
39

 

 

   Nepal Journal of Mathematical Sciences (NJMS)  
   ISSN: 2738-9928 (online), 2738-9812 (print)    
   Vol. 3, No. 2, 2022 (August): 39-58 
    DOI: 10.3126/njmathsci.v3i2.49202 
    School of Mathematical Sciences,  
   Tribhuvan  University, Kathmandu, Nepal 

                Research Article 
                  Received Date:  March 3, 2022  
                 Accepted Date:  August 2, 2022                
                 Published Date: August 30,2022  

 

39 
 

A Bayesian Analysis and Estimation of Weibull 
Inverse Rayleigh Distribution Using HMC Method 

Laxmi Prasad Sapkota 
Department of Statistics, Tribhuvan University, Tribhuvan Multiple Campus, Palpa, Nepal 

Email: laxmisapkota75@gmail.com  
 

Abstract: Under the Bayesian environment we have analyzed the Weibull inverse Rayleigh model. The 
parameters of the model are estimated and predicted through posterior samples which are generated 
using Markov Chain Monte Carlo (MCMC) technique. The concern model is fitted using Stan software (a 
probabilistic programming language), utilizing the Hamiltonian Monte Carlo (HMC) algorithm and its 
adaptive variant the No-U-turn sampler (NUTS). For the illustration, we have considered a real data 
set and performed Bayesian analysis numerically and graphically using weakly Gamma informative 
priors. The posterior predictive check is also carried out to accesses the predictability of the model. 
The tools and methods used in this article are under the Bayesian approach which is implemented in R 
statistical programming language. 
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1. Introduction 
 
The inverse Rayleigh (IR) distribution is a flexible model and plays a vital role in modeling reliability 
datasets, which was developed by Treyer [1]. The distribution function (CDF) and density function (PDF) 
of IR distribution with a parameter λ, can be expressed as 

   2; exp /  ; 0,  0G x x x       and                                                                    (1) 

   3 2; 2 exp /  ; 0,  0g x x x x        respectively.                                            (2) 

Voda [39] has studied the properties and estimated the parameters of the IR distribution. Similarly, 
Gharraph [19] has provided a detailed closed-form illustration for the arithmetic mean, harmonic mean, 
median, geometric mean, and mode of IR distribution.  

 Using various generating techniques, the extension of IR distribution has been provided by 
different researchers, some of them are, the study of acceptance sampling method based on the IR 
distribution introduced by Rosaiah & Kantam [33]. Further IR distribution was used in estimation and 
prediction depending on the lower record values by Soliman et al. [34]. Ahmad et al. [2] have defined the 
transmuted IR distribution. Khan [22] has developed an extension of IR distribution that can have a 
bathtub hazard function called modified inverse Rayleigh distribution with parameters α and β. Further, 
Khan [23] has introduced another extension of IR distribution having three parameters named transmuted 
modified IR distribution. The Kumaraswamy exponentiated  IR distribution was presented by Ul Haq 
[37]. Fatima and Ahmad [10] have studied the weighted IR distribution. Fatima et al. [11] have studied 
several structural properties of exponentiated generalized IR distribution. Another extension of IR 
distribution has been studied by Elgarhy & Alrajhi [9] named odd frechet IR distribution with upside-
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down or j-shaped or right-skewed hazard rate function. Mohammed and Yahia [27] have presented type II 
Topp Leone IR distribution and Almarashi et al. [4] presented another extension of IR distribution using a 
half-logistic generating family of distribution that can be used for left-skewed lifetime data. In this study, 
we have considered a flexible model defined by Ogunsanya et al. [31] named Weibull Inverse Rayleigh 
(WIR) distribution, and the authors have adopted the classical approach and Lindley approximation 
approach for parameter estimation. We have performed a full Bayesian approach under MCMC along 
with the Hamiltonian Monte Carlo (HMC) algorithm and its adaptive variant the No-U-turn sampler 
(NUTS) for the study of this model. The main objective of this work is to analyze the Weibull inverse 
Rayleigh model and its predicting capability under the Bayesian environment. 
 

2. WIR Model 
The CDF and PDF of the WIR distribution are 

 
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2
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 and                          (3) 
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 (4)  

respectively. 
2.1. Survival/Reliability Function 

Let 0X   is random variable follows the WIR distribution, and then the survival function is 
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 .                           (5) 

2.2. Hazard Rate Function (HRF) 

The HRF of WIR distribution having parameters ( , , )    is 

 
 1

3
2 22 exp 1 exp ; 0,  ( , , ) 0h x x x

x x

 
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      
.            (6) 

The HRF of WIR distribution can have different forms like monotonically increasing, increasing-
decreasing, j-shaped, or inverted bathtub (Figure 2) according to different values of   and  keeping β as 
constant. Similarly, we can obtain the cumulative hazard function of WIR distribution as 
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               (7) 

and failure rate average (FRA) is 
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.                                                                 (8) 
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Figure 1: The graphs of PDF of WIR distribution for α and λ keeping β as constant. 

 
Figure 2: The graphs of HRF of WIR distribution for α and λ keeping β as constant. 

2.3. Quantile Function of WIR distribution 

The quantile function is the inverse function of CDF which can be expressed as  

 
11/
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      

 (9) 

Let  ~ 0,1V U , then the random deviate of X is calculated by using  
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                       (10) 

2.4. Median, upper and lower quartiles of the WIR distribution 

The median of the WIR distribution can be obtained as 

 

11/
ln 0.5ln 1Median
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
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. 

