Nepal Journal of Mathematical Sciences (NJMS) ISSN: 2738-9928 (online), 2738-9812 (print)

Research Article

Vol. 3, No. 2, 2022 (August): 59-70
Received Date: March 10, 2022
DOI: 10.3126/njmathsci.v3i2.49201
Accepted Date: August 12, 2022
©School of Mathematical Sciences, Tribhuvan University, Kathmandu, Nepal

k-Product Cordial Labeling of Napier Bridge Graphs

K. Jeya Daisy ${ }^{1}$, R. Santrin Sabibha ${ }^{2}$, P. Jeyanthi ${ }^{\mathbf{3}}$ and Maged Z. Youssef ${ }^{4}$
${ }^{1}$ Department of Mathematics, Holy Cross College Nagercoil, Tamilnadu, India.
${ }^{2}$ Research scholar, Manonmaniam Sundaranar University Tirunelveli, Tamilnadu, India.
${ }^{3}$ Research Centre, Department of Mathematics Govindammal Aditanar College for Women Tiruchendur 628215, Tamilnadu, India
${ }^{4}$ Department of Mathematics and Statistics College of Science Imam Mohammad Ibn Saud Islamic University Riyadh 11623, Saudi Arabia.
Department of Mathematics, Faculty of Science Ain Shams University, Abbassia, Cairo, Egypt.
E-mail: ${ }^{1}$ jeyadaisy@yahoo.com, ${ }^{2}$ sanithazhi@gmail.com, ${ }^{3}$ jeyajeyanthi@rediffmail.com mzyoussef11566@yahoo.com

Abstract

Let f be a map from $V(G)$ to $\{0,1, \ldots, k-1\}$ where k is an integer, $1 \leq k \leq|V(G)|$. For each edge uv assign the label $f(u) f(v)(\bmod k)$. f is called a k-product cordial labeling if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$, and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$, $i, j \in\{0,1, \ldots, k-1\}$, where $v_{f}(x)$ and $e_{f}(x)$ denote the number of vertices and edges respectively labeled with $x(x=0,1, \ldots, k-1)$. It is yet another study on k product cordial labeling. In this paper, we define a new graph $P_{n}(t)$ namely Napier bridge graph and find some results on 3-product cordial and 4-product cordial labeling of Napier bridge graphs $P_{n}(3), P_{n}(4)$ and $P_{n}(5)$.

Keywords: Cordial labeling, Product cordial labeling, k-Product cordial labeling, 3-Product cordial labeling, 4-Product cordial labeling, Napier bridge graph.
AMS Subject Classification (2010): 05C78.

1 Introduction

All graphs considered here are simple, finite, connected and undirected. We follow the basic notations and terminology of graph theory as in [3]. The concepts of labeling of graph has gained a lot of popularity in the field of graph theory during the last 60 years due to its wide range of applications. Labeling is a function that allocates the elements of a graph to real numbers, usually positive integers. In 1967, Rosa [15] published a pioneering paper on graph labeling problems. Thereafter, many types of graph labeling techniques have been studied by several authors. All these labelings are beautifully classified by Gallian [2] in his survey. Cordial labeling
is a weaker version of graceful and harmonious labeling was defined by Cahit [1]: Let f be a function from the vertices of G to $\{0,1\}$ and for each edge $x y$ assign the label $|f(x)-f(y)| . f$ is called a cordial labeling of G if the number of vertices labeled 0 and the number of vertices labeled 1 differ by at most 1 , and the number of edges labeled 0 and the number of edges labeled 1 differ at most by 1 . Motivated by the concept of cordial labeling, Sundaram et al. [16] introduced the concept of product cordial labeling: Let f be a function from $V(G)$ to $\{0,1\}$. For each edge $u v$, assign the label $f(u) f(v)$. Then f is called product cordial labeling if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $v_{f}(i)$ and $e_{f}(i)$ denotes the number of vertices and edges respectively labeled with $i(i=0,1)$. Several results have been published on this topic (see [2]).

