
   
Keywords: Exponential distribution, Estimation, Hazard function, Cramer-von Mises,  
                   Maximum likelihood. 
 

1. Introduction 

Probability models are very useful in reliability analysis of different fields of biological science, applied 
statistics as well as engineering. During the modeling of the data, probability models available so far may 
not produce better fit in modeling reliability data. Due to this reason, researchers have been adjusting 
traditional probability models and describing the acceptance of those models in practice. This can be done 
by adding one or more extra parameters to the baseline distribution. Addition of extra parameters 
generates new probability models. These modified models usually provide a better fit to the data than the 
traditional models. 

In the last decades, exponential model is frequently used as baseline model to create new probability 
models. In literature, we can find a lot of modifications of the exponential distributions. Some of the 
modified distributions are generalized exponential (GE) [Gupta & Kundu, 2007], generalized inverted 
exponential distribution [Abouammoh & Alshingiti, 2009], gamma EE [Ristic & Balakrishnan, 2012] and 
exponential extension (EE) model [Kumar, 2010] etc. 
These lifetime models may have bathtub-shaped Hazard rate function (hrf).In real life we can find many 
data that have bathtub-shaped hrf. In literature we can also find many modifications of Weibull 
distribution. The two parameter Weibull distribution is given as 

                                        ( , , ) exp[ ( , )]F y y                                                (1) 