The lower and upper quartiles can be calculated as 
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Figure 1: The graphs of PDF of WIR distribution for α and λ keeping β as constant. 

 
Figure 2: The graphs of HRF of WIR distribution for α and λ keeping β as constant. 
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3. Model Formulation using the Bayesian approach 

In a classical approach, we generally assume the parameters  , ,    (for our study) as a constant and 
the goal is to analyze the distribution of the observed data set given θ using the likelihood of the data 
sample. But in the Bayesian approach, the parameter θ is considered as a random variable where as the 
observed data set is taken as constant. In this type of modeling, prior information is used to support our 
assumption about the parameters of the distribution [17]. In Bayesian modeling, the posterior distribution 
function is obtained by multiplying the prior distribution function and the likelihood function of the 
model under consideration for more detail see [25]. For Bayesian inference, we need the following 
elements 

 The probability distribution function:  / , ,f x     
 Prior distribution:  , ,p     

 Likelihood  /p data   
 Data: 1( ,..., )nx x x  

3.1. Prior Distribution  p   

 In Bayesian inference, a prior distribution (simply called prior) is the unconditional probability 
distribution that is used to express our beliefs about the true value of the parameters before the data is 
taken into account. Mathematically a prior is a weight given to each parameter value which is used in the 
numerator of Bayes’ rule to multiply the likelihood. Bayes' rule is actually only a technique to revise our 
initial beliefs with regard to observation or data. The term  , ,p     denotes the probability distribution 

which represents our pre-data beliefs depending upon the different values of the parameters  , ,   

of our model. In this article, we have taken the weakly-informative Gamma prior for the parameters 
 , ,    as 

 1 1~ ,G a b ,  2 2~ ,G a b  and  3 3~ ,G a b  where 1 1( 0.5,  0.5)a b  , 2 2( 0.1,  0.1)a b   and

3 3( 0.1,  0.1)a b   respectively. This Gamma prior is the most commonly used weak prior on variance 
which is nearly flat (Fig. 3). The prior distributions can be written as 
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3.2. Likelihood  /p data   

 The likelihood function provides us the probability of obtaining a particular data conditioned on model 
parameters. Given a set of data 1( ,..., )nx x x , the likelihood function can be computed as 
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3.3. Posterior distribution  /p data  

 The posterior probability distribution is the probability distribution of a parameter θ under study, 
considered as a random variable, conditional on the facts taken from a survey or experiment. Let 
 , , /p x   denote the posterior distribution then, according to Bayes' rule 
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All the information needed for Bayesian analyses is contained in the posterior distribution and the aim is 
to compute the numeric as well as graphic summaries of it through integration. But the posterior 
distribution is quite complicated and could not draw any inferences. Hence we purpose an alternative 
technique known as the simulation technique. This technique is based on Markov Chain Monte Carlo 
(MCMC) method. Using MCMC we can generate samples by running an expertly created Markov Chain 
that ultimately converges to the objective distribution i.e. posterior distribution  , , /p x   . 
 

 
Figure 3: Graph of Gamma prior for various values of the parameters. 
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All the information needed for Bayesian analyses is contained in the posterior distribution and the aim is 
to compute the numeric as well as graphic summaries of it through integration. But the posterior 
distribution is quite complicated and could not draw any inferences. Hence we purpose an alternative 
technique known as the simulation technique. This technique is based on Markov Chain Monte Carlo 
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There are many different techniques to construct such chains some of them are, the Gibbs sampler [18] 
and [13] are special cases of the general framework of [26, 20]. In this article we have implemented 
MCMC algorithms through Stan (a probabilistic programming language) [35], the Hamiltonian Monte 
Carlo (HMC) algorithm and its adaptive variant the no-U-turn sampler (NUTS) for more detail see [21, 
7]. Recently, Chaudhary & Kumar [8] have presented the Bayesian estimate of Gompertz extension 
distribution having three parameters. Also, Alizadeh et al. [3] discussed the technique for estimating the 
model parameters of the odd log-logistic Lindley-G family of distribution.  
 

4. Methods 
 

4.1. Hamiltonian Monte Carlo (HMC) method 
 

HMC is computationally a bit costly as compared to Metropolis and Gibbs sampling but its proposals are 
much more efficient [16]. As a result, HMC doesn't require as many samples to explore the posterior 
distribution. To conduct the HMC algorithm, we require the following five things 

i) A function U gives the minus-log probability of the data at the current position (parameter 
values). U is just the log posterior. 

ii) A gradient function Ugrad computes the slope of the minus-log probability at the current position. 
iii) A step size epsilon (  ) 
iv) Number of leapfrog steps ‘L’ 
v) An initial position qcurrent 

The complete HMC algorithm can be performed under the following steps 
i) Select a random starting location 0 from some initial proposal distribution. 
ii) For 1, 2,...,t n this, we have to conduct the following 

 Generate a random initial momentum from a proposal distribution (For eg. ~ ( , )X N   ) 
 Perform the leapfrog algorithm to solve for the path of the particle moving over the minus-log 

of posterior density space for a time period T. 
 After an amount of time T elapsed, record the momentum of the particle ‘m’ and its position 

in parameter space 1t  . 
 Calculate  
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 Generate  ~ 0,1u U . If r u the move to the 1t  otherwise remain t s at. 