In 2012, Ponraj et al. [14] extended the concept of product cordial labeling and introduced k-product cordial labeling: Let f be a map from $V(G)$ to $\{0,1, \ldots, k-1\}$ where k is an integer, $1 \leq k \leq|V(G)|$. For each edge $u v$ assign the label $f(u) f(v)(\bmod k) . f$ is called a k-product cordial labeling if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$, and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1, i, j \in\{0,1, \ldots, k-1\}$, where $v_{f}(x)$ and $e_{f}(x)$ denote the number of vertices and edges respectively labeled with $x(x=0,1, \ldots, k-1)$. They proved that k-product cordial labeling of stars, bistars and also 4-product cordial labeling behavior of paths, cycles, complete graphs and combs. Javed and Jamil [4] proved that rhombic grid graphs are 3 -total edge product cordial graphs. Jeyanthi and Maheswari [12] gave the maximum number of edges in a 3-product cordial graph of order p is $\frac{p^{2}-3 p+6}{3}$ if $p \equiv 0(\bmod 3), \frac{p^{2}-2 p+7}{3}$ if $p \equiv 1(\bmod 3)$ and $\frac{p^{2}-p+4}{3}$ if $p \equiv 2(\bmod 3)$ and also they showed that paths and cycles are 3 -product cordial graphs. The same authors [13] proved that the graph P_{n}^{2} is 3 -product cordial. Inspired by the concept of k-product cordial labeling and also the results in $[12,13,14]$, we further studied on k -product cordial labeling and established that the following graphs admit/ do not admit k-product cordial labeling: union of graphs [5]; cone and double cone graphs [6]; fan and double fan graphs [7]; powers of paths [8]; the maximum number of edges in a 4-product cordial graph of order p is $4\left\lceil\frac{p-1}{4}\right\rceil\left\lfloor\frac{p-1}{4}\right\rfloor+3$ [9]; product of graphs [10] and paths [11]. In this paper, we define a new graph $P_{n}(t)$ namely Napier bridge graph, since the image of the graph looks like the Napier bridge in Chennai city, India. This graph is obtained from the path P_{n} by joining all the pairs of vertices u, v of P_{n} with $d(u, v)=t$. Clearly, $P_{n}(t) \cong P_{n}$ if $n \leq t$ and $P_{n}(t) \cong C_{n}$ if $n=t+1$. In addition, we study the k-product cordial behavior of Napier bridge graph $P_{n}(t)$.

2 3-product cordial labeling of Napier bridge graphs

In this section, we study the 3 -product cordial labeling of Napier bridge graphs $P_{n}(3), P_{n}(4)$ and $P_{n}(5)$.

Theorem 2.1. For $n \geq 5$, the graph $P_{n}(3)$ is 3-product cordial if and only if $n \equiv$ 1 or $2(\bmod 3)$.

Proof. Let the vertex and edge set of $P_{n}(3)$ be $V\left(P_{n}(3)\right)=\left\{v_{i} ; 1 \leq i \leq n\right\}$ and $E\left(P_{n}(3)\right)=\left\{\left(v_{i}, v_{i+1}\right) ; 1 \leq i \leq n-1\right\} \cup\left\{\left(v_{i}, v_{i+3}\right) ; 1 \leq i \leq n-3\right\}$ respectively. We have the following three cases.
Define $f: V\left(P_{n}(3)\right) \rightarrow\{0,1,2\}$ as follows:
Case (i): If $n \equiv 1(\bmod 3)$, then
$f\left(v_{i}\right)=0 ; 1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor$.
For $i=\left\lfloor\frac{n}{3}\right\rfloor+j ; 1 \leq j \leq n-\left\lfloor\frac{n}{3}\right\rfloor$,

$$
f\left(v_{i}\right)= \begin{cases}1 & \text { if } j \equiv 1,2(\bmod 4) \\ 2 & \text { if } j \equiv 3,0(\bmod 4)\end{cases}
$$

From the above labeling we get,
$v_{f}(0)+1=v_{f}(1)=v_{f}(2)+1=\left\lfloor\frac{n}{3}\right\rfloor+1$,
$e_{f}(0)=e_{f}(1)+1=e_{f}(2)+1=2\left\lfloor\frac{n}{3}\right\rfloor$.
Hence, $P_{n}(3)$ is a 3 -product cordial graph if $n \equiv 1(\bmod 3)$.
Case (ii): If $n \equiv 2(\bmod 3)$.
For $n=5$,

$$
f\left(v_{i}\right)= \begin{cases}0 & \text { if } i=\left\lfloor\frac{n}{3}\right\rfloor \\ 1 & \text { if }\left\lfloor\frac{n}{3}\right\rfloor+1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor+2 \\ 2 & \text { if }\left\lfloor\frac{n}{3}\right\rfloor+3 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor+4\end{cases}
$$

For $n \geq 8$,

$$
f\left(v_{i}\right)= \begin{cases}0 & \text { if } 1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor \\ 1 & \text { if }\left\lfloor\frac{n}{3}\right\rfloor+1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor+3 \\ 2 & \text { if }\left\lfloor\frac{n}{3}\right\rfloor+4 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor+6\end{cases}
$$

For $i=\left\lfloor\frac{n}{3}\right\rfloor+j ; 1 \leq j \leq 2\left(\left\lfloor\frac{n}{3}\right\rfloor-2\right)$,

$$
f\left(v_{i}\right)= \begin{cases}1 & \text { if } j \equiv 2,4,5,7(\bmod 8) \\ 2 & \text { if } j \equiv 1,3,6,0(\bmod 8)\end{cases}
$$

