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Abstract: The paper re-examines analytically the work of Yadav et al. ([43]) (referred to as Y hereafier)
wherein they have examined the effect of vertical magnetic field with free-free, rigid-rigid and rigid-free
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1. Introduction

The thermal instability of a fluid layer heated from below has been extensively studied since the work of
Bénard [9]. After the work of Choi and Eastman [17], a considerable amount of work on thermal instability of
nanofluids has been witnessed ([1-8], [10-16], [18-24], [27-42], [45] and [47-48]). The problem of magneto-
convection (the thermal convection in a horizontal fluid layer in the presence of buoyancy force due to gravity
and the Lorentz force due to magnetic field) becomes more important due to its applications in the study of
earth's interior, atmospheric physics, oceanography and geophysics. Unfortunately, a very little work has been
noticed on the stability of thermo-magneto convection in a nanofluid ([25-26], [43], [44], [46] and [49]).

The effect of a constant vertical magnetic field on the onset of convection in a nanofluid layer for free-free,
rigid-rigid and rigid-free boundaries has been studied by Y. Their findings are based on the discussions for
two cases, namely, M =0 and M =0 [M =L,’JP,>(1+P.)]. In this paper, we have re-examined their

study analytically for oscillatory convection and a number of sufficient conditions for the non-existence of
oscillatory convection have been established.

2. Physical Problem and its Analysis

As we have re-examined the work of Y, therefore, in order to avoid the repetition, we have directly
considered the final equations derived by Y. The real and imaginary parts of the characteristic equation for
oscillatory convection are obtained as

J[Jo*(P.+P,, +PP,)-P{] +Jr°Q—a’R,—a’R (L,+ N ,)}]

+L@'[J’R(1+ P, +P,) +0F’n"J - B, {&'J +a’P(R,+R,)}]=0 2.1
and
JLa* (P +P,+PP,)~JR(+P+P,)~JLP +Jo'P, ~Jr’P’Q
~JL7*P’Q+a’R L P’ +a’R PP, +a’P{L,P.+P, (L,+N )R =0. (2.2)
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Here J =a’"+71’ (a being the dimensionless wave number) and @ is real and dimensionless angular
frequency of oscillations.
The non-dimensional parameters stated in the Egs. (2.1) and (2.2) are as follows:

L, (: ﬁj , nanofluid Lewis number
B

P (: LJ, nanofluid Prandtl number
P

P, {: L} , nanofluid magnetic Prandtl number

L j, modified diffusivity ratio

, concentration Rayleigh number

T
R ( Lo ﬂL3( I)J Rayleigh number
ua

(P, P& ~¢)el’ J

Q[z MLZ J , nanofluid magnetic number,
4mp,vn

where  is the viscosity of nanofluid, #, is the magnetic permeability of nanofluid, p, is the reference
nanofluid density, o, is the density of the base fluid, p,is the density of nanoparticles, & is thermal
diffusivity, v is kinematic viscosity, 7 is electrical resistivity, £ is thermal expansion coefficient of the
fluid, ¢o* is nanoparticle volume fraction at the lower plate, ¢1* is nanoparticle volume fraction at the upper
plate, gis gravitational acceleration, L is the depth between two parallel plates, 7:)* is temperature at the
lower plate, Tl* is reference temperature, HO* is uniform vertical magnetic field component along z-axis,
D, is Brownian diffusion coefficient and D, is thermophoretic diffusion coefficient of nanoparticles.

Asterisks are used to denote the dimensional variables.