4.2. No-U-Turn Sampler (NUTS) 
 

NUTS engine routinely selects a suitable value for leapfrog step L in every iteration in order to maximize 
the distance at every L and control the random walk behavior. Consider 1  and 0 be the current position 
and initial position of a particle and D be half of the distance between the positions 1 and 0 at each 
leapfrog step. The aim is to run leapfrog steps until 1 start to move backward towards 0 , which is 
achieved using the following algorithm, where leapfrog steps are run until the derivative of  D with 
respect to time becomes less than 0. 

     1 0 1 0 1 0
1 0
2

T TD p
t t

                 
. 

However, this algorithm doesn't assure convergence or reversibility to the target distribution. The NUTS 
solves this type of problem by performing a doubling method for slice sampling [29]. To generate the 
samples using NUTS, we have to follow the following steps 

i) Set the initial value of 0, , , , ,  and j      . 
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ii) Create momentum p from the standard normal distribution  ~ 0,N  . 
iii) Create auxiliary variable μ from the uniform distribution

11~ 0,exp log ( )
2

TUniform f M        
  

. 

iv) Generate C by using the doubling method with transition kernel T, where C is a subset of  0 , p  
states. 

v) Accept the proposal  1 1, p with probability j at the jth iteration. 
vi) Update j  by dual averaging. 
vii)  Repeat steps (1) to (6). Since step (6) is repeated only during the warm-up phase. 

Where j =  actual acceptance probability for the jth iteration. 

  desired average acceptance probability 
  freely chosen point that is iterated j shrivel towards. 

0 =j  free parameter that dampens early exploration. 
   free parameter that controls the amount of shriveling towards μ. 

For more detail about NUTS see [21, 30]. 
 
5. Data Analysis 

 

5.1 Data set: Tensile strength: We have considered a real dataset for analysis to illustrate the 
intended methodology. The dataset is of 65 observations of failure stresses of single carbon fibers of 
length 50 mm on the data of tensile strength. The data was used by Bader & Priest [5] and also used by 
Muhammad & Liu [28]. The descriptive statistics of the dataset are presented in Table 1.  
 
5.2 An exploratory study of the dataset 
The main aim of the exploratory analysis of the data is to explore more information about the data. The 
latest statistical tools for data analysis incorporate exploratory data analysis.  

 
Table 1: Summary statistics of the dataset 

Min. Q1 Median Mean Q3 Max. Skewness Kurtosis 
1.339 1.931 2.272 2.244 2.558 3.174 0.0223 2.5499 

 

 
Figure 4: Histogram with density and box plot (left panel) and TTT plot (right panel). 



45

Laxmi Prasad Sapkota /  A Bayesian Analysis and Estimation of Weibull Inverse Rayleigh Distribution … 

44 
 

There are many different techniques to construct such chains some of them are, the Gibbs sampler [18] 
and [13] are special cases of the general framework of [26, 20]. In this article we have implemented 
MCMC algorithms through Stan (a probabilistic programming language) [35], the Hamiltonian Monte 
Carlo (HMC) algorithm and its adaptive variant the no-U-turn sampler (NUTS) for more detail see [21, 
7]. Recently, Chaudhary & Kumar [8] have presented the Bayesian estimate of Gompertz extension 
distribution having three parameters. Also, Alizadeh et al. [3] discussed the technique for estimating the 
model parameters of the odd log-logistic Lindley-G family of distribution.  
 

4. Methods 
 

4.1. Hamiltonian Monte Carlo (HMC) method 
 

HMC is computationally a bit costly as compared to Metropolis and Gibbs sampling but its proposals are 
much more efficient [16]. As a result, HMC doesn't require as many samples to explore the posterior 
distribution. To conduct the HMC algorithm, we require the following five things 

i) A function U gives the minus-log probability of the data at the current position (parameter 
values). U is just the log posterior. 

ii) A gradient function Ugrad computes the slope of the minus-log probability at the current position. 
iii) A step size epsilon (  ) 
iv) Number of leapfrog steps ‘L’ 
v) An initial position qcurrent 

The complete HMC algorithm can be performed under the following steps 
i) Select a random starting location 0 from some initial proposal distribution. 
ii) For 1, 2,...,t n this, we have to conduct the following 

 Generate a random initial momentum from a proposal distribution (For eg. ~ ( , )X N   ) 
 Perform the leapfrog algorithm to solve for the path of the particle moving over the minus-log 

of posterior density space for a time period T. 
 After an amount of time T elapsed, record the momentum of the particle ‘m’ and its position 

in parameter space 1t  . 
 Calculate  

 
 

 
 

1 1( / ) '
( / )

t t

t t

p x p q m
r

p x p q m
 
 
   

 Generate  ~ 0,1u U . If r u the move to the 1t  otherwise remain t s at. 

4.2. No-U-Turn Sampler (NUTS) 
 

NUTS engine routinely selects a suitable value for leapfrog step L in every iteration in order to maximize 
the distance at every L and control the random walk behavior. Consider 1  and 0 be the current position 
and initial position of a particle and D be half of the distance between the positions 1 and 0 at each 
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samples using NUTS, we have to follow the following steps 
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ii) Create momentum p from the standard normal distribution  ~ 0,N  . 
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iv) Generate C by using the doubling method with transition kernel T, where C is a subset of  0 , p  
states. 

v) Accept the proposal  1 1, p with probability j at the jth iteration. 
vi) Update j  by dual averaging. 
vii)  Repeat steps (1) to (6). Since step (6) is repeated only during the warm-up phase. 
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  freely chosen point that is iterated j shrivel towards. 

0 =j  free parameter that dampens early exploration. 
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For more detail about NUTS see [21, 30]. 
 