Thus we get,
$v_{f}(0)+1=v_{f}(1)=v_{f}(2)=\left\lfloor\frac{n}{3}\right\rfloor+1$,
$e_{f}(0)=e_{f}(1)=e_{f}(2)=2\left\lfloor\frac{n}{3}\right\rfloor$.
Hence, $P_{n}(3)$ is a 3 -product cordial graph if $n \equiv 2(\bmod 3)$ for $n \geq 5$.
Case (iii): If $n \equiv 0(\bmod 3)$ for $n \geq 6$, then $\left|V\left(P_{n}(3)\right)\right|=3 t$ and $\left|E\left(P_{n}(3)\right)\right|=6 t-4$.
Thus, $v_{f}(i)=t(i=0,1,2)$ and $e_{f}(i)=2 t-1$ or $2 t-2(i=0,1,2)$. If $v_{f}(0)=t$, then $e_{f}(0)>2 t-1$ for $t>1$. Therefore, $\left|e_{f}(0)-e_{f}(j)\right|>1$ for $\mathrm{j}=1,2$. Hence, $P_{n}(3)$ is not a 3 -product cordial graph if $n \equiv 0(\bmod 3)$ for $n>3$.

An example of 3-product cordial labeling of $P_{7}(3)$ is shown in Figure 1.

Figure 1: 3-product cordial labeling of $P_{7}(3)$.

Theorem 2.2. For $n \geq 6$, the graph $P_{n}(4)$ is 3 -product cordial if and only if $n \equiv$ $2(\bmod 3)$ or $n=6$.

Proof. Let the vertex and edge set of $P_{n}(4)$ be $V\left(P_{n}(4)\right)=\left\{v_{i} ; 1 \leq i \leq n\right\}$ and $E\left(P_{n}(4)\right)=\left\{\left(v_{i}, v_{i+1}\right) ; 1 \leq i \leq n-1\right\} \cup\left\{\left(v_{i}, v_{i+4}\right) ; 1 \leq i \leq n-4\right\}$ respectively. We have the following four cases.
Define $f: V\left(P_{n}(4)\right) \rightarrow\{0,1,2\}$ as follows:
Case (i): If $n \equiv 2(\bmod 3)$, then
$f\left(v_{i}\right)=0 ; 1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor$.
Subcase (i): If $n=8$.
For $i=\left\lfloor\frac{n}{3}\right\rfloor+j ; 1 \leq j \leq n-\left\lfloor\frac{n}{3}\right\rfloor$,

$$
f\left(v_{i}\right)= \begin{cases}1 & \text { if } j \equiv 1,0(\bmod 4) \\ 2 & \text { if } j \equiv 2,3(\bmod 4) .\end{cases}
$$

From the above labeling we get,
$v_{f}(0)+1=v_{f}(1)=v_{f}(2)=\left\lfloor\frac{n}{3}\right\rfloor+1$,
$e_{f}(0)=e_{f}(1)=e_{f}(2)+1=2\left\lfloor\frac{n}{3}\right\rfloor$.
Subcase (ii): If $n \geq 11$.
For $1 \leq i \leq 8$,

$$
f\left(v_{\left\lfloor\frac{n}{3}\right\rfloor+i}\right)= \begin{cases}1 & \text { if } i=1,2,4,5 \\ 2 & \text { if } i=3,6,7,8 .\end{cases}
$$

For $i=\left\lfloor\frac{n}{3}\right\rfloor+8+j ; 1 \leq j \leq n-8-\left\lfloor\frac{n}{3}\right\rfloor$,

$$
f\left(v_{i}\right)= \begin{cases}1 & \text { if } j \equiv 1,0(\bmod 4) \\ 2 & \text { if } j \equiv 2,3(\bmod 4) .\end{cases}
$$

From the above labeling we get,
$v_{f}(0)+1=v_{f}(1)=v_{f}(2)=\left\lfloor\frac{n}{3}\right\rfloor+1$,
$e_{f}(0)=e_{f}(1)=e_{f}(2)+1=2\left\lfloor\frac{n}{3}\right\rfloor$.
Hence, $P_{n}(4)$ is a 3 -product cordial graph if $n \equiv 2(\bmod 3)$ for $n \geq 8$.
Case (ii): If $n=6$, then the 3 -product cordial labeling of $P_{n}(4)$ is shown in Table 1.

Table 1: 3-product cordial labeling of $P_{n}(4)$ for $n=6$.

n	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}
6	1	1	0	0	2	2

From the above labeling pattern we have, $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, $P_{n}(4)$ is a 3 -product cordial graph if $n=6$.

Case (iii): If $n \equiv 1(\bmod 3)$ for $n \geq 7$, then $\left|V\left(P_{n}(4)\right)\right|=3 t+1$ and $\left|E\left(P_{n}(4)\right)\right|=$ $6 t-3$. Thus, $v_{f}(i)=t$ or $t+1(i=0,1,2)$ and $e_{f}(i)=2 t-1(i=0,1,2)$. If $v_{f}(0)=t$ or $t+1$, then $e_{f}(0)>2 t-1$ for $t>1$. Therefore, $\left|e_{f}(0)-e_{f}(j)\right|>1$ for $\mathrm{j}=1,2$. Hence, $P_{n}(4)$ is not a 3 -product cordial graph if $n \equiv 1(\bmod 3)$ for $n \geq 7$.

