

Nepal Journal of Mathematical Sciences (NJMS) ISSN: 2738-9928 (online), 2738-9812 (print) Vol. 3, No. 2, 2022 (August): 59-70 DOI: 10.3126/njmathsci.v3i2.49201 ©School of Mathematical Sciences, Tribhuvan University, Kathmandu, Nepal Research Article Received Date: March 10, 2022 Accepted Date: August 12, 2022 Published Date: August 30, 2022

k-Product Cordial Labeling of Napier Bridge Graphs

K. Jeya Daisy¹, R. Santrin Sabibha², P. Jeyanthi³ and Maged Z. Youssef⁴

¹Department of Mathematics, Holy Cross College Nagercoil, Tamilnadu, India. ²Research scholar, Manonmaniam Sundaranar University Tirunelveli, Tamilnadu, India. ³Research Centre, Department of Mathematics Govindammal Aditanar College for Women Tiruchendur 628215, Tamilnadu, India ⁴Department of Mathematics and Statistics College of Science Imam Mohammad Ibn Saud Islamic University Riyadh 11623, Saudi Arabia. Department of Mathematics, Faculty of Science Ain Shams University, Abbassia, Cairo, Egypt.

E-mail: ¹*jeyadaisy@yahoo.com,* ² *sanithazhi@gmail.com,* ³*jeyajeyanthi@rediffmail.com* ⁴*mzyoussef11566@yahoo.com*

Abstract: Let f be a map from V(G) to $\{0, 1, ..., k-1\}$ where k is an integer, $1 \leq k \leq |V(G)|$. For each edge uv assign the label $f(u)f(v) \pmod{k}$. f is called a k-product cordial labeling if $|v_f(i) - v_f(j)| \leq 1$, and $|e_f(i) - e_f(j)| \leq 1$, $i, j \in \{0, 1, ..., k-1\}$, where $v_f(x)$ and $e_f(x)$ denote the number of vertices and edges respectively labeled with $x \ (x = 0, 1, ..., k-1)$. It is yet another study on k-product cordial labeling. In this paper, we define a new graph $P_n(t)$ namely Napier bridge graph and find some results on 3-product cordial and 4-product cordial labeling of Napier bridge graphs $P_n(3)$, $P_n(4)$ and $P_n(5)$.

Keywords: Cordial labeling, Product cordial labeling, k-Product cordial labeling,
3-Product cordial labeling, 4-Product cordial labeling, Napier bridge graph.
AMS Subject Classification (2010): 05C78.

1 Introduction

All graphs considered here are simple, finite, connected and undirected. We follow the basic notations and terminology of graph theory as in [3]. The concepts of labeling of graph has gained a lot of popularity in the field of graph theory during the last 60 years due to its wide range of applications. Labeling is a function that allocates the elements of a graph to real numbers, usually positive integers. In 1967, Rosa [15] published a pioneering paper on graph labeling problems. Thereafter, many types of graph labeling techniques have been studied by several authors. All these labelings are beautifully classified by Gallian [2] in his survey. Cordial labeling

K. J. Daisy, R. S. Sabibha, P. Jeyanthi and M. Z. Youssef/k-Product Cordial Labeling of Napier Bridge.....

is a weaker version of graceful and harmonious labeling was defined by Cahit [1]: Let f be a function from the vertices of G to $\{0, 1\}$ and for each edge xy assign the label |f(x) - f(y)|. f is called a cordial labeling of G if the number of vertices labeled 0 and the number of vertices labeled 1 differ by at most 1, and the number of edges labeled 0 and the number of edges labeled 1 differ at most by 1. Motivated by the concept of cordial labeling, Sundaram et al. [16] introduced the concept of product cordial labeling: Let f be a function from V(G) to $\{0,1\}$. For each edge uv, assign the label f(u)f(v). Then f is called product cordial labeling if $|v_f(0) - v_f(1)| \leq 1$ and $|e_f(0) - e_f(1)| \leq 1$ where $v_f(i)$ and $e_f(i)$ denotes the number of vertices and edges respectively labeled with i(i = 0, 1). Several results have been published on this topic (see [2]).

