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Random Forest algorithm has high potential to classify mushroom dataset correctly. This work can also 
be extended to compare other classification algorithms to classify mushroom as well as other datasets. 
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Abstract: The paper re-examines analytically the work of Yadav et al. ([43]) (referred to as Y hereafter) 
wherein they have examined the effect of vertical magnetic field with free-free, rigid-rigid and rigid-free 
boundaries on the onset of convection in an electrically conducting nanofluid layer heated from below. A 
number of sufficient conditions regarding the non-existence of oscillatory convection have been found.  
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1.  Introduction 

The thermal instability of a fluid layer heated from below has been extensively studied since the work of 
Bénard [9]. After the work of Choi and Eastman [17], a considerable amount of work on thermal instability of 
nanofluids has been witnessed ([1-8], [10-16], [18-24], [27-42], [45] and [47-48]). The problem of magneto-
convection (the thermal convection in a horizontal fluid layer in the presence of buoyancy force due to gravity 
and the Lorentz force due to magnetic field) becomes more important due to its applications in the study of 
earth's interior, atmospheric physics, oceanography and geophysics. Unfortunately, a very little work has been 
noticed on the stability of thermo-magneto convection in a nanofluid ([25-26], [43], [44], [46] and [49]).  
 

The effect of a constant vertical magnetic field on the onset of convection in a nanofluid layer for free-free, 
rigid-rigid and rigid-free boundaries has been studied by Y.  Their findings are based on the discussions for 
two cases, namely, 0M   and 0M   [ 2 2 (1 ) e rM rM L JP P ]. In this paper, we have re-examined their 
study analytically for oscillatory convection and a number of sufficient conditions for the non-existence of 
oscillatory convection have been established.  

 
2.  Physical Problem and its Analysis 
 

As we have re-examined the work of Y, therefore, in order to avoid the repetition, we have directly 
considered the final equations derived by Y. The real and imaginary parts of the characteristic equation for 
oscillatory convection are obtained as 
 

2 2 2 3 2 2 2[ ( ) { ( )}]      r r M r r M r a n e AJ J P P P P P J J Q a R a R L N   

2 3 2 2 2 2[ (1 ) { ( )}] 0e r r r M r r M r a nL J P P P QP J P J a P R R                                        (2.1) 

and 
2 3 3 2 2 2 2( ) (1 )e r r M r r M r r r M e r rM rJL P P P P J P P P J L P J P J P Q         

 2 2 2 2 2 2 { ( )} 0e r a e r a r rM r e r rM e A nJL P Q a R L P a R P P a P L P P L N R       .                            (2.2)                                                                                                            
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Here J  = 2 2a  (a  being the dimensionless wave number) and   is real and dimensionless angular 
frequency of oscillations.  

The non-dimensional parameters stated in the Eqs. (2.1) and (2.2) are as follows: 

eL ,
BD
 

 
   

nanofluid Lewis number 

rP
0

,
 
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nanofluid Prandtl number 

0
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nanofluid magnetic Prandtl number 
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* * *
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D T  
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 modified diffusivity ratio 
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( ) ,a
T TR g L 
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 Rayleigh number 

0

* * 3
1 0( )( )

,p f
n
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   

concentration Rayleigh number 

*2
20

0

,
4

eHQ L
 

 
 
   

nanofluid magnetic number, 

where   is the viscosity of nanofluid, e  is the magnetic permeability of nanofluid, 0  is the reference 
nanofluid density, 

0f
 is the density of the base fluid, p is the density of nanoparticles,  is thermal 

diffusivity,   is kinematic viscosity,   is electrical resistivity,   is thermal expansion coefficient of the 

fluid, *
0  is  nanoparticle volume fraction at the lower plate, *

1 is nanoparticle volume fraction at the upper 

plate, g is gravitational acceleration, L is the depth between two parallel plates, *
0T  is temperature at the 

lower plate, *
1T  is reference temperature, *

0H  is  uniform vertical magnetic field component along z-axis, 

BD  is Brownian diffusion coefficient and TD  is thermophoretic diffusion coefficient of nanoparticles. 
Asterisks are used to denote the dimensional variables. 