Case (iv): If $n \equiv 0(\bmod 3)$ for $n \geq 9$, then $\left|V\left(P_{n}(4)\right)\right|=3 t$ and $\left|E\left(P_{n}(4)\right)\right|=6 t-5$. Thus, $v_{f}(i)=t(i=0,1,2)$ and $e_{f}(i)=2 t-1$ or $2 t-2(i=0,1,2)$. If $v_{f}(0)=t$, then $e_{f}(0)>2 t-1$ for $t>2$. Therefore, $\left|e_{f}(0)-e_{f}(j)\right|>1$ for $\mathrm{j}=1,2$. Hence, $P_{n}(4)$ is not a 3 -product cordial graph if $n \equiv 0(\bmod 3)$ for $n \geq 9$.

An example of 3-product cordial labeling of $P_{8}(4)$ is shown in Figure 2.

Figure 2: 3-product cordial labeling of $P_{8}(4)$.

Theorem 2.3. For $n \geq 7$, the graph $P_{n}(5)$ is 3-product cordial if and only if $n \equiv$ $2(\bmod 3)$ or $n=7$.

Proof. Let the vertex and edge set of $P_{n}(5)$ be $V\left(P_{n}(5)\right)=\left\{v_{i} ; 1 \leq i \leq n\right\}$ and $E\left(P_{n}(5)\right)=\left\{\left(v_{i}, v_{i+1}\right) ; 1 \leq i \leq n-1\right\} \cup\left\{\left(v_{i}, v_{i+5}\right) ; 1 \leq i \leq n-5\right\}$ respectively. We have the following four cases.
Define $f: V\left(P_{n}(5)\right) \rightarrow\{0,1,2\}$ as follows:
Case (i): If $n=7,8$ or 11 , then the 3 -product cordial labelings of $P_{n}(5)$ are shown in Table 2

Table 2: 3-product cordial labelings of $P_{n}(5)$ for $n=7,8$ and 11 .

n	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}
7	1	1	0	0	2	2	1				
8	1	1	1	0	0	2	2	2			
11	0	0	0	1	1	1	2	2	2	1	2

From the above labeling pattern we have, $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2$. Hence, $P_{n}(5)$ is a 3 -product cordial graph if $n=7,8$ or 11 .

Case (ii): If $n \equiv 2(\bmod 3)$ for $n \geq 14$, then

$$
f\left(v_{i}\right)= \begin{cases}0 & \text { if } 1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor \\ 1 & \text { if }\left\lfloor\frac{n}{3}\right\rfloor+1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor+3 \\ 2 & \text { if }\left\lfloor\frac{n}{3}\right\rfloor+4 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor+6\end{cases}
$$

For $i=\left\lfloor\frac{n}{3}\right\rfloor+6+j ; 1 \leq j \leq n-6-\left\lfloor\frac{n}{3}\right\rfloor$,

$$
f\left(v_{i}\right)= \begin{cases}1 & \text { if } j \equiv 2,4,5,7(\bmod 8) \\ 2 & \text { if } j \equiv 1,3,6,0(\bmod 8)\end{cases}
$$

From the above labeling we get,
$v_{f}(0)+1=v_{f}(1)=v_{f}(2)=\left\lfloor\frac{n}{3}\right\rfloor+1$,
$e_{f}(0)=e_{f}(1)+1=e_{f}(2)+1=2\left\lfloor\frac{n}{3}\right\rfloor$.
Hence, $P_{n}(5)$ is a 3 -product cordial graph if $n \equiv 2(\bmod 3)$ for $n \geq 14$.

Case (iii): If $n \equiv 1(\bmod 3)$ for $n \geq 10$, then $\left|V\left(P_{n}(5)\right)\right|=3 t+1$ and $\left|E\left(P_{n}(5)\right)\right|=$ $6 t-4$. Thus, $v_{f}(i)=t$ or $t+1(i=0,1,2)$ and $e_{f}(i)=2 t-1$ or $2 t-2(i=0,1,2)$. If $v_{f}(0)=t$ or $t+1$, then $e_{f}(0)>2 t-1$ for $t \geq 3$. Therefore, $\left|e_{f}(0)-e_{f}(j)\right|>1$ for $\mathrm{j}=1,2$. Hence, $P_{n}(5)$ is not a 3 -product cordial graph if $n \equiv 1(\bmod 3)$ for $n \geq 10$.

Case (iv): If $n \equiv 0(\bmod 3)$ for $n \geq 9$, then $\left|V\left(P_{n}(5)\right)\right|=3 t$ and $\left|E\left(P_{n}(5)\right)\right|=6 t-6$. Thus, $v_{f}(i)=t(i=0,1,2)$ and $e_{f}(i)=2 t-2(i=0,1,2)$. If $v_{f}(0)=t$, then $e_{f}(0)>2 t-2$ for $t \geq 3$. Therefore, $\left|e_{f}(0)-e_{f}(j)\right|>1$ for $\mathrm{j}=1,2$. Hence, $P_{n}(5)$ is not a 3 -product cordial graph if $n \equiv 0(\bmod 3)$ for $n \geq 9$.