In 2012, Ponraj et al. [14] extended the concept of product cordial labeling and introduced k-product cordial labeling: Let f be a map from V(G) to $\{0, 1, ..., k-1\}$ where k is an integer, $1 \le k \le |V(G)|$. For each edge uv assign the label $f(u)f(v) \pmod{k}$. f is called a k-product cordial labeling if $|v_f(i) - v_f(j)| \leq 1$, and $|e_f(i) - e_f(j)| \le 1, i, j \in \{0, 1, ..., k - 1\}$, where $v_f(x)$ and $e_f(x)$ denote the number of vertices and edges respectively labeled with x (x = 0, 1, ..., k - 1). They proved that k-product cordial labeling of stars, bistars and also 4-product cordial labeling behavior of paths, cycles, complete graphs and combs. Javed and Jamil [4] proved that rhombic grid graphs are 3-total edge product cordial graphs. Jeyanthi and Maheswari [12] gave the maximum number of edges in a 3-product cordial graph of order p is $\frac{p^2-3p+6}{3}$ if $p \equiv 0 \pmod{3}$, $\frac{p^2-2p+7}{3}$ if $p \equiv 1 \pmod{3}$ and $\frac{p^2-p+4}{3}$ if $p \equiv 2 \pmod{3}$ and also they showed that paths and cycles are 3-product cordial graphs. The same authors [13] proved that the graph P_n^2 is 3-product cordial. Inspired by the concept of k-product cordial labeling and also the results in [12, 13, 14], we further studied on k-product cordial labeling and established that the following graphs admit / do not admit k-product cordial labeling: union of graphs [5]; cone and double cone graphs [6]; fan and double fan graphs [7]; powers of paths [8]; the maximum number of edges in a 4-product cordial graph of order p is $4 \lfloor \frac{p-1}{4} \rfloor \lfloor \frac{p-1}{4} \rfloor + 3$ [9]; product of graphs [10] and paths [11]. In this paper, we define a new graph $P_n(t)$ namely Napier bridge graph, since the image of the graph looks like the Napier bridge in Chennai city, India. This graph is obtained from the path P_n by joining all the pairs of vertices u, v of P_n with d(u, v) = t. Clearly, $P_n(t) \cong P_n$ if $n \leq t$ and $P_n(t) \cong C_n$ if n = t + 1. In addition, we study the k-product cordial behavior of Napier bridge graph $P_n(t)$.

2 3-product cordial labeling of Napier bridge graphs

In this section, we study the 3-product cordial labeling of Napier bridge graphs $P_n(3)$, $P_n(4)$ and $P_n(5)$.

Theorem 2.1. For $n \ge 5$, the graph $P_n(3)$ is 3-product cordial if and only if $n \equiv 1$ or 2 (mod 3).

Proof. Let the vertex and edge set of $P_n(3)$ be $V(P_n(3)) = \{v_i ; 1 \le i \le n\}$ and $E(P_n(3)) = \{(v_i, v_{i+1}) ; 1 \le i \le n-1\} \cup \{(v_i, v_{i+3}) ; 1 \le i \le n-3\}$ respectively. We have the following three cases.

Define $f: V(P_n(3)) \to \{0, 1, 2\}$ as follows: **Case (i):** If $n \equiv 1 \pmod{3}$, then $f(v_i) = 0$; $1 \le i \le \lfloor \frac{n}{3} \rfloor$. For $i = \lfloor \frac{n}{3} \rfloor + j$; $1 \le j \le n - \lfloor \frac{n}{3} \rfloor$,

$$f(v_i) = \begin{cases} 1 & \text{if } j \equiv 1, 2 \pmod{4} \\ 2 & \text{if } j \equiv 3, 0 \pmod{4}. \end{cases}$$

From the above labeling we get,

 $v_f(0) + 1 = v_f(1) = v_f(2) + 1 = \lfloor \frac{n}{3} \rfloor + 1,$ $e_f(0) = e_f(1) + 1 = e_f(2) + 1 = 2 \lfloor \frac{n}{3} \rfloor.$ Hence, $P_n(3)$ is a 3-product cordial graph if $n \equiv 1 \pmod{3}$. **Case (ii):** If $n \equiv 2 \pmod{3}$.

For n = 5,

$$f(v_i) = \begin{cases} 0 & \text{if } i = \lfloor \frac{n}{3} \rfloor \\ 1 & \text{if } \lfloor \frac{n}{3} \rfloor + 1 \le i \le \lfloor \frac{n}{3} \rfloor + 2 \\ 2 & \text{if } \lfloor \frac{n}{3} \rfloor + 3 \le i \le \lfloor \frac{n}{3} \rfloor + 4. \end{cases}$$

For $n \geq 8$,

$$f(v_i) = \begin{cases} 0 & \text{if } 1 \le i \le \lfloor \frac{n}{3} \rfloor \\ 1 & \text{if } \lfloor \frac{n}{3} \rfloor + 1 \le i \le \lfloor \frac{n}{3} \rfloor + 3 \\ 2 & \text{if } \lfloor \frac{n}{3} \rfloor + 4 \le i \le \lfloor \frac{n}{3} \rfloor + 6. \end{cases}$$