5. Data Analysis 

 

5.1 Data set: Tensile strength: We have considered a real dataset for analysis to illustrate the 
intended methodology. The dataset is of 65 observations of failure stresses of single carbon fibers of 
length 50 mm on the data of tensile strength. The data was used by Bader & Priest [5] and also used by 
Muhammad & Liu [28]. The descriptive statistics of the dataset are presented in Table 1.  
 
5.2 An exploratory study of the dataset 
The main aim of the exploratory analysis of the data is to explore more information about the data. The 
latest statistical tools for data analysis incorporate exploratory data analysis.  

 
Table 1: Summary statistics of the dataset 

Min. Q1 Median Mean Q3 Max. Skewness Kurtosis 
1.339 1.931 2.272 2.244 2.558 3.174 0.0223 2.5499 

 

 
Figure 4: Histogram with density and box plot (left panel) and TTT plot (right panel). 
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Data analysis through exploratory method is a set of techniques to display and summarization of the data: 

 Presenting the data in a chart and graph that demonstrates general patterns and remarkable 

observations (bar plot, box plot, density curve, histogram, etc.). 

 Calculating descriptive information that summarizes the explicit aspect of data (central tendency 

and dispersion). 
 

The basic exploratory data analysis technique is applied to study the data the tensile strength and results 
are displayed respectively in Table 1 and Fig. 4 (left panel). To get the nature of the shape of the hazard 
function, we have plotted the total-time-on test (TTT) plot (Fig.4, right panel). We have plotted the TTT 
plot defined by Aarset [1] of an empirical version of the scaled TTT conversion of the data set. We have 
observed that the curve of the TTT plot is concave; hence the hazard function is increasing. 
 

The following steps are required for empirical modeling: 
i) Developing the full probability model and estimation of its parameters; 
ii) Model evaluation and validation; and 
iii) Model selection. 

 

Efficient modeling requires an excellent understanding of the characteristics of diverse types of models. 
The parameters of the concerned model are estimated using the maximum likelihood (ML) estimation 
technique. To evaluate the validity of the model, we calculate the Kolmogorov-Smirnov (KS) distance 
between the fitted and empirical distribution function where the parameters are estimated by the ML 
estimation method. The probability–probability (PP) plot and quantile-quantile (QQ) plot are used to 
check the suitability of the proposed model. 
 
5.3. Calculation of MLE 
The parameters  , ,   of the proposed distribution are estimated for the tensile strength of a real 

dataset using the optim() function under the R programming software [32] and for more detail see [24]. 
The MLEs of WIR with corresponding standard errors of the estimate are presented in Table 2. 
 

Table 2: MLE and SE for ,   and    of WIR distribution  

Parameter MLE SE 
alpha 4.9585 3.8750 
beta 1.8833 3.9701 

lambda 1.9317 0.6448 

 

Figure 5: The graph of the fitted and empirical distribution functions of the WIR distribution. 
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5.4. Model Validation 
 

To evaluate the validity of the model, we have calculated the KS distance 0.0623 between the fitted and 
empirical distribution function and its corresponding p-value is 0.9626, where the parameters are 
estimated by the ML estimation method. Since 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 > 0.05 indicates agreement with null 
hypothesis of good fit. We have also displayed the fitted and empirical distribution function in Fig.5, and 
it is obvious that the WIR distribution provides an excellent fit to the data set under consideration. 
Further, we have plotted the Q-Q and P-P plots to show the validity of the model in Fig. 6. From these 
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Data analysis through exploratory method is a set of techniques to display and summarization of the data: 

 Presenting the data in a chart and graph that demonstrates general patterns and remarkable 

observations (bar plot, box plot, density curve, histogram, etc.). 

 Calculating descriptive information that summarizes the explicit aspect of data (central tendency 

and dispersion). 
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Table 2: MLE and SE for ,   and    of WIR distribution  
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beta 1.8833 3.9701 

lambda 1.9317 0.6448 

 

Figure 5: The graph of the fitted and empirical distribution functions of the WIR distribution. 

Nepal Journal of Mathematical Sciences (NJMS),  Vol. 3, No. 2, 2022 (August): 39-58 

47 
 

5.4. Model Validation 
 

To evaluate the validity of the model, we have calculated the KS distance 0.0623 between the fitted and 
empirical distribution function and its corresponding p-value is 0.9626, where the parameters are 
estimated by the ML estimation method. Since 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 > 0.05 indicates agreement with null 
hypothesis of good fit. We have also displayed the fitted and empirical distribution function in Fig.5, and 
it is obvious that the WIR distribution provides an excellent fit to the data set under consideration. 
Further, we have plotted the Q-Q and P-P plots to show the validity of the model in Fig. 6. From these 
graphs, we observed that the WIR distribution fits the data very well. 
 

 

Figure 6: The Q-Q plot (left) and P-P plot (right) of the WIR distribution. 
 
6. Bayesian Analysis of the WIR model 

For the Bayesian analysis of the model WIR, we have used the latest Bayesian analysis software called 
Stan a high-level programming language that uses NUTS which is a variant of HMC simulation [21]. We 
have run the Stan using the algorithm HMC and engine NUTS having 4 chains for 4000 iterations. By 
default, Stan generates 2000 warm-up samples and 2000 real samples for a chain which are used for 
inferences. Stan scripts are presented in the Appendix. 