An example of 3-product cordial labeling of $P_{8}(5)$ is shown in Figure 3.

Figure 3: 3-product cordial labeling of $P_{8}(5)$.

3 4-product cordial labeling of Napier bridge graphs

In this section, we study the 4-product cordial labeling of Napier bridge graphs $P_{n}(3), P_{n}(4)$ and $P_{n}(5)$.

Theorem 3.1. For $n \geq 5$, the graph $P_{n}(3)$ is 4-product cordial if and only if $5 \leq$ $n \leq 11$ except $n=8$.

Proof. Let the vertex and edge set of $P_{n}(3)$ be $V\left(P_{n}(3)\right)=\left\{v_{i} ; 1 \leq i \leq n\right\}$ and $E\left(P_{n}(3)\right)=\left\{\left(v_{i}, v_{i+1}\right) ; 1 \leq i \leq n-1\right\} \cup\left\{\left(v_{i}, v_{i+3}\right) ; 1 \leq i \leq n-3\right\}$ respectively. We have the following five cases.
Define $f: V\left(P_{n}(3)\right) \rightarrow\{0,1,2,3\}$ as follows:
Case (i): If $5 \leq n \leq 11$ except $n=8$, then the 4-product cordial labelings of $P_{n}(3)$ are shown in Table 3.

Table 3: 4-product cordial labelings of $P_{n}(3)$ for $5 \leq n \leq 11$ except $n=8$.

n	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}
5	0	2	1	3	3						
6	0	2	1	1	3	3					
7	0	2	2	1	1	3	3				
9	0	0	2	1	1	3	3	3	2		
10	0	0	2	1	1	1	3	3	3	2	
11	0	0	2	2	1	1	1	3	3	3	2

From the above labeling pattern we have, $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2,3$. Hence, $P_{n}(3)$ is a 4 -product cordial graph if $5 \leq n \leq 11$ except $n=8$.

Case (ii): If $n \equiv 0(\bmod 4)$ for $n \geq 8$, then $\left|V\left(P_{n}(3)\right)\right|=4 t$ and $\left|E\left(P_{n}(3)\right)\right|=8 t-4$. Thus, $v_{f}(i)=t(i=0,1,2,3)$ and $e_{f}(i)=2 t-1(i=0,1,2,3)$. If $v_{f}(0)=t$, then $e_{f}(0)>2 t-1$ for $t \geq 2$. Therefore $\left|e_{f}(i)-e_{f}(j)\right|>1$ for all $i, j=0,1,2,3$. Hence, $P_{n}(3)$ is not a 4 -product cordial graph if $n \equiv 0(\bmod 4)$.

Case (iii): If $n \equiv 1(\bmod 4)$ for $n \geq 13$, then $\left|V\left(P_{n}(3)\right)\right|=4 t+1$ and $\left|E\left(P_{n}(3)\right)\right|=$ $8 t-2$. Thus, $v_{f}(i)=t$ or $t+1(i=0,1,2,3)$ and $e_{f}(i)=2 t$ or $2 t-1(i=0,1,2,3)$. Clearly, $v_{f}(0)=t$ and 0 must be assigned consecutively at the beginning or end of the path. Otherwise $e_{f}(0)>2 t$. Thus, $e_{f}(0)=2 t$. Now $v_{f}(2)=t$ or $t+1$. If $v_{f}(2)=t$, then 2 must be assigned non-consecutively. Otherwise $e_{f}(0)>2 t$. Then, $e_{f}(2)>2 t$ for $t \geq 3$. Therefore $\left|e_{f}(i)-e_{f}(j)\right|>1$ for all $i, j=0,1,2,3$. The similar argument shows that $v_{f}(2)$ can not be $t+1$. Hence, $P_{n}(3)$ is not a 4-product cordial graph if $n \equiv 1(\bmod 4)$ for $n \geq 13$.

Case (iv): If $n \equiv 2(\bmod 4)$ for $n \geq 14$, then $\left|V\left(P_{n}(3)\right)\right|=4 t+2$ and $\left|E\left(P_{n}(3)\right)\right|=8 t$. Thus, $v_{f}(i)=t$ or $t+1(i=0,1,2,3)$ and $e_{f}(i)=2 t(i=0,1,2,3)$. Clearly, $v_{f}(0)=t$ and 0 must be assigned consecutively at the beginning or end of the path. Otherwise $e_{f}(0)>2 t$. Thus, $e_{f}(0)=2 t$. Now $v_{f}(2)=t$ or $t+1$. If $v_{f}(2)=t$, then 2 must be assigned non-consecutively. Otherwise $e_{f}(0)>2 t$. Thus, $e_{f}(2)>2 t$ for $t \geq 3$. Therefore $\left|e_{f}(i)-e_{f}(j)\right|>1$ for all $i, j=0,1,2,3$. The similar argument shows that $v_{f}(2)$ can not be $t+1$. Hence, $P_{n}(3)$ is not a 4 -product cordial graph if $n \equiv 2(\bmod 4)$ for $n \geq 14$.