On eliminating R, from Egs. (2.1) and (2.2), we get

MA?>+NA+O=0, where A =", (2.3)
M=L}JP,’(1+P), (2.4)
N=J*L}'P’+P,)1+P)+ L Jn’P’Q(P.- P, )+a’L,PP,’R (L, +N, 1) (2.5)
O=J'R[J°(1+ P) +J7°Q(F, ~ P, )+a@’LAR,(L,+ N, ~1)]. (2.6)

3. Results and Discussions

Y have obtained the necessary and sufficient conditions for the non-existence of oscillatory convection
under two situations namely, M =0 and M # 0. However, the authors revised their study and, in the
erratum [44] concluded that the conditions obtained by them in [43] are only the sufficient conditions and

not the necessary conditions.
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Here it is to mention that the case M =0 is possible if either L, =0 or P,, =0, but this is not possible on

physical as well as mathematical grounds. We have re-examined the work of Y for M # 0. It is stated in ¥
that the sufficient conditions for the non-existence of oscillatory convection for M # 0, are

l>0 and 2>0. (3.1)
M M

These conditions ultimately convert into the following conditions:

P>P

M >

R >0and L, + N, >1. (3.2a, b, ¢)

It means that the oscillatory convection exists if at least one of the three conditions given by (3.2) is not
satisfied.

We have extended the study with the help of following theorems and have shown that there are sets of
conditions other than stated in (3.2 a, b, ¢) which are the sufficient conditions for the non-existence of the
oscillatory modes.

Theorem 3.1: If R, >0and L, + N, >1, then (QP,,,7”) law ensures the non-existence of oscillatory

convection.
Proof: Rewrite the expressions for N and O as

2 n> rmM

L*P? L*P?
N=f{fj4f—@mﬁﬂj+euﬂ¥+&h+eEAQ @’LPRP, (L+N,~1)  (33)
and

0=J2Pf[.13{1 il QPM}+J3P(1+ Q)+a2L PR (L, +N, —1)} (3.4)

Let the conditions (3.2b) and (3.2¢) hold, then both N and O become positive if the (QP,,,7>) law which

states that 7° —QP,, > 0 is satisfied irrespective of any conditions on P, and P,,.

r

Thus R, >0, L,+ N, >1 and OP,, <z’ provide another set of conditions, satisfying conditions in (3.1)
ensuring the non-existence of oscillatory convection.

Theorem 3.2: If (QP,,,7’)law fails andP. <P, , R >0, L,+N,>1, then the non-existence of
oscillatory convection is ensured under the condition

2
0 ZU+E)
RM _R
Proof:
Rewrite the expressions for N and O as
L’P*(P,, - P
N=J : ’ﬂ(_z’M ’)(QI—Q)JraZL PRP,*(L,+N, —1) (3.5)
and
2
LPR (L +N, -1
O=FP7 (B, 1)) 0, -0+ Tl A)} 6:6)
where
L*P’+P,)(1+P)x’
0, :( i ) (3.7)

L’P* (B, -F)

119



Jaimala Bishnoi and Arun Kumar/ An Analytical Study of Thermal Instability in a Nanofluid Layer ... ...

7 (1+P)

and = .
“ .k

(3.8)

Since O, > O,, therefore, under the given conditions, the additional condition Q < (J, makes both N and

O positive. Thus if (OP,,, 7) law fails then the sufficient conditions for the non-existence of oscillatory

7

convection are

2
P<P,, R >0,L,+N,>1and Q<L+§).
™M r

Theorem 3.3: If P. <P, and R >0, then the non-existence of oscillatory convection is ensured under the

conditions
2

L+N,>1+Pif S<1 and L,+ N, >1+PS if S >1, where S= Fou

L’P*
Proof: Rewrite the expressions for N and O as
N=J(L’P’+P,)(1+P)+d’LB.P, R [L +N,~1-P] (3.9)
and
J(1+P
O=J’P’a’L,R, Mu{) +N,—(1+PS) |, (3.10)
a LE:'PVRI‘I
2
JLPQ(P, —P
where P =" Z’Q(Z’M ) (3.11)
a PrM Rn
P 2
and §=—2L— . (3.12)