For $i = \lfloor \frac{n}{3} \rfloor + j$; $1 \le j \le 2 \left(\lfloor \frac{n}{3} \rfloor - 2 \right)$,

$$f(v_i) = \begin{cases} 1 & \text{if } j \equiv 2, 4, 5, 7 (mod \ 8) \\ 2 & \text{if } j \equiv 1, 3, 6, 0 (mod \ 8). \end{cases}$$

Thus we get,

$$v_f(0) + 1 = v_f(1) = v_f(2) = \lfloor \frac{n}{3} \rfloor + 1,$$

$$e_f(0) = e_f(1) = e_f(2) = 2 \lfloor \frac{n}{3} \rfloor.$$

Hence, $P_n(3)$ is a 3-product cordial graph if $n \equiv 2 \pmod{3}$ for $n \geq 5$. **Case (iii):** If $n \equiv 0 \pmod{3}$ for $n \geq 6$, then $|V(P_n(3))| = 3t$ and $|E(P_n(3))| = 6t - 4$. Thus, $v_f(i) = t$ (i = 0, 1, 2) and $e_f(i) = 2t - 1$ or 2t - 2 (i = 0, 1, 2). If $v_f(0) = t$, then $e_f(0) > 2t - 1$ for t > 1. Therefore, $|e_f(0) - e_f(j)| > 1$ for j=1,2. Hence, $P_n(3)$ is not a 3-product cordial graph if $n \equiv 0 \pmod{3}$ for n > 3. An example of 3-product cordial labeling of $P_7(3)$ is shown in Figure 1.

Theorem 2.2. For $n \ge 6$, the graph $P_n(4)$ is 3-product cordial if and only if $n \equiv 2 \pmod{3}$ or n = 6.

Proof. Let the vertex and edge set of $P_n(4)$ be $V(P_n(4)) = \{v_i ; 1 \le i \le n\}$ and $E(P_n(4)) = \{(v_i, v_{i+1}) ; 1 \le i \le n-1\} \cup \{(v_i, v_{i+4}) ; 1 \le i \le n-4\}$ respectively. We have the following four cases. Define $f: V(P_n(4)) \to \{0, 1, 2\}$ as follows:

Case (i): If $n \equiv 2 \pmod{3}$, then $f(v_i) = 0$; $1 \le i \le \lfloor \frac{n}{3} \rfloor$. Subcase (i): If n = 8. For $i = \lfloor \frac{n}{3} \rfloor + j$; $1 \le j \le n - \lfloor \frac{n}{3} \rfloor$,

$$f(v_i) = \begin{cases} 1 & \text{if } j \equiv 1,0 \pmod{4} \\ 2 & \text{if } j \equiv 2,3 \pmod{4}. \end{cases}$$

From the above labeling we get,

 $v_f(0) + 1 = v_f(1) = v_f(2) = \lfloor \frac{n}{3} \rfloor + 1,$ $e_f(0) = e_f(1) = e_f(2) + 1 = 2\lfloor \frac{n}{3} \rfloor.$ Subcase (ii): If $n \ge 11.$

For $1 \leq i \leq 8$,

$$f(v_{\lfloor \frac{n}{3} \rfloor + i}) = \begin{cases} 1 & \text{if } i = 1, 2, 4, 5\\ 2 & \text{if } i = 3, 6, 7, 8. \end{cases}$$

For $i = \lfloor \frac{n}{3} \rfloor + 8 + j$; $1 \le j \le n - 8 - \lfloor \frac{n}{3} \rfloor$,

$$f(v_i) = \begin{cases} 1 & \text{if } j \equiv 1,0 \pmod{4} \\ 2 & \text{if } j \equiv 2,3 \pmod{4}. \end{cases}$$

From the above labeling we get,

 $v_f(0) + 1 = v_f(1) = v_f(2) = \lfloor \frac{n}{3} \rfloor + 1,$ $e_f(0) = e_f(1) = e_f(2) + 1 = 2 \lfloor \frac{n}{3} \rfloor.$ Hence, $P_n(4)$ is a 3-product cordial graph if $n \equiv 2 \pmod{3}$ for $n \ge 8$.

Case (ii): If n = 6, then the 3-product cordial labeling of $P_n(4)$ is shown in Table 1.

Nepal Journal of Mathematical Sciences (NJMS), Vol. 3, No. 2, 2022 (August): 59-70

Table 1: 3-product cordial labeling of $P_n(4)$ for n = 6.

n	v_1	v_2	v_3	v_4	v_5	v_6
6	1	1	0	0	2	2

From the above labeling pattern we have, $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$ for all i, j = 0, 1, 2. Hence, $P_n(4)$ is a 3-product cordial graph if n = 6.