    On eliminating aR  from Eqs. (2.1) and (2.2), we get 

      
2 0,M N O      where 2 ,                                                                                           (2.3) 

2 2 (1 ),e rM rM L JP P                                                                                                                                 (2.4) 

3 2 2 2 2 2 2 2 2( )(1 ) ( ) ( 1)e r rM r e r r rM e r rM n e AN J L P P P L J P Q P P a L P P R L N               (2.5)                                                                                                                                                     and 

 2 2 3 2 2[ (1 ) ( ) ( 1)].r r r rM e r n e AO J P J P J Q P P a L P R L N                                                          (2.6) 
 

3.  Results and Discussions 
 
Y have obtained the necessary and sufficient conditions for the non-existence of oscillatory convection 
under two situations namely, 0M   and 0M  . However, the authors revised their study and, in the 
erratum [44] concluded that the conditions obtained by them in [43] are only the sufficient conditions and 
not the necessary conditions. 
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Here it is to mention that the case 0M   is possible if either 0eL   or 0,rMP   but this is not possible on 

physical as well as mathematical grounds. We have re-examined the work of Y for 0.M   It is stated in Y 
that the sufficient conditions for the non-existence of oscillatory convection for 0,M  are 

         
0 and 0N O

M M
  .                                                                                                                      (3.1) 

    These conditions ultimately convert into the following conditions: 

        , 0 and 1r rM n e AP P R L N    .                                                                                               (3.2a, b, c) 

It means that the oscillatory convection exists if at least one of the three conditions given by (3.2) is not 
satisfied.  
We have extended the study with the help of following theorems and have shown that there are sets of 
conditions other than stated in (3.2 a, b, c) which are the sufficient conditions for the non-existence of the 
oscillatory modes.  

 Theorem 3.1: If 0nR  and 1,e AL N   then 2( , )rMQP  law ensures the non-existence of oscillatory  
       convection. 
Proof: Rewrite the expressions for N and O  as 

2 2 2 3
3 2 2 2 2 2

2 2( ) ( )e r e r
rM rM r e r rM

L P L P QN J QP P P L P P
 

 
      

 
2 2 ( 1)e r n rM e Aa L P R P L N           (3.3)   

  and 

  
2 2

2 2 3 3 2
2 21 (1 ) ( 1) .rM

r r e r n e A
QP QO J P J J P a L P R L N
J J

   
        

  
                                             (3.4) 

Let the conditions (3.2b) and (3.2c) hold, then both N and O  become positive if the 2( , )rMQP  law which 

states that 2 0rMQP    is satisfied irrespective of any conditions on rP   and rMP .  

Thus 0,nR  1e AL N   and 2
rMQP   provide another set of conditions, satisfying conditions in (3.1) 

ensuring the non-existence of oscillatory convection. 

Theorem 3.2: If 2( , )rMQP  law fails and ,r rMP < P 0,nR  1e AL N  , then the non-existence of 
oscillatory convection is ensured under the condition    

2 (1 ) .r

rM r

PQ
P P
 


  

Proof: 
  Rewrite the expressions for N and O  as  

     
 

3 2 2
2 2

12

( ) ( 1)e r rM r
e r n rM e A

J L P P PN Q Q a L P R P L N



    

                                         
 (3.5) 

and 

 
2

3 2 2
2

( 1)( ) ,e r n e A
r rM r

a L P R L NO J P P P Q Q
J


  

    
 

                                                                   (3.6) 

where 

       

  
 

2 2 2 2

1 2 2

1e r rM r

e r rM r

L P P P
Q

L P P P
 




                                                                                                               (3.7)                                           
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and  
2

2
(1 )r

rM r

PQ
P P
 




.                                                                                                                                (3.8) 