L’F’
It is clear from Egs. (3.9) and (3.10) that for 2. <P,, and R >0, N and O both are positive under the
conditions
L,+N,>1+Pif §S<1 and L,+N,>1+PS if S$>1.
This completes the proof of the theorem.
Theorem 3.4: If P.> P, , R >0 but L, + N, <1, then a sufficient condition for the non-existence

of oscillatory convection is given by

LPR (1-L,—N,) <1

3.13
7*(1+P) (3.13)
Proof: Rewrite the expressions for N and O as
N=J(+B)YL P} +P,})~a’LER P, (1~ L, ~N )+ QL z*JP* (P~ P,,) (3.14)
and
0=J°P*{I(1+P)-d’LPR,(1-L,~N)+0x’J(P.—P,,)} . (3.15)
It is obvious that both N and O are positive if
2 2 2
LPRP “(1-L — LPR (1-L —
1>bigger Of a 3e r2n2rM ( 5 e NA),a e r 3n( e NA) ) (316)
PP +B1+B)  J(+R)
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2
a

As — <—, condition (3.16) can be written as
J

_ _ 2
1 > bigger of LQP’R"4(1 L—N,) > IEM —,1¢ ],
7 (1+F) (L B +F,")

or LeR’Rnfl_Le_NA) <1
7'(1+P)

b

which is a sufficient condition for the non-existence of oscillatory convection under the given conditions

Corollary: If condition (3.13) fails, then the theorem holds under the conditions

Q>Q* if § <1 and Q>SQ* if §>1,

LeI)ar (1 _Le _NA)
7B~ E,)

and § is given by Eq. (3.12) .

where, Q* = (3.17)

4. Conclusion

The work presented by Y i.e. thermal instability in a nanofluid layer with a vertical magnetic field is
reinvestigated. We have obtained a number of sufficient conditions for the non-existence of oscillatory
convection.

Theorem-3.1 proves that even if P. <P, , then (QRM,EZ) law ensures the non-existence of oscillatory

convection. Physically (OP,,, 7°) law holds for large wave numbers or small nanofluid magnetic number.

In other words, small wave numbers and large nanofluid magnetic numbers are more prone to the non-
existence of oscillatory convection. Likewise, Theorem-3.3 establishes that under certain suitable conditions,

the non-existence of oscillatory convection is ensured for P. < P,, without any restrictions on nanofluid

magnetic number. It is also shown that if the condition L, + N, >1 is violated, then again under certain

physically realistic restrictions on different physical parameters there is the possibility of non-existence of
oscillatory convection. We have thus, established that under the violation of conditions given by Y in (3.2)
for the non-existence of oscillatory convection or the existence of non-oscillatory convection, the convection
will not convert to oscillatory.

Nomenclature

R, Rayleigh number

L, nanofluid Lewis number
N, modified diffusivity ratio

P nanofluid Prandtl number

Tl* temperature at upper plate
YI)* temperature at lower plate
O nanofluid magnetic number

dimensionless wave number
concentration Rayleigh number

=

g Xy R

gravitational acceleration (m s™)
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P, nanofluid magnetic Prandtl number
DB Brownian diffusion coefficient (m*s™)
DT thermophoretic diffusion coefficient (m*s™)
k thermal conductivity of the nanofluid (W m™ K™
L dimensional depth between two parallel plates (m)
c specific heat of fluid at constant pressure (J kg™ K™
H, 0* uniform vertical magnetic field component along z-axis
Greek Symbols
a thermal diffusivity (m®s™)
Py density of base fluid (kg m™)
P, density of nanoparticles (kg m™)
M dynamic viscosity of nanofluid (Pa s)
Lo reference nanofluid density (kg m™)
14 kinematic viscosity of nanofluid (m® s™)
¢0* nanoparticle volume fraction at lower plate
(,751* nanoparticle volume fraction at upper plate
M, magnetic permeability of nanofluid (H m™)
n electrical resistivity of nanofluid (kg m’ s*A™)
,5 thermal expansion coefficient of the fluid (K™)
0] dimensionless angular frequency of oscillations
o electrical conductivity of nanofluid (kg"' m™ s* A%
Subscripts
0 lower plate
1 upper plate
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