Case (iii): If $n \equiv 1 \pmod{3}$ for $n \geq 7$, then $|V(P_n(4))| = 3t + 1$ and $|E(P_n(4))| = 6t - 3$. Thus, $v_f(i) = t$ or t + 1 (i = 0, 1, 2) and $e_f(i) = 2t - 1$ (i = 0, 1, 2). If

 $v_f(0) = t \text{ or } t+1$, then $e_f(0) > 2t-1$ for t > 1. Therefore, $|e_f(0) - e_f(j)| > 1$ for j=1,2. Hence, $P_n(4)$ is not a 3-product cordial graph if $n \equiv 1 \pmod{3}$ for $n \ge 7$.

Case (iv): If $n \equiv 0 \pmod{3}$ for $n \geq 9$, then $|V(P_n(4))| = 3t$ and $|E(P_n(4))| = 6t - 5$. Thus, $v_f(i) = t$ (i = 0, 1, 2) and $e_f(i) = 2t - 1$ or 2t - 2 (i = 0, 1, 2). If $v_f(0) = t$, then $e_f(0) > 2t - 1$ for t > 2. Therefore, $|e_f(0) - e_f(j)| > 1$ for j=1,2. Hence, $P_n(4)$ is not a 3-product cordial graph if $n \equiv 0 \pmod{3}$ for $n \geq 9$.

An example of 3-product cordial labeling of $P_8(4)$ is shown in Figure 2.

Theorem 2.3. For $n \ge 7$, the graph $P_n(5)$ is 3-product cordial if and only if $n \equiv 2 \pmod{3}$ or n = 7.

Proof. Let the vertex and edge set of $P_n(5)$ be $V(P_n(5)) = \{v_i ; 1 \le i \le n\}$ and $E(P_n(5)) = \{(v_i, v_{i+1}) ; 1 \le i \le n-1\} \cup \{(v_i, v_{i+5}) ; 1 \le i \le n-5\}$ respectively. We have the following four cases.

Define $f: V(P_n(5)) \to \{0, 1, 2\}$ as follows:

Case (i): If n = 7, 8 or 11, then the 3-product cordial labelings of $P_n(5)$ are shown in Table 2.

Table 2: 3-product cordial labelings of $P_n(5)$ for n = 7, 8 and 11.

n	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}	v_{11}
7	1	1	0	0	2	2	1				
8	1	1	1	0	0	2	2	2			
11	0	0	0	1	1	1	2	2	2	1	2

From the above labeling pattern we have, $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$ for all i, j = 0, 1, 2. Hence, $P_n(5)$ is a 3-product cordial graph if n = 7, 8 or 11.

K. J. Daisy, R. S. Sabibha, P. Jeyanthi and M. Z. Youssef/k-Product Cordial Labeling of Napier Bridge.....

Case (ii): If $n \equiv 2 \pmod{3}$ for $n \ge 14$, then

$$f(v_i) = \begin{cases} 0 & \text{if } 1 \le i \le \lfloor \frac{n}{3} \rfloor \\ 1 & \text{if } \lfloor \frac{n}{3} \rfloor + 1 \le i \le \lfloor \frac{n}{3} \rfloor + 3 \\ 2 & \text{if } \lfloor \frac{n}{3} \rfloor + 4 \le i \le \lfloor \frac{n}{3} \rfloor + 6 \end{cases}$$

For $i = \lfloor \frac{n}{3} \rfloor + 6 + j$; $1 \le j \le n - 6 - \lfloor \frac{n}{3} \rfloor$,

$$f(v_i) = \begin{cases} 1 & \text{if } j \equiv 2, 4, 5, 7 \pmod{8} \\ 2 & \text{if } j \equiv 1, 3, 6, 0 \pmod{8}. \end{cases}$$

From the above labeling we get,

 $v_f(0) + 1 = v_f(1) = v_f(2) = \lfloor \frac{n}{3} \rfloor + 1,$ $e_f(0) = e_f(1) + 1 = e_f(2) + 1 = 2 \lfloor \frac{n}{3} \rfloor.$ Hence, $P_n(5)$ is a 3-product cordial graph if $n \equiv 2 \pmod{3}$ for $n \ge 14$.

Case (iii): If $n \equiv 1 \pmod{3}$ for $n \geq 10$, then $|V(P_n(5))| = 3t + 1$ and $|E(P_n(5))| = 6t - 4$. Thus, $v_f(i) = t$ or t + 1 (i = 0, 1, 2) and $e_f(i) = 2t - 1$ or 2t - 2 (i = 0, 1, 2). If $v_f(0) = t$ or t + 1, then $e_f(0) > 2t - 1$ for $t \geq 3$. Therefore, $|e_f(0) - e_f(j)| > 1$ for j=1,2. Hence, $P_n(5)$ is not a 3-product cordial graph if $n \equiv 1 \pmod{3}$ for $n \geq 10$.