6.1 Convergence and efficiency diagnostics for NUTS/ HMC and Markov Chains 

In the convergence diagnostic, we monitor the NUTS/ HMC and MCMC as 
i) NUTS/ HMC: here we study the information about divergence, energy, tree -depth, step-size, and 

acceptance statistic. 

 
Figure 7: Graphs of the divergent transition status of the sampling algorithm v/s the log-posterior (left panel) and 

acceptance statistic (right panel) for all chains. 



 48

Laxmi Prasad Sapkota /  A Bayesian Analysis and Estimation of Weibull Inverse Rayleigh Distribution … 

48 
 

 
Figure 8: Histograms of E E  and for all 4 chains.  

Fig. 8 is the plots of the overlaid histograms of the energy transition distribution E   and the marginal 
energy distribution E for all 4 chains and indicate that the histograms that seem well-matched and the 
Hamiltonian Monte Carlo has performed robustly. 

 
Figure 9: Graph of tree-depth against the log posterior ( left panel) and acceptance statistic (right panel) for all chains. 

 

 
Figure 10: Histogram of tree-depth. 
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Fig. 9 and 10 indicate that the sampling algorithm is efficient. Fig. 11 indicates the full exploration of the 
log-posterior and high acceptance rates for step sizes and all chains. 
 

 
Figure 11: Integrator step size per chain along the x-axis against the log-posterior (top panel) and acceptance 

statistic (bottom panel) of the sampling algorithm. 
 

 
Figure 12: The log-posterior (top right panel), acceptance statistic (top left panel), and, the acceptance statistic (x-

axis bottom panel) v/s the log-posterior (y-axis bottom panel) for all chains. 
 

Fig. 12 are the plots of the acceptance statistic (top left panel), the log-posterior (top right panel), and the 
acceptance statistic against the log-posterior (bottom panel) for all chains. The vertical lines (solid) 
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indicate the mean and (dashed) indicate the median respectively and Fig. 12 indicates that sampling is 
efficient and fully explored the posterior space for detail see [6]. 
 

ii) MCMC: The MCMC draws can be monitored by plotting the following graphs 
 Autocorrelation plots 
 Rank plots 
 Trace plots 
 Ergodic mean plots 
 Pairs plot 

 
Figure 13: Autocorrelation plots of the parameters ,   and    for all chains (left panel) and Rank histograms of 

alpha, beta, lambda and log-posterior (right panel). 
 

To investigate the dependency of samples drawn from MCMC simulation we have plotted the 
autocorrelation plots for ,   and    all chains. The autocorrelation expresses that there is no dependence 
between the samples of a Monte Carlo simulation (Fig. 13, left panel). We have displayed the rank plots 
of , ,     and log-posterior in Fig.13 (right panel) histograms of rank visualize the values from the chains 
mixed together in terms of ranking nearly following a uniform distribution See [38] for details. 
 

 
Figure 14: Trace plot of the parameters ,   and    for all chains. 

In general, we look for three possessions in the trace plots: (1) good mixing, (2) stationarity, and (3) 
convergence. Good mixing implies that the chain quickly explores the full posterior region. It doesn’t 
slowly wander, but rather rapidly zig-zags around, as a good Hamiltonian chain should. Stationarity 
indicates the path of each chain staying within the same high-probability portion of the posterior 
distribution. Another way to imagine this is that the average value of the chain is relatively stable from 
start to end. Convergence represents that independent, multiple chains attach around the same area of high 
probability. 

Fig. 14 shows the trace plots for ,   and    are well mixing and convergence for all four chains. 
Trace plots present a visual mode to inspect sampling performance and judge mixing across chains.  
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Figure 15: The Ergodic mean plot for ,   and   . 

The Ergodic mean is computed as the average of all values of the samples for all chains corresponding 
iterations. Fig. 15 indicates that all chains are convergent smoothly around the mean value. Fig. 16 is a 
pairs plot of MCMC draws of , ,      and log-posterior. Diagonal histograms represent the univariate 
marginal posteriors whereas the off-diagonal scatter plots represent the bivariate plots. We have also 
presented a detailed numerical summary of the HMC and NUTS algorithm in Table 3 and statistics 
related to the efficiency of MCMC sampling in Table 4. 
 

Table 3: Informational statistic of NUTS/HMC for convergence of chains 
Chain accept_stat stepsize treedepth nleapfrog divergent energy 

All chains 0.99 0.01 5.85 160.83 0.00 38.82 
chain1 0.98 0.01 5.61 120.48 0.00 38.73 
chain2 0.98 0.01 5.57 123.12 0.00 38.87 
chain3 0.99 0.01 5.63 129.32 0.00 38.78 
chain4 1.00 0.01 6.59 270.39 0.00 38.92 

 

Table 4: Informational statistic of MCMC for convergence of chains 
Parameters Rhat n_eff / N se_mean / sd n_eff Bulk_ESS Tail_ESS 

alpha 1 0.12 0.03 934 908 1099 
beta 1.01 0.11 0.03 857 913 1127 

lambda 1 0.14 0.03 1127 1155 925 
log-posterior 1 0.14 0.03 1093 1314 1450 

 

6.2 Posterior Analysis: 
a) Numerical Summary 

Using the stan() function in R-Software we have estimated the posterior density of the fitted WIR 
model. We have presented the posterior summary for all merged chains in Table 5. Table 5 includes 
estimates of the posterior mean, standard error of the mean, and posterior standard deviation (sd). 
Quantiles for the median (50%) and 95% posterior interval (2.5%, 97.5%) are also presented. The 
remaining last two columns n_eff (number of effective sample size) and no parameters have an effective 
sample size for estimating the posterior mean less than 10% of the total sample size indicating that the 
samples are efficient and Rhat (estimated potential scale reduction statistic) provides the analysis of 
sampling and its efficiency here Rhat is less than 1.1 indicates convergence of chains. 