Since 1 2Q Q , therefore, under the given conditions, the additional condition 2Q Q  makes both N and 

O  positive. Thus if 2( , )rMQP  law fails then the sufficient conditions for the non-existence of oscillatory 
convection are   

             ,r rMP < P 0,nR  1e AL N   and 
2 (1 ) .r

rM r

PQ
P P
 




 

Theorem 3.3: If r rMP P and 0,nR   then the non-existence of oscillatory convection is ensured under the 
conditions 

       1e AL N P    if 1S    and 1e AL N PS    if 1,S    where 
2

2 2
rM

e r

PS
L P

  .                                    

Proof:  Rewrite the expressions for N and O  as  

           3 2 2 2 2 21 [ 1 ]      e r rM r e r rM n e AN J L P P P a L P P R L N P                                                      (3.9) 

and 

    
3

2 3 2
2

1
1 ,r

r e n e A
e r n

J P
O J P a L R L N PS

a L P R
 

     
 

                                                                          (3.10)  

where 
 2

2 2
e r rM r

rM n

JL PQ P P
P

a P R
 

                                                                                                               (3.11)    

and 
2

2 2
rM

e r

PS
L P

 .                                                                                                                                         (3.12)   

It is clear from Eqs. (3.9) and (3.10) that for r rMP P  and 0,nR  N and O  both are positive under the 
conditions 

        1e AL N P    if 1S        and 1e AL N PS    if 1.S   

This completes the proof of the theorem.  

Theorem 3.4: If , 0r rM nP P R   but 1,e AL N  then a sufficient condition for the non-existence 
of oscillatory convection is given by  

4

(1 ) 1
(1 )

e r n e A

r

L P R L N
P

 



.                                                                (3.13) 

Proof:  Rewrite the expressions for N and O  as 
3 2 2 2 2 2 2 2 2(1 )( ) (1 ) ( )       r e r rM e r n rM e A e r r rMN J P L P P a L P R P L N QL JP P P                       (3.14)                                                                                                

and      

       2 2 3 2 2(1 ) (1 ) ( )      r r e r n e A r rMO J P J P a L P R L N Q J P P  .                                                 (3.15) 

It is obvious that both N and O  are positive if 
2 2 2

3 2 2 2 3

(1 ) (1 )1 ,
( )(1 ) (1 )
e r n rM e A e r n e A

e r rM r r

a L P R P L N a L P R L Nbigger of
J L P P P J P

    
     

.                                                 (3.16)       
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As 
2

3 4

1 ,a
J 

  condition (3.16) can be written as  

2

4 2 2 2

(1 )1 ,1
(1 ) ( )

e r n e A rM

r e r rM

L P R L N Pbigger of
P L P P

   
      

, 

or 4

(1 ) 1,
(1 )

e r n e A

r

L P R L N
P

 


                                                                   
 

which is a sufficient condition for the non-existence of oscillatory convection under the given conditions 
   
Corollary:  If condition (3.13) fails, then the theorem holds under the conditions 

* if 1 Q Q S  and  *  if 1,Q SQ S   

where, *
2

(1 )
( )

e r n e A

r rM

L P R L NQ
P P
 




                                                                                                           (3.17)     

and S  is given by Eq. (3.12)
 
. 

 
4.  Conclusion 

The work presented by Y i.e. thermal instability in a nanofluid layer with a vertical magnetic field is 
reinvestigated. We have obtained a number of sufficient conditions for the non-existence of oscillatory 
convection.                                                                                 

Theorem-3.1 proves that even if r rMP P , then 2( , )rMQP  law ensures the non-existence of oscillatory 

convection. Physically 2( , )rMQP   law holds for large wave numbers or small nanofluid magnetic number. 
In other words, small wave numbers and large nanofluid magnetic numbers are more prone to the non-
existence of oscillatory convection. Likewise, Theorem-3.3 establishes that under certain suitable conditions, 
the non-existence of oscillatory convection is ensured for r rMP P  without any restrictions on nanofluid 

magnetic number. It is also shown that if the condition 1e AL N   is violated, then again under certain 
physically realistic restrictions on different physical parameters there is the possibility of non-existence of 
oscillatory convection. We have thus, established that under the violation of conditions given by Y in (3.2) 
for the non-existence of oscillatory convection or the existence of non-oscillatory convection, the convection 
will not convert to oscillatory. 