Case (iv): If $n \equiv 0 \pmod{3}$ for $n \geq 9$, then $|V(P_n(5))| = 3t$ and $|E(P_n(5))| = 6t - 6$. Thus, $v_f(i) = t$ (i = 0, 1, 2) and $e_f(i) = 2t - 2$ (i = 0, 1, 2). If $v_f(0) = t$, then $e_f(0) > 2t - 2$ for $t \geq 3$. Therefore, $|e_f(0) - e_f(j)| > 1$ for j=1,2. Hence, $P_n(5)$ is not a 3-product cordial graph if $n \equiv 0 \pmod{3}$ for $n \geq 9$.

An example of 3-product cordial labeling of $P_8(5)$ is shown in Figure 3.

3 4-product cordial labeling of Napier bridge graphs

In this section, we study the 4-product cordial labeling of Napier bridge graphs $P_n(3)$, $P_n(4)$ and $P_n(5)$.

Theorem 3.1. For $n \ge 5$, the graph $P_n(3)$ is 4-product cordial if and only if $5 \le n \le 11$ except n = 8.

Proof. Let the vertex and edge set of $P_n(3)$ be $V(P_n(3)) = \{v_i ; 1 \le i \le n\}$ and $E(P_n(3)) = \{(v_i, v_{i+1}) ; 1 \le i \le n-1\} \cup \{(v_i, v_{i+3}) ; 1 \le i \le n-3\}$ respectively. We have the following five cases.

Define $f: V(P_n(3)) \rightarrow \{0, 1, 2, 3\}$ as follows:

Case (i): If $5 \le n \le 11$ except n = 8, then the 4-product cordial labelings of $P_n(3)$ are shown in Table 3.

Table 3: 4-product cordial labelings of $P_n(3)$ for $5 \le n \le 11$ except n = 8.

n	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}	v_{11}
5	0	2	1	3	3						
6	0	2	1	1	3	3					
7	0	2	2	1	1	3	3				
9	0	0	2	1	1	3	3	3	2		
10	0	0	2	1	1	1	3	3	3	2	
11	0	0	2	2	1	1	1	3	3	3	2

From the above labeling pattern we have, $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$ for all i, j = 0, 1, 2, 3. Hence, $P_n(3)$ is a 4-product cordial graph if $5 \le n \le 11$ except n = 8.

Case (ii): If $n \equiv 0 \pmod{4}$ for $n \geq 8$, then $|V(P_n(3))| = 4t$ and $|E(P_n(3))| = 8t - 4$. Thus, $v_f(i) = t$ (i = 0, 1, 2, 3) and $e_f(i) = 2t - 1$ (i = 0, 1, 2, 3). If $v_f(0) = t$, then $e_f(0) > 2t - 1$ for $t \geq 2$. Therefore $|e_f(i) - e_f(j)| > 1$ for all i, j = 0, 1, 2, 3. Hence, $P_n(3)$ is not a 4-product cordial graph if $n \equiv 0 \pmod{4}$.

Case (iii): If $n \equiv 1 \pmod{4}$ for $n \geq 13$, then $|V(P_n(3))| = 4t + 1$ and $|E(P_n(3))| = 8t - 2$. Thus, $v_f(i) = t$ or t + 1 (i = 0, 1, 2, 3) and $e_f(i) = 2t$ or 2t - 1 (i = 0, 1, 2, 3). Clearly, $v_f(0) = t$ and 0 must be assigned consecutively at the beginning or end of the path. Otherwise $e_f(0) > 2t$. Thus, $e_f(0) = 2t$. Now $v_f(2) = t$ or t + 1. If $v_f(2) = t$, then 2 must be assigned non-consecutively. Otherwise $e_f(0) > 2t$. Then, $e_f(2) > 2t$ for $t \geq 3$. Therefore $|e_f(i) - e_f(j)| > 1$ for all i, j = 0, 1, 2, 3. The similar argument shows that $v_f(2)$ can not be t + 1. Hence, $P_n(3)$ is not a 4-product cordial graph if $n \equiv 1 \pmod{4}$ for $n \geq 13$.