Table 5: Output summary of posterior samples for the WIR model 
Parameters mean se_mean sd 2.5% 50% 97.5% n_eff Rhat 

alpha 2.08 0.06 1.82 0.04 1.64 6.62 933.52 1.00 
beta 0.49 0.04 1.16 0.00 0.06 3.80 855.40 1.01 

lambda 2.50 0.01 0.43 1.59 2.53 3.26 1125.39 1.00 
Log-likelihood -37.32 0.04 1.36 -40.84 -36.97 -35.75 1090.30 1.00 
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Figure 16: Pairs plot of alpha, beta, lambda and log-posterior. 

b) Visual Summary 
The visual summary of posterior distribution can be presented using various graphs like histograms, 
boxplots, caterpillar plots, density plots etc. We have plotted histogram and kernel density estimate with 
all chains for alpha (Fig.17), beta (Fig.18) and lambda (Fig.19). These graphical presentations provide 
approximately complete information about the posterior samples regarding the parameters. Over all 
posterior samples of size 8000 were used to construct these graphs. Generally, histograms are useful to 
know the information about the nature in the tails, skewness, kurtosis, outliers and the existence of multi-
modal behavior. Fig.18 represents the histogram with 95% credible interval (green line) (left panel) and 
kernel density estimates along with 4 chains (right panel) for the parameter alpha. Similar graphs for 
parameters beta and lambda are also constructed and presented in Fig.19 and Fig.20 respectively. It is 
observed that the parameter lambda is nearly symmetric whereas alpha and beta are positively skewed.   
 

 
Figure 17: Histogram with 95% credible interval (green mark with mode point) (left panel) and kernel density 

estimates with 95% credible interval (green mark with mode point) (right panel) for the parameter alpha. 
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Also, we have constructed the caterpillar plot which is a well-linked plot in Bayesian analysis for 
summarizing the quantiles of posterior samples. In Fig.20 caterpillar plot is displayed with a 90% credible 
interval (blue line) and 99% credible interval (red line) (left panel) and the point estimate is median by 
default. 

 
Figure 18: Histogram with 90% credible interval (red area) (left panel) and kernel density estimates with 95% 

credible interval (red mark with mode point) (right panel) of parameter beta. 

 
Figure 19: Histogram with 90% credible interval (red area) (left panel) and kernel density estimates with 95% 

credible interval (red mark with mode point) (right panel) of parameter lambda. 

 
Figure 20: Caterpillar plot with 90% credible interval (blue line) (left panel) and point estimate is median and 

histogram of posterior log-likelihood (right panel).  
6.3 Model Compatibility: 

 

Posterior predictive checks (PPCs) 
A usual way to access the fit attained by a Bayesian model is to observe how good the predictions can be 
created from the model that agrees with the observed data [14] and [15]. If our model is capable to fit the 
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data then it should generate data that are quite similar to the observed data.The data which are used for 
PPCs we can generate them by simulating the posterior predictive distribution (PPD). The R package 
bayesplot presents different plotting functions for visual posterior predictive checking; using observed 
data and simulated data from the PPD we can generate these graphical displays [12]. 
 

The PPD is the distribution of the outcome variable implied by a probability model after utilizing 
the observed data y (a vector of length N=65) to update our beliefs about unknown model parameters

 , ,    . The PPD for observation repy  can be expressed as       / / /p y y p y p y d      
For every simulation (draw) 1, ,s S  of the parameters from the posterior distribution ( ) ( | )s p y  , 

we have generated a vector of N outcomes (s)y using the PPD by simulating from the data model 

conditional on parameters ( )s . The outcome is a 𝑆𝑆 × 𝑁𝑁 (8000 × 65) matrix of draws y . We have 
denoted the resulting simulation matrix by repy , this matrix as the replications of the observed 
data y rather than predictions for future observations. To attain further clarity on our decision for the 
study of the posterior predictive checks we have taken the smallest, middle and largest, i.e. (

[1],  [32]  [65]rep rep repy y and y ) replicated observations. Functions for carrying out a broad variety of 
graphical model checks depend on comparing observed data to draws from the posterior (or prior) 
predictive distribution and comparing the empirical distribution of the data y to the distributions of 
simulated/replicated data repy from the PPD.  
 

To analyze the predicting capacity of posterior samples we have presented the visual summaries such as 
histogram (Fig. 21), box and whiskers plot (Fig. 22, left panel) are displayed for y and 

[1],  [32]  [65]rep rep repy y and y . Empirical CDF estimates of each dataset (row) repy are plotted with the 
distribution of y (dark) is displayed in (Fig. 23, right panel). We have also displayed an interval plot (Fig. 
23, left panel) which plots intervals as vertical bars (inner 80% and outer 90% HPD) with points 
indicating repy  medians and darker points indicating observed y values. Histograms of the predictive 

errors computed from y and [1],  [32]  [65]rep rep repy y and y  are displayed in (Fig. 23, right panel). 
 

 

Figure 21: Histograms of observed data (y) and replicated data [1],  [32]  [65]rep rep repy y and y . 
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Figure 22: Boxplot of observed data (y) and replicated data [1],  [32]  [65]rep rep repy y and y (left panel) and 

estimated CDF of observed data (y) and replicated data (right panel). 