Case (v): If $n \equiv 3(\bmod 4)$ for $n \geq 15$, then $\left|V\left(P_{n}(3)\right)\right|=4 t+3$ and $\left|E\left(P_{n}(3)\right)\right|=$ $8 t+2$. Thus, $v_{f}(i)=t$ or $t+1(i=0,1,2,3)$ and $e_{f}(i)=2 t$ or $2 t+1(i=0,1,2,3)$. Obviously, $v_{f}(0)=t$ and 0 must be assigned consecutively at the beginning or end of the path. Otherwise $e_{f}(0)>2 t+1$. Thus, $e_{f}(0)=2 t$. Clearly, $v_{f}(2)=t+1$ and at most 2 consecutive vertices labeled with 2 . Otherwise $e_{f}(0)>2 t+1$. Then, $e_{f}(2)>2 t+1$ for $t \geq 3$. Therefore $\left|e_{f}(i)-e_{f}(j)\right|>1$ for all $i, j=0,1,2,3$. Hence, $P_{n}(3)$ is not a 4-product cordial graph if $n \equiv 3(\bmod 4)$ for $n \geq 15$.

An example of 4-product cordial labeling of $P_{5}(3)$ is shown in Figure 4.

Figure 4: 4-product cordial labeling of $P_{5}(3)$.

Theorem 3.2. For $n \geq 6$, the graph $P_{n}(4)$ is 4-product cordial if and only if $n=$ 6 or 10.

Proof. Let the vertex and edge set of $P_{n}(4)$ be $V\left(P_{n}(4)\right)=\left\{v_{i} ; 1 \leq i \leq n\right\}$ and $E\left(P_{n}(4)\right)=\left\{\left(v_{i}, v_{i+1}\right) ; 1 \leq i \leq n-1\right\} \cup\left\{\left(v_{i}, v_{i+4}\right) ; 1 \leq i \leq n-4\right\}$ respectively. We have the following five cases.
Define $f: V\left(P_{n}(4)\right) \rightarrow\{0,1,2,3\}$ as follows:
Case (i): If $n=6$ or 10 , then the 4 -product cordial labelings of $P_{n}(4)$ are shown in Table 4.

Table 4: 4-product cordial labelings of $P_{n}(4)$ for $n=6$ and 10.

n	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}
6	0	2	1	1	3	3				
10	0	0	2	1	1	1	3	3	3	2

From the above labeling pattern we have, $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2,3$. Hence, $P_{n}(4)$ is a 4-product cordial graph if $n=6$ or 10 .

Case (ii): If $n \equiv 0(\bmod 4)$ for $n \geq 8$, then $\left|V\left(P_{n}(4)\right)\right|=4 t$ and $\left|E\left(P_{n}(4)\right)\right|=8 t-5$. Thus, $v_{f}(i)=t(i=0,1,2,3)$ and $e_{f}(i)=2 t-1$ or $2 t-2(i=0,1,2,3)$. If $v_{f}(0)=t$, then $e_{f}(0)>2 t-1$ for $t \geq 2$. Therefore $\left|e_{f}(i)-e_{f}(j)\right|>1$ for all $i, j=0,1,2,3$. Hence, $P_{n}(4)$ is not a 4 -product cordial graph if $n \equiv 0(\bmod 4)$ for $n \geq 8$.

Case (iii): If $n \equiv 1(\bmod 4)$ for $n \geq 9$, then $\left|V\left(P_{n}(4)\right)\right|=4 t+1$ and $\left|E\left(P_{n}(4)\right)\right|=$ $8 t-3$. Thus, $v_{f}(i)=t$ or $t+1(i=0,1,2,3)$ and $e_{f}(i)=2 t$ or $2 t-1(i=0,1,2,3)$. Clearly, $v_{f}(0)=t$ and 0 must be assigned consecutively at the beginning or end of the path. Otherwise $e_{f}(0)>2 t$. Thus, $e_{f}(0)=2 t$. Now $v_{f}(2)=t$ or $t+1$. If
$v_{f}(2)=t$, then 2 must be assigned non-consecutively. Otherwise $e_{f}(0)>2 t$. Then, $e_{f}(2)>2 t-1$ for $t \geq 2$. Therefore $\left|e_{f}(i)-e_{f}(j)\right|>1$ for all $i, j=0,1,2,3$. The similar argument shows that $v_{f}(2)$ can not be $t+1$. Hence, $P_{n}(4)$ is not a 4 -product cordial graph if $n \equiv 1(\bmod 4)$ for $n \geq 9$.