Case (iv): If $n \equiv 2 \pmod{4}$ for $n \geq 14$, then $|V(P_n(3))| = 4t+2$ and $|E(P_n(3))| = 8t$. Thus, $v_f(i) = t$ or t+1 (i = 0, 1, 2, 3) and $e_f(i) = 2t$ (i = 0, 1, 2, 3). Clearly, $v_f(0) = t$ and 0 must be assigned consecutively at the beginning or end of the path. Otherwise $e_f(0) > 2t$. Thus, $e_f(0) = 2t$. Now $v_f(2) = t$ or t+1. If $v_f(2) = t$, then 2 must be assigned non-consecutively. Otherwise $e_f(0) > 2t$. Thus, $e_f(2) > 2t$ for $t \geq 3$. Therefore $|e_f(i) - e_f(j)| > 1$ for all i, j = 0, 1, 2, 3. The similar argument shows that $v_f(2)$ can not be t+1. Hence, $P_n(3)$ is not a 4-product cordial graph if $n \equiv 2 \pmod{4}$ for $n \geq 14$. **Case (v):** If $n \equiv 3 \pmod{4}$ for $n \geq 15$, then $|V(P_n(3))| = 4t + 3$ and $|E(P_n(3))| = 8t + 2$. Thus, $v_f(i) = t$ or t + 1 (i = 0, 1, 2, 3) and $e_f(i) = 2t$ or 2t + 1 (i = 0, 1, 2, 3). Obviously, $v_f(0) = t$ and 0 must be assigned consecutively at the beginning or end of the path. Otherwise $e_f(0) > 2t + 1$. Thus, $e_f(0) = 2t$. Clearly, $v_f(2) = t + 1$ and at most 2 consecutive vertices labeled with 2. Otherwise $e_f(0) > 2t + 1$. Then, $e_f(2) > 2t + 1$ for $t \geq 3$. Therefore $|e_f(i) - e_f(j)| > 1$ for all i, j = 0, 1, 2, 3. Hence, $P_n(3)$ is not a 4-product cordial graph if $n \equiv 3 \pmod{4}$ for $n \geq 15$.

An example of 4-product cordial labeling of $P_5(3)$ is shown in Figure 4.

Figure 4: 4 – product cordial labeling of $P_5(3)$.

Theorem 3.2. For $n \ge 6$, the graph $P_n(4)$ is 4-product cordial if and only if n = 6 or 10.

Proof. Let the vertex and edge set of $P_n(4)$ be $V(P_n(4)) = \{v_i ; 1 \le i \le n\}$ and $E(P_n(4)) = \{(v_i, v_{i+1}) ; 1 \le i \le n-1\} \cup \{(v_i, v_{i+4}) ; 1 \le i \le n-4\}$ respectively. We have the following five cases.

Define $f: V(P_n(4)) \to \{0, 1, 2, 3\}$ as follows:

Case (i): If n = 6 or 10, then the 4-product cordial labelings of $P_n(4)$ are shown in Table 4.

Table 4: 4-product cordia	l labelings of $P_n(4)$	for $n = 6$ and 10.
---------------------------	-------------------------	---------------------

n	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}
6	0	2	1	1	3	3				
10	0	0	2	1	1	1	3	3	3	2

From the above labeling pattern we have, $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$ for all i, j = 0, 1, 2, 3. Hence, $P_n(4)$ is a 4-product cordial graph if n = 6 or 10.

Case (ii): If $n \equiv 0 \pmod{4}$ for $n \geq 8$, then $|V(P_n(4))| = 4t$ and $|E(P_n(4))| = 8t - 5$. Thus, $v_f(i) = t$ (i = 0, 1, 2, 3) and $e_f(i) = 2t - 1$ or 2t - 2 (i = 0, 1, 2, 3). If $v_f(0) = t$, then $e_f(0) > 2t - 1$ for $t \geq 2$. Therefore $|e_f(i) - e_f(j)| > 1$ for all i, j = 0, 1, 2, 3. Hence, $P_n(4)$ is not a 4-product cordial graph if $n \equiv 0 \pmod{4}$ for $n \geq 8$.

Case (iii): If $n \equiv 1 \pmod{4}$ for $n \geq 9$, then $|V(P_n(4))| = 4t + 1$ and $|E(P_n(4))| = 8t - 3$. Thus, $v_f(i) = t$ or t + 1 (i = 0, 1, 2, 3) and $e_f(i) = 2t$ or 2t - 1 (i = 0, 1, 2, 3). Clearly, $v_f(0) = t$ and 0 must be assigned consecutively at the beginning or end of the path. Otherwise $e_f(0) > 2t$. Thus, $e_f(0) = 2t$. Now $v_f(2) = t$ or t + 1. If $v_f(2) = t$, then 2 must be assigned non-consecutively. Otherwise $e_f(0) > 2t$. Then, $e_f(2) > 2t - 1$ for $t \ge 2$. Therefore $|e_f(i) - e_f(j)| > 1$ for all i, j = 0, 1, 2, 3. The similar argument shows that $v_f(2)$ can not be t + 1. Hence, $P_n(4)$ is not a 4-product cordial graph if $n \equiv 1 \pmod{4}$ for $n \ge 9$.