Nomenclature 

aR           Rayleigh number 

eL            nanofluid Lewis number 

AN         modified diffusivity ratio 

rP           nanofluid Prandtl number 
*

1T           temperature at upper plate 
*

0T           temperature at lower plate 
Q             nanofluid magnetic number 
a            dimensionless wave number 

nR          concentration Rayleigh number  
g            gravitational acceleration (m s-2) 
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 


                                                                   
 

which is a sufficient condition for the non-existence of oscillatory convection under the given conditions 
   
Corollary:  If condition (3.13) fails, then the theorem holds under the conditions 

* if 1 Q Q S  and  *  if 1,Q SQ S   

where, *
2

(1 )
( )

e r n e A

r rM

L P R L NQ
P P
 




                                                                                                           (3.17)     

and S  is given by Eq. (3.12)
 
. 

 
4.  Conclusion 

The work presented by Y i.e. thermal instability in a nanofluid layer with a vertical magnetic field is 
reinvestigated. We have obtained a number of sufficient conditions for the non-existence of oscillatory 
convection.                                                                                 

Theorem-3.1 proves that even if r rMP P , then 2( , )rMQP  law ensures the non-existence of oscillatory 

convection. Physically 2( , )rMQP   law holds for large wave numbers or small nanofluid magnetic number. 
In other words, small wave numbers and large nanofluid magnetic numbers are more prone to the non-
existence of oscillatory convection. Likewise, Theorem-3.3 establishes that under certain suitable conditions, 
the non-existence of oscillatory convection is ensured for r rMP P  without any restrictions on nanofluid 

magnetic number. It is also shown that if the condition 1e AL N   is violated, then again under certain 
physically realistic restrictions on different physical parameters there is the possibility of non-existence of 
oscillatory convection. We have thus, established that under the violation of conditions given by Y in (3.2) 
for the non-existence of oscillatory convection or the existence of non-oscillatory convection, the convection 
will not convert to oscillatory. 

Nomenclature 

aR           Rayleigh number 

eL            nanofluid Lewis number 

AN         modified diffusivity ratio 

rP           nanofluid Prandtl number 
*

1T           temperature at upper plate 
*

0T           temperature at lower plate 
Q             nanofluid magnetic number 
a            dimensionless wave number 

nR          concentration Rayleigh number  
g            gravitational acceleration (m s-2) 
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rMP            nanofluid magnetic Prandtl number  

BD          Brownian diffusion coefficient (m2 s-1)  

TD          thermophoretic diffusion coefficient (m2 s-1)  
k             thermal conductivity of the nanofluid (W m-1 K-1) 
L            dimensional depth between two parallel plates (m) 
c             specific heat of fluid at constant pressure (J kg-1 K-1)   *

0H         uniform vertical magnetic field component along z-axis      
 

Greek Symbols 

             thermal diffusivity (m2 s-1) 

0f
           density of base fluid (kg m-3)      

p            density of nanoparticles (kg m-3)      

             dynamic viscosity of nanofluid (Pa s) 

0             reference nanofluid density (kg m-3)     

               kinematic viscosity of nanofluid (m2 s-1)  
*

0             nanoparticle volume fraction at lower plate 
*

1             nanoparticle volume fraction at upper plate 

e             magnetic permeability of nanofluid (H m-1) 

               electrical resistivity of nanofluid (kg m3 s-3A-2) 

              thermal expansion coefficient of the fluid (K-1) 
              dimensionless angular frequency of oscillations  
              electrical conductivity of nanofluid (kg-1 m-3 s3 A2) 