Case (iv): If $n \equiv 2(\bmod 4)$ for $n \geq 14$, then $\left|V\left(P_{n}(4)\right)\right|=4 t+2$ and $\left|E\left(P_{n}(4)\right)\right|=$ $8 t-1$. Thus, $v_{f}(i)=t$ or $t+1(i=0,1,2,3)$ and $e_{f}(i)=2 t$ or $2 t-1(i=0,1,2,3)$. Clearly, $v_{f}(0)=t$ and 0 must be assigned consecutively at the beginning or end of the path. Otherwise $e_{f}(0)>2 t$. Thus, $e_{f}(0)=2 t$. Now $v_{f}(2)=t$ or $t+1$. If $v_{f}(2)=t$, then 2 must be assigned non-consecutively. Otherwise $e_{f}(0)>2 t$. Then, $e_{f}(2)>2 t$ for $t \geq 3$. Therefore $\left|e_{f}(i)-e_{f}(j)\right|>1$ for all $i, j=0,1,2,3$. The similar argument shows that $v_{f}(2)$ can not be $t+1$. Hence, $P_{n}(4)$ is not a 4 -product cordial graph if $n \equiv 2(\bmod 4)$ for $n \geq 14$.

Case (v): If $n \equiv 3(\bmod 4)$ for $n \geq 7$. then $\left|V\left(P_{n}(4)\right)\right|=4 t+3$ and $\left|E\left(P_{n}(4)\right)\right|=$ $8 t+1$. Thus, $v_{f}(i)=t$ or $t+1(i=0,1,2,3)$ and $e_{f}(i)=2 t$ or $2 t+1(i=0,1,2,3)$. Clearly, $v_{f}(0)=t$ and 0 must be assigned consecutively at the beginning or end of the path. Otherwise $e_{f}(0)>2 t$. Thus, $e_{f}(0)=2 t$. Clearly, $v_{f}(2)=t+1$ and at most 2 consecutive vertices labeled with 2 . Otherwise $e_{f}(0)>2 t+1$. Then, $e_{f}(2) \geq 2 t+1$ for $t \geq 1$. Therefore $\left|e_{f}(i)-e_{f}(j)\right|>1$ for all $i, j=0,1,2,3$. Hence, $P_{n}(4)$ is not a 4 -product cordial graph if $n \equiv 3(\bmod 4)$ for $n \geq 7$.

An example of 4-product cordial labeling of $P_{6}(4)$ is shown in Figure 5 .

Figure 5: 4-product cordial labeling of $P_{6}(4)$.

Theorem 3.3. For $n \geq 7$, the graph $P_{n}(5)$ is 4-product cordial if and only if $n=$ 7 or 10.

Proof. Let the vertex and edge set of $P_{n}(5)$ be $V\left(P_{n}(5)\right)=\left\{v_{i} ; 1 \leq i \leq n\right\}$ and $E\left(P_{n}(5)\right)=\left\{\left(v_{i}, v_{i+1}\right) ; 1 \leq i \leq n-1\right\} \cup\left\{\left(v_{i}, v_{i+5}\right) ; 1 \leq i \leq n-5\right\}$ respectively. We have the following five cases.
Define $f: V\left(P_{n}(5)\right) \rightarrow\{0,1,2,3\}$ as follows:
Case (i): If $n=7$ or 10 , then the 4 -product cordial labelings of $P_{n}(5)$ are shown in Table 5.

Table 5: 4-product cordial labelings of $P_{n}(5)$ for $n=7$ and 10 .

n	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}
7	1	1	2	0	2	3	3			
10	0	2	1	1	3	0	3	3	1	2

From the above labeling pattern we have, $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j=0,1,2,3$. Hence, $P_{n}(5)$ is a 4-product cordial graph if $n=7$ or 10 .

Case (ii): If $n \equiv 0(\bmod 4)$ for $n \geq 8$, then $\left|V\left(P_{n}(5)\right)\right|=4 t$ and $\left|E\left(P_{n}(5)\right)\right|=8 t-6$. Thus, $v_{f}(i)=t(i=0,1,2,3)$ and $e_{f}(i)=2 t-1$ or $2 t-2(i=0,1,2,3)$. If $v_{f}(0)=t$, then $e_{f}(0)>2 t-1$ for $t \geq 2$. Therefore $\left|e_{f}(i)-e_{f}(j)\right|>1$ for all $i, j=0,1,2,3$. Hence, $P_{n}(5)$ is not a 4 -product cordial graph if $n \equiv 0(\bmod 4)$ for $n \geq 8$.

Case (iii): If $n \equiv 1(\bmod 4)$ for $n \geq 9$, then $\left|V\left(P_{n}(5)\right)\right|=4 t+1$ and $\left|E\left(P_{n}(5)\right)\right|=$ $8 t-4$. Thus, $v_{f}(i)=t$ or $t+1(i=0,1,2,3)$ and $e_{f}(i)=2 t-1(i=0,1,2,3)$. If $v_{f}(0)=t$ or $t+1$, then $e_{f}(0)>2 t-1$ for $t \geq 2$ Therefore $\left|e_{f}(i)-e_{f}(j)\right|>1$ for all $i, j=0,1,2,3$. Hence, $P_{n}(5)$ is not a 4-product cordial graph if $n \equiv 1(\bmod 4)$ for $n \geq 9$.