Case (iv): If $n \equiv 2 \pmod{4}$ for $n \geq 14$, then $|V(P_n(4))| = 4t + 2$ and $|E(P_n(4))| = 8t - 1$. Thus, $v_f(i) = t$ or t + 1 (i = 0, 1, 2, 3) and $e_f(i) = 2t$ or 2t - 1 (i = 0, 1, 2, 3). Clearly, $v_f(0) = t$ and 0 must be assigned consecutively at the beginning or end of the path. Otherwise $e_f(0) > 2t$. Thus, $e_f(0) = 2t$. Now $v_f(2) = t$ or t + 1. If $v_f(2) = t$, then 2 must be assigned non-consecutively. Otherwise $e_f(0) > 2t$. Then, $e_f(2) > 2t$ for $t \geq 3$. Therefore $|e_f(i) - e_f(j)| > 1$ for all i, j = 0, 1, 2, 3. The similar argument shows that $v_f(2)$ can not be t + 1. Hence, $P_n(4)$ is not a 4-product cordial graph if $n \equiv 2 \pmod{4}$ for $n \geq 14$.

Case (v): If $n \equiv 3 \pmod{4}$ for $n \geq 7$. then $|V(P_n(4))| = 4t + 3$ and $|E(P_n(4))| = 8t + 1$. Thus, $v_f(i) = t$ or t + 1 (i = 0, 1, 2, 3) and $e_f(i) = 2t$ or 2t + 1 (i = 0, 1, 2, 3). Clearly, $v_f(0) = t$ and 0 must be assigned consecutively at the beginning or end of the path. Otherwise $e_f(0) > 2t$. Thus, $e_f(0) = 2t$. Clearly, $v_f(2) = t + 1$ and at most 2 consecutive vertices labeled with 2. Otherwise $e_f(0) > 2t + 1$. Then, $e_f(2) \geq 2t + 1$ for $t \geq 1$. Therefore $|e_f(i) - e_f(j)| > 1$ for all i, j = 0, 1, 2, 3. Hence, $P_n(4)$ is not a 4-product cordial graph if $n \equiv 3 \pmod{4}$ for $n \geq 7$.

An example of 4-product cordial labeling of $P_6(4)$ is shown in Figure 5.

Figure 5: $4 - product \ cordial \ labeling \ of \ P_6(4).$

Theorem 3.3. For $n \ge 7$, the graph $P_n(5)$ is 4-product cordial if and only if n = 7 or 10.

Proof. Let the vertex and edge set of $P_n(5)$ be $V(P_n(5)) = \{v_i ; 1 \le i \le n\}$ and $E(P_n(5)) = \{(v_i, v_{i+1}) ; 1 \le i \le n-1\} \cup \{(v_i, v_{i+5}) ; 1 \le i \le n-5\}$ respectively. We have the following five cases.

Define $f: V(P_n(5)) \rightarrow \{0, 1, 2, 3\}$ as follows:

Case (i): If n = 7 or 10, then the 4-product cordial labelings of $P_n(5)$ are shown in Table 5.

n	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}
7	1	1	2	0	2	3	3			
10	0	2	1	1	3	0	3	3	1	2

Table 5: 4-product cordial labelings of $P_n(5)$ for n = 7 and 10.

From the above labeling pattern we have, $|v_f(i) - v_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$ for all i, j = 0, 1, 2, 3. Hence, $P_n(5)$ is a 4-product cordial graph if n = 7 or 10.

Case (ii): If $n \equiv 0 \pmod{4}$ for $n \geq 8$, then $|V(P_n(5))| = 4t$ and $|E(P_n(5))| = 8t - 6$. Thus, $v_f(i) = t$ (i = 0, 1, 2, 3) and $e_f(i) = 2t - 1$ or 2t - 2 (i = 0, 1, 2, 3). If $v_f(0) = t$, then $e_f(0) > 2t - 1$ for $t \geq 2$. Therefore $|e_f(i) - e_f(j)| > 1$ for all i, j = 0, 1, 2, 3. Hence, $P_n(5)$ is not a 4-product cordial graph if $n \equiv 0 \pmod{4}$ for $n \geq 8$.

Case (iii): If $n \equiv 1 \pmod{4}$ for $n \geq 9$, then $|V(P_n(5))| = 4t + 1$ and $|E(P_n(5))| = 8t - 4$. Thus, $v_f(i) = t$ or t + 1 (i = 0, 1, 2, 3) and $e_f(i) = 2t - 1$ (i = 0, 1, 2, 3). If

 $v_f(0) = t \text{ or } t+1$, then $e_f(0) > 2t-1$ for $t \ge 2$ Therefore $|e_f(i) - e_f(j)| > 1$ for all i, j = 0, 1, 2, 3. Hence, $P_n(5)$ is not a 4-product cordial graph if $n \equiv 1 \pmod{4}$ for $n \ge 9$.