 

Subscripts 

0               lower plate 
1               upper plate 
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Abstract: The significance of sample statistics in the research study is increasing day by day. In the 
various study as medical science, physical sciences and social sciences total population study is guessed 
from sample statistics. There are two methods for finding population parameter viz point estimate and 
interval estimate. Point estimate is error free method and interval estimate always count error as well as 
confidence level. In research to find out population values there are fixed standard to draw the sample. 
The sample must be unbiased, consistent, efficient and sufficient because sample is basic foundation of the 
overall process.   

Key Words: Statistic, Point- estimate, Interval-estimate, Confidence level.       

1. Introduction 
The word Estimation is guess of any things, any matters and any entity. But in quantitative analysis estimation 
is focus on guess of population parameter from sample statistic. So mathematically, estimation is concerned 
with the methods by which population parameter are guessed from the sample statistic (Brian and Philip [1], 
Sharma and Chaudhary, [9]). In the 2010s, estimation methods were increasingly adopted in neuroscience 
(Hentschke, Harald, Maik and Stüttgen, [4]). Estimation is the process of approximation, which is a value that 
is usable for some purpose. The value is usable because it is derived from the best information available. 
Typically, estimation involves using the value of a statistic (sample) to estimate the value of a corresponding 
population (Enloe, [2]).   

Parameter is the characteristic of population such as; population standard deviation 
(                          , population proportion success (P), population proportion failure (Q) and 
population mean ( ) etc. statistic is the characteristic of sample such as sample standard deviation (s), sample 
variance (  ), sample proportion process (p), sample proportion failure (q), sample mean ( ̅) etc. statistic are 
also called estimator because statistic are used to estimate population parameter (Enloe, [2]). Estimated 
specific value of the estimator is known as estimate. The main propose of estimation is to obtain or guess 
population parameter from the sample statistic. There are so many examples in our daily life where we guess. 
For example by testing a mango we can estimate test of all the mangoes, by testing a piece of cooked food we 
can estimate about whole food, from the blood sample doctors can estimate content and diseases of our body, 
by testing density of little soil engineers can estimate density of total soil of that area, by testing a cup of juice 
people can estimate total juice test, from a cup of water in the sea people can estimate all the test of whole sea 
water etc.  
 

2. Standard of a Statistic  

Sample statistic is to be close to the population parameter. There are four conditions for good estimator as:  
Unbiasedness, Consistency, Efficiency, and Sufficiency. These criteria are described in (Gupta, [3]). 
An estimator i.e., sample value must be representative for whole population. In other word all the expected 
vale of statistic is equal to parameter. That is  

   ̅                                               , where E = Estimation. 
Let us assume, if t is the values of sample and   is the values of population, according to estimation 
theory; E (t) =  , which is condition of unbiasedness. In this condition  ̅ is a good estimator of  , p is a 
good estimator of P, q is a good estimator of Q but s is not a good estimator of   but in large sample s is a 
good estimator of   (Pillai   and Bhagavathi, [7]) and (Sharma and Chaudhary, [9]).  

Jaimala Bishnoi and Arun Kumar/ An Analytical Study of Thermal Instability in a Nanofluid Layer … … 
 

124 
 

[30] Nield, D.A., Kuznetsov, A.V. (2011). The onset of double-diffusive convection in a nanofluid layer. Int.  J.  
Heat Fluid Flow, 32(4): 771-776. 

[31] Nield, D.A., & Kuznetsov, A.V. (2013). A note on the variation of nanofluid viscosity with temperature. 
Int. Comm. Heat Mass Transfer, 41: 17-18. 

[32] Nield, D.A., & Kuznetsov, A.V. (2014). The onset of convection in a horizontal nanofluid layer of finite 
depth: A revised model. Int. J. Heat Mass Transfer, 77: 915-918. 