 
Figure 23: Interval plot (left panel) 80% HPD interval (dark vertical bars) and 90% HPD interval (light vertical 

bars) repy with median points vs. data points y (green) and Histogram of the predictive errors computed from y and 

[1],  [32]  [65]rep rep repy y and y (right panel). 

 

Conclusion 

Using Stan software whose Markov chain Monte Carlo (MCMC) techniques are based on No-U-Turn 

sampler (NUTS) which is an adaptive variant of Hamiltonian Monte Carlo (HMC); a more robust and 

efficient sampler, we have conducted a Bayesian analysis of WIR distribution. We have presented the 

numerical as well as graphical analysis of the WIR model and found that all chains are well mixed and 

conversed. Further, we have estimated the parameters of the model and performed posterior predictive 

checks and found that the underlying model can be used to generate reliable samples. The developed 

techniques are applied to an observed data set thus we can apply these for a full Bayesian analysis of the 

WIR model using these Bayesian techniques.  
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histogram (Fig. 21), box and whiskers plot (Fig. 22, left panel) are displayed for y and 

[1],  [32]  [65]rep rep repy y and y . Empirical CDF estimates of each dataset (row) repy are plotted with the 
distribution of y (dark) is displayed in (Fig. 23, right panel). We have also displayed an interval plot (Fig. 
23, left panel) which plots intervals as vertical bars (inner 80% and outer 90% HPD) with points 
indicating repy  medians and darker points indicating observed y values. Histograms of the predictive 

errors computed from y and [1],  [32]  [65]rep rep repy y and y  are displayed in (Fig. 23, right panel). 
 

 

Figure 21: Histograms of observed data (y) and replicated data [1],  [32]  [65]rep rep repy y and y . 
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Figure 22: Boxplot of observed data (y) and replicated data [1],  [32]  [65]rep rep repy y and y (left panel) and 

estimated CDF of observed data (y) and replicated data (right panel). 

 
Figure 23: Interval plot (left panel) 80% HPD interval (dark vertical bars) and 90% HPD interval (light vertical 

bars) repy with median points vs. data points y (green) and Histogram of the predictive errors computed from y and 

[1],  [32]  [65]rep rep repy y and y (right panel). 

 

Conclusion 

Using Stan software whose Markov chain Monte Carlo (MCMC) techniques are based on No-U-Turn 

sampler (NUTS) which is an adaptive variant of Hamiltonian Monte Carlo (HMC); a more robust and 

efficient sampler, we have conducted a Bayesian analysis of WIR distribution. We have presented the 

numerical as well as graphical analysis of the WIR model and found that all chains are well mixed and 

conversed. Further, we have estimated the parameters of the model and performed posterior predictive 

checks and found that the underlying model can be used to generate reliable samples. The developed 

techniques are applied to an observed data set thus we can apply these for a full Bayesian analysis of the 

WIR model using these Bayesian techniques.  
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Appendix 

Stan scripts of the model WIR for the Bayesian analysis 

Functions {real Weibull.IR_lpdf(real y, real alpha, real beta, real lambda){ 
return   log(2*alpha*beta*lambda*y^(3)*((exp(alpha/y^2))^lambda)*(1-exp(-
alpha/y^2))^(-1-lambda)* exp(-beta*((exp(- alpha/y^2))/(1-exp(- 
alpha/y^2)))^lambda)); 
  } 

} 

data{ 
  int N; 
  real y[N]; 
} 
parameters{ 
  real <lower=0> alpha; 
  real <lower=0> beta; 
  real <lower=0> lambda; 
} 
model{ 
 for(i in 1 : N){ 
    y[i]~ Weibull.IR(alpha, beta, lambda);// likelihood 
  } 
  alpha~ gamma(0.5, 0.5);// priors 
  beta~ gamma(0.1, 0.1); 
  lambda~ gamma(0.1, 0.1); 
} 

generated quantities{ 
  vector [N] yrep; 
  for(i in 1 : N){ 
    yrep[i]=  Weibull.IR_rng(alpha, beta, lambda); 
  } 
} 
 

Data Creation in R software 
y = c(1.589, 1.746, 2.471, 2.299, 2.356, 2.633, 2.172, 2.171, 2.593, 2.051, 
1.434, 1.812, 1.974, 2.125, 2.430, 2.558, 2.670, 2.088, 2.019, 2.386, 2.272, 
1.931, 1.574, 2.194, 1.613, 3.174, 1.764, 2.335, 2.349, 3.020, 1.753, 1.952, 
2.180, 1.549, 2.514, 3.042, 1.807, 2.308, 2.601, 2.577, 1.840, 1.852, 2.604, 
2.162, 1.864, 2.682, 2.390, 2.735, 2.431, 2.058, 1.862, 1.339, 1.852, 2.705, 
2.270, 3.116, 2.211, 2.458, 2.699, 2.280, 2.785, 2.055, 2.497, 2.410, 2.620). 
N = length(y) 
Data = list(y=y, N=N). 
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Appendix 

Stan scripts of the model WIR for the Bayesian analysis 

Functions {real Weibull.IR_lpdf(real y, real alpha, real beta, real lambda){ 
return   log(2*alpha*beta*lambda*y^(3)*((exp(alpha/y^2))^lambda)*(1-exp(-
alpha/y^2))^(-1-lambda)* exp(-beta*((exp(- alpha/y^2))/(1-exp(- 
alpha/y^2)))^lambda)); 
  } 