Case (iv): If $n \equiv 2 \pmod{4}$ for $n \geq 14$, then $|V(P_n(5))| = 4t + 2$ and $|E(P_n(5))| = 8t - 2$. Thus, $v_f(i) = t$ or t + 1 (i = 0, 1, 2, 3) and $e_f(i) = 2t$ or 2t - 1 (i = 0, 1, 2, 3). Clearly, $v_f(0) = t$ and 0 must be assigned consecutively at the beginning or end of the path. Otherwise $e_f(0) > 2t$. Thus, $e_f(0) = 2t$. Now $v_f(2) = t$ or t + 1. If $v_f(2) = t$, then 2 must be assigned non-consecutively. Otherwise $e_f(0) > 2t$. Then, $e_f(2) > 2t$ for $t \geq 3$. Therefore $|e_f(i) - e_f(j)| > 1$ for all i, j = 0, 1, 2, 3. The similar argument shows that $v_f(2)$ can not be t + 1. Hence, $P_n(5)$ is not a 4-product cordial graph if $n \equiv 2 \pmod{4}$ for $n \geq 14$.

Case (v): If $n \equiv 3 \pmod{4}$ for $n \ge 11$. then $|V(P_n(5))| = 4t+3$ and $|E(P_n(5))| = 8t$. Thus, $v_f(i) = t$ or t + 1 (i = 0, 1, 2, 3) and $e_f(i) = 2t$ (i = 0, 1, 2, 3). Clearly, $v_f(0) = t$ and 0 must be assigned consecutively at the beginning or end of the path. Otherwise $e_f(0) > 2t$. Thus, $e_f(0) = 2t$. Clearly, $v_f(2) = t + 1$ and 2 must be assigned non-consecutively. Otherwise $e_f(0) > 2t$. Then, $e_f(2) > 2t$ for $t \ge 2$. Therefore $|e_f(i) - e_f(j)| > 1$ for all i, j = 0, 1, 2, 3. Hence, $P_n(5)$ is not a 4-product cordial graph if $n \equiv 3 \pmod{4}$ for $n \ge 11$.

An example of 4-product cordial labeling of $P_7(5)$ is shown in Figure 6.

4 Conclusion

In this paper, we find the 3-product and 4-product cordial labeling of Napier bridge graphs $P_n(3)$, $P_n(4)$ and $P_n(5)$. In future, we propose to find the k-product cordial labeling of $P_n(m)$ for $k \ge 5$ and $m \ge 2$.

References

- Cahit, I. (1987), Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23, 201–207.
- [2] Gallian, J. A. (2020), A dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*.
- [3] Harary, F. (1972), Graph Theory, Addison-Wesley, Reading, Massachusetts.
- [4] Javed, A. and Jamil, M. K. (2019), 3-Total edge product cordial labeling of rhombic grid, AKCE International Journal of Graphs and Combinatorics, Vol. 16, No. 2, 213–221.
- [5] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M. Z. (2022), k-Product cordial behaviour of union of graphs, *Journal of the Indonesian Mathematical Society*, Vol. 28, No. 1, 1–7.
- [6] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M. Z. (2022), k-Product cordial labeling of cone graphs, *International Journal of Mathematical Combinatorics*, Vol 2, 72–80.
- [7] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M. Z. k-Product cordial labeling of fan graphs, *Turkic World Mathematical Society Journal of Applied and Engineering Mathematics*, to appear.
- [8] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M. Z. k-Product cordial labeling of powers of paths, *Jordan Journal of Mathematics and Statistics*, to appear.

- [9] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M. Z. Further results on k-product cordial labeling, *Turkic World Mathematical Society Journal* of Applied and Engineering Mathematics, to appear.
- [10] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M. Z. k-Product cordial labeling of product of graphs, *Discrete Mathematics, Algorithms and Applications*, to appear.
- [11] Jeya Daisy, K., Santrin Sabibha, R., Jeyanthi, P. and Youssef, M. Z. k-Product cordial labeling of path graphs, preprint.
- [12] Jeyanthi, P. and Maheswari, A. (2012), 3-Product cordial labeling, SUT J. Math., 48 (2), 231–240.
- [13] Jeyanthi, P. and Maheswari, A. (2016), Some results on 3-Product cordial labeling, Utilitas Math., 99, 215–229.
- [14] Ponraj, R., Sivakumar, M. and Sundaram, M. (2012), k-product cordial labeling of graphs, Int. J. Contemp. Math. Sciences, Vol. 7, No. 15, 733–742.
- [15] Rosa, A. (1967), On certain valuations of the vertices of a graph, Theory of Graphs, Internat. Sympos., ICC Rome (1966), Paris, Dunod, 349–355.
- [16] Sundaram, M., Ponraj, R. and Somasundaram, S. (2004), Product cordial labeling of graphs, Bulletin of Pure and Applied Sciences, 23 E(1), 155–163.