Case (iv): If $n \equiv 2(\bmod 4)$ for $n \geq 14$, then $\left|V\left(P_{n}(5)\right)\right|=4 t+2$ and $\left|E\left(P_{n}(5)\right)\right|=$ $8 t-2$. Thus, $v_{f}(i)=t$ or $t+1(i=0,1,2,3)$ and $e_{f}(i)=2 t$ or $2 t-1(i=0,1,2,3)$. Clearly, $v_{f}(0)=t$ and 0 must be assigned consecutively at the beginning or end of the path. Otherwise $e_{f}(0)>2 t$. Thus, $e_{f}(0)=2 t$. Now $v_{f}(2)=t$ or $t+1$. If $v_{f}(2)=t$, then 2 must be assigned non-consecutively. Otherwise $e_{f}(0)>2 t$. Then, $e_{f}(2)>2 t$ for $t \geq 3$. Therefore $\left|e_{f}(i)-e_{f}(j)\right|>1$ for all $i, j=0,1,2,3$. The similar argument shows that $v_{f}(2)$ can not be $t+1$. Hence, $P_{n}(5)$ is not a 4-product cordial graph if $n \equiv 2(\bmod 4)$ for $n \geq 14$.

Case (v): If $n \equiv 3(\bmod 4)$ for $n \geq 11$. then $\left|V\left(P_{n}(5)\right)\right|=4 t+3$ and $\left|E\left(P_{n}(5)\right)\right|=8 t$. Thus, $v_{f}(i)=t$ or $t+1(i=0,1,2,3)$ and $e_{f}(i)=2 t(i=0,1,2,3)$. Clearly, $v_{f}(0)=t$ and 0 must be assigned consecutively at the beginning or end of the path. Otherwise $e_{f}(0)>2 t$. Thus, $e_{f}(0)=2 t$. Clearly, $v_{f}(2)=t+1$ and 2 must be assigned non-consecutively. Otherwise $e_{f}(0)>2 t$. Then, $e_{f}(2)>2 t$ for $t \geq 2$. Therefore $\left|e_{f}(i)-e_{f}(j)\right|>1$ for all $i, j=0,1,2,3$. Hence, $P_{n}(5)$ is not a 4-product cordial graph if $n \equiv 3(\bmod 4)$ for $n \geq 11$.

An example of 4-product cordial labeling of $P_{7}(5)$ is shown in Figure 6.

Figure 6: 4-product cordial labeling of $P_{7}(5)$.

4 Conclusion

In this paper, we find the 3-product and 4-product cordial labeling of Napier bridge graphs $P_{n}(3), P_{n}(4)$ and $P_{n}(5)$. In future, we propose to find the k-product cordial labeling of $P_{n}(m)$ for $k \geq 5$ and $m \geq 2$.

References

[1] Cahit, I. (1987), Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23, 201-207.
[2] Gallian, J. A. (2020), A dynamic survey of graph labeling, The Electronic Journal of Combinatorics.
[3] Harary, F. (1972), Graph Theory, Addison-Wesley, Reading, Massachusetts.
[4] Javed, A. and Jamil, M. K. (2019), 3-Total edge product cordial labeling of rhombic grid, AKCE International Journal of Graphs and Combinatorics, Vol. 16, No. 2, 213-221.
[5] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M. Z. (2022), k-Product cordial behaviour of union of graphs, Journal of the Indonesian Mathematical Society, Vol. 28, No. 1, 1-7.
[6] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M. Z. (2022), k-Product cordial labeling of cone graphs, International Journal of Mathematical Combinatorics, Vol 2, 72-80.
[7] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M. Z. k-Product cordial labeling of fan graphs, Turkic World Mathematical Society Journal of Applied and Engineering Mathematics, to appear.
[8] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M. Z. k-Product cordial labeling of powers of paths, Jordan Journal of Mathematics and Statistics, to appear.
[9] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M. Z. Further results on k-product cordial labeling, Turkic World Mathematical Society Journal of Applied and Engineering Mathematics, to appear.
[10] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M. Z. k-Product cordial labeling of product of graphs, Discrete Mathematics, Algorithms and Applications, to appear.
[11] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M. Z. k-Product cordial labeling of path graphs, preprint.
[12] Jeyanthi, P. and Maheswari, A. (2012), 3-Product cordial labeling, SUT J. Math., 48 (2), 231-240.
[13] Jeyanthi, P. and Maheswari, A. (2016), Some results on 3-Product cordial labeling, Utilitas Math., 99, 215-229.
[14] Ponraj, R., Sivakumar, M. and Sundaram, M. (2012), k-product cordial labeling of graphs, Int. J. Contemp. Math. Sciences, Vol. 7, No. 15, 733-742.
[15] Rosa, A. (1967), On certain valuations of the vertices of a graph, Theory of Graphs, Internat. Sympos., ICC Rome (1966), Paris, Dunod, 349-355.
[16] Sundaram, M., Ponraj, R. and Somasundaram, S. (2004), Product cordial labeling of graphs, Bulletin of Pure and Applied Sciences, 23 E(1), 155-163.