} 

data{ 
  int N; 
  real y[N]; 
} 
parameters{ 
  real <lower=0> alpha; 
  real <lower=0> beta; 
  real <lower=0> lambda; 
} 
model{ 
 for(i in 1 : N){ 
    y[i]~ Weibull.IR(alpha, beta, lambda);// likelihood 
  } 
  alpha~ gamma(0.5, 0.5);// priors 
  beta~ gamma(0.1, 0.1); 
  lambda~ gamma(0.1, 0.1); 
} 

generated quantities{ 
  vector [N] yrep; 
  for(i in 1 : N){ 
    yrep[i]=  Weibull.IR_rng(alpha, beta, lambda); 
  } 
} 
 

Data Creation in R software 
y = c(1.589, 1.746, 2.471, 2.299, 2.356, 2.633, 2.172, 2.171, 2.593, 2.051, 
1.434, 1.812, 1.974, 2.125, 2.430, 2.558, 2.670, 2.088, 2.019, 2.386, 2.272, 
1.931, 1.574, 2.194, 1.613, 3.174, 1.764, 2.335, 2.349, 3.020, 1.753, 1.952, 
2.180, 1.549, 2.514, 3.042, 1.807, 2.308, 2.601, 2.577, 1.840, 1.852, 2.604, 
2.162, 1.864, 2.682, 2.390, 2.735, 2.431, 2.058, 1.862, 1.339, 1.852, 2.705, 
2.270, 3.116, 2.211, 2.458, 2.699, 2.280, 2.785, 2.055, 2.497, 2.410, 2.620). 
N = length(y) 
Data = list(y=y, N=N). 
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Abstract: Let f be a map from V (G) to {0, 1, ..., k − 1} where k is an inte-

ger, 1 ≤ k ≤ |V (G)|. For each edge uv assign the label f(u)f(v)(mod k). f is

called a k-product cordial labeling if |vf (i)− vf (j)| ≤ 1, and |ef (i)− ef (j)| ≤ 1,

i, j ∈ {0, 1, ..., k − 1}, where vf (x) and ef (x) denote the number of vertices and

edges respectively labeled with x (x = 0, 1, ..., k − 1). It is yet another study on k-

product cordial labeling. In this paper, we define a new graph Pn(t) namely Napier

bridge graph and find some results on 3-product cordial and 4-product cordial labeling

of Napier bridge graphs Pn(3), Pn(4) and Pn(5).

Keywords: Cordial labeling, Product cordial labeling, k-Product cordial labeling,

3-Product cordial labeling, 4-Product cordial labeling, Napier bridge graph.

AMS Subject Classification (2010): 05C78.
2

1 Introduction

All graphs considered here are simple, finite, connected and undirected. We

follow the basic notations and terminology of graph theory as in [3]. The concepts

of labeling of graph has gained a lot of popularity in the field of graph theory during

the last 60 years due to its wide range of applications. Labeling is a function that

allocates the elements of a graph to real numbers, usually positive integers. In 1967,

Rosa [15] published a pioneering paper on graph labeling problems. Thereafter,

many types of graph labeling techniques have been studied by several authors. All

these labelings are beautifully classified by Gallian [2] in his survey. Cordial labeling

is a weaker version of graceful and harmonious labeling was defined by Cahit [1]: Let

f be a function from the vertices of G to {0, 1} and for each edge xy assign the label

|f(x)− f(y)|. f is called a cordial labeling of G if the number of vertices labeled 0

and the number of vertices labeled 1 differ by at most 1, and the number of edges

labeled 0 and the number of edges labeled 1 differ at most by 1. Motivated by the

concept of cordial labeling, Sundaram et al. [16] introduced the concept of product

cordial labeling: Let f be a function from V (G) to {0, 1}. For each edge uv, assign

the label f(u)f(v). Then f is called product cordial labeling if |vf (0)− vf (1)| ≤ 1

and |ef (0)− ef (1)| ≤ 1 where vf (i) and ef (i) denotes the number of vertices and

edges respectively labeled with i(i = 0, 1). Several results have been published on

this topic (see [2]).

In 2012, Ponraj et al. [14] extended the concept of product cordial label-

ing and introduced k-product cordial labeling: Let f be a map from V (G) to

{0, 1, ..., k − 1} where k is an integer, 1 ≤ k ≤ |V (G)|. For each edge uv assign the

label f(u)f(v)(mod k). f is called a k-product cordial labeling if |vf (i)− vf (j)| ≤ 1,

and |ef (i)− ef (j)| ≤ 1, i, j ∈ {0, 1, ..., k − 1}, where vf (x) and ef (x) denote the

number of vertices and edges respectively labeled with x (x = 0, 1, ..., k − 1). They

proved that k-product cordial labeling of stars, bistars and also 4-product cordial

labeling behavior of paths, cycles, complete graphs and combs. Javed and Jamil [4]

proved that rhombic grid graphs are 3-total edge product cordial graphs. Jeyan-

thi and Maheswari [12] gave the maximum number of edges in a 3-product cordial

graph of order p is p2−3p+6
3 if p ≡ 0(mod 3), p2−2p+7

3 if p ≡ 1(mod 3) and p2−p+4
3

if p ≡ 2(mod 3) and also they showed that paths and cycles are 3-product cordial

graphs. The same authors [13] proved that the graph P 2
n is 3-product cordial. In-

spired by the concept of k-product cordial labeling and also the results in [12, 13, 14],
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