[33] Nield, D.A., & Kuznetsov, A.V. (2014). Thermal instability in a porous medium layer saturated by a 
nanofluid: a revised model. Int. J. Heat Mass Transfer, 68: 211-214. 

[34] Nield, D.A., & Kuznetsov, A.V. (2015). The effect of vertical throughflow on thermal instability in a 
porous medium layer saturated by a nanofluid: A revised model. ASME J. Heat Transfer, 137: 052601. 

[35] Shaw, S., & Sibanda, P. (2013). Thermal instability in a non-darcy porous medium saturated with a 
nanofluid and with a convective boundary condition. Boundary Value Problems, 186.  
https://doi.org/10.1186/1687-2770-2013-186 

[36] Sheu, L.J. (2011). Thermal instability in a porous medium layer saturated with a viscoelastic nanofluid. 
Transp. Porous Media, 88: 461-477. 

[37] Shukla, S., Gupta, U., & Devi, M. (2021). LTNE effects on binary nanofluid convection: A modified 
model. Materials Today: Proceedings, 45: 4753-4759. 

[38] Singh, R., Bishnoi, J., & Tyagi, V.K. (2019). Onset of Soret driven instability in a Darcy–Maxwell 
nanofluid. SN Appl Sci., 1, 1273. https://doi.org/10.1007/s42452-019-1325-3 

[39] Singh, R., Bishnoi, J., & Tyagi, V.K. (2020). Triple diffusive convection with Soret–Dufour effects in a 
Maxwell nanofluid saturated in a Darcy porous medium. SN Appl Sci., 2, 704.  
https://doi.org/10.1007/s42452-020-2462-4 

[40] Tzou, D.Y. (2008). Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Transfer, 
51(11-12), 2967-2979. 

[41] Tzou, D.Y. (2008). Instability of nanofluids in natural convection. ASME J. Heat Transfer, 130(7): 072401. 

[42] Yadav, D., Agrawal, G.S., & Bhargava, R. (2011). Rayleigh Bénard convection in nanofluids. Int. J. Appl  
Math Mech., 7: 61–76. 

[43] Yadav, D., Bhargava, R., & Agrawal G.S. (2013). Thermal instability in a nanofluid layer with a vertical 
magnetic field. J. Eng Math., 80:147-164. 

[44] Yadav, D., Bhargava, R., & Agrawal, G.S. (2016). Erratum to: Thermal instability in a nanofluid layer with 
a vertical magnetic field. J. Eng Math., 100, 211. 

[45] Yadav, D., Bhargava, R., Agrawal, G.S. (2013). Numerical solution of a thermal instability problem in a 
rotating nanofluid layer. Int. J. Heat Mass Transfer, 63: 313-322. 

[46] Yadav, D., Bhargava, R., Agrawal, G.S., Hwang, G.S., Lee, J., & Kim, M.C. (2014).                                                  
Magnetoconvection in a rotating layer of nanofluid. Asia-Pac. J. Chem. Eng., 9: 663-677. 

[47] Yadav, D., Bhargava, R., Agrawal, G.S., Yadav, N., Lee, J., & Kim, M.C. (2014).  Thermal instability in a 
rotating porous layer saturated by a non-Newtonian nanofluid with thermal conductivity and viscosity 
variation, Microfluid Nanofluid, 16: 425-440. 

[48] Yadav, D., & Lee, J. (2015).  The effect of local thermal non-equilibrium on the onset of Brinkman 
convection in a nanofluid saturated rotating porous layer. J.  Nanofluids, 4: 335-342. 

[49] Yahaya, R.I., Arifin, N.M., Isa, S.S.P.M., & Rashidi, M.M. (2021).  Magnetohydrodynamics boundary 
layer flow of micropolar fluid over an exponentially shrinking sheet with thermal radiation: Triple 
solutions and stability analysis, Mathematical Methods in the Applied Sciences, 44: 10578-10608. 

 


