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In every table it shows that all methods except the Jacobi-Davidson method compute eigenpairs accurately in the given
interval. However, the PNS method is the most efficient one by achieving the target eigenpair with the least computation time.
We also observe that as the size of the matrices increases, the computing time of the SOAR or the Lanczos method increases
at a much faster rate than the PNS method. The Jacobi-Davidson method converges to an eigenpair outside the interval.
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Abstract: Many physical problems in the real world are frequently modeled by ordinary differential equa-
tions (ODEs). Real-life problems are usually non-linear, numerical methods are therefore needed to ap-
proximate their solution. We consider different numerical methods viz., Explicit (Forward) and Implicit
(Backward) Euler method, Classical second-order Runge-Kutta (RK2) method (Heun’s method or Improved
Euler method), Third-order Runge-Kutta (RK3) method, Fourth-order Runge-Kutta (RK4) method, and
Butcher fifth-order Runge-Kutta (BRK5) method which are popular classical iteration methods of approx-
imating solutions of ODEs. Moreover, an intuitive explanation of those methods is also be presented,
comparing among them and also with exact solutions with necessary visualizations. Finally, we analyze the
error and accuracy of these methods with the help of suitable mathematical programming software.

Keywords: Ordinary Differential Equations, Numerical Methods, Error Function and Error Analysis.
2020 Mathematics Subject Classification: 65L06, 65L10

1 Introduction

Doing mathematics and connecting mathematics with real life are two different things. When it comes to
connecting, it is challenging even to great Mathematicians [8]. Differential equations involving its derivative
of only one independent variable are called ordinary differential equations (ODEs) [2, 4, 17]. Differential
equations are the most appropriate tool for analyzing the problem of many mathematical modelings mainly
within the area of engineering, physics, aeronautics, medicine, environmental science, astronomy, chemistry,
biology, and many other applied field [2, 17, 21, 22]. Most of the mathematical modeling problem was found
to be non-linear [14, 20]. In the case of a non-linear equation it is very difficult or most of the time impossible
to find the analytical solution of that equation [2, 5, 18]. The motion of the simple pendulum, Planetary
motion under gravity, etc. are a typical example of second-order differential equation that is impossible to
solve analytically [8, 17]. For such types of equations, we use the alternative approach to approximate the
analytical solution. One such method is a numerical method [9, 13].

To approximate the solution of such types of the non-linear differential equation we will define the
necessary numerical methods like, Explicit (Forward) and Implicit (Backward) Euler method, Classical
second-order Runge-Kutta (RK2) method (Heun’s method or Improved Euler method), third-order Runge-
Kutta (RK3) method, fourth-order Runge-Kutta (RK4) method and Butcher fifth-order Runge-Kutta
(BRK5) method which are popular iteration methods of approximating solutions of ODEs [7, 14, 26]. In
this work, we compare the various numerical methods with the necessary visualization.

Kammruzzman and Nath [16] solved the initial value problem by considering three classical numerical
solutions methods viz., Euler’s method, modified Euler’s method, and Runge Kutta method. Considering
relative error as a difference of the approximate solution and analytic solution they observed only the
relative error was nominal for the fourth-order Runge-Kutta (RK4) method. They also observed the rate
of convergence of the Euler improved and modified Euler method in order of O(h) and that of RK4 is
O(h4). Their finding suggested that the RK4 method was more accurate and converged faster to the exact
solution than other methods. Kafle et al. [13] studied the thermal diffusivity of heat equation of non-
linear differential equation types by using the finite difference method. Aggarwal and Singh [1] studied
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the numerical solution of improper integrals containing error functions. These improper integral appears
in the integral transformation of advanced non-linear differential equations such as radioactive decay, heat
conduction problem, electrical circuit problem, and population growth problem. Rabiei and Ismail [23]
found that the improved Runge-Kutta (IRK) methods are two-step in nature and require a lower number
of stages per step compared to the classical Runge-Kutta methods and derive the fifth-order Improved
Runge-Kutta method (IRK5) with only five stages. Improve Runge-Kutta (IRK) methods had the lower
number of function evaluations per step. The stability region of the method is presented and numerical
examples had given to illustrate the computational efficiency and accuracy of IRK5 compared to the RK5
method. Ahamad and Charan [2] in order to solve the initial value problem for fourth-order ODEs presented
5th order Runge-Kutta (RK5) method.

Hossain et al. [9] considered a numerical example to solve second order IVP for ODE using fourth-
order Runge Kutta (RK4) method and Butchers fifth-order Runge-Kutta (BRK5) method. They reduced
the step size as much as possible to compare the approximate solution with the exact solution. They
proposed that Butcher’s fifth-order Runge-Kutta method was more appropriate and proficient for finding
the numerical solution of IVP than the fourth-order Runge Kutta method. Ismail [12] derived a new sixth-
order Runge-Kutta method, depend in on the pre-existing fifth-order Runge Kutta method. This method
preluded a new five-function evaluation technique other than the six or seven function evaluation methods
in the standard model. This method was more efficient than the standard Runge-Kutta method. Kafle et
al. [14] compare the different iterative methods to analyze the damping conditions of series RLC circuits
under the transient situations with DC source and they found the best iterative (BRK5) method to solve
the second-order ODE of series RLC circuit. They observed the three damping conditions by using the
BRK5 method. Kafle et al. [15] observed the application of iterative methods to analyze the different
damping conditions of parallel RLC circuits. They found the Butcher fifth-order Runge-Kutta method is
the best iterative method to solve the second-order ODE of parallel RLC circuit.

2 Numerical Methods and Simulated Results

To solve the initial value problem (IVP) for ordinary differential equations (ODE), we discuss different
iterative methods here. We initiate with Euler’s method, the simplest method, at the beginning. We
exploit the solution of the proposed non-linear differential equation using explicit and implicit Euler method,
classical second order Runge-Kutta (RK2) method, third-order Runge-Kutta (RK3) method, fourth-order
Runge-Kutta (RK4) method, and Butcher’s fifth-order Runge-Kutta (BRK5) method [6, 7]. Also, we
compare the above-mentioned numerical methods with the necessary visualization. For the comparison of
numerical methods we take the IVP [6]:

y′(t) = ty + t2, y(0) = 1 (1)

on the interval 0 ≤ t ≤ 1 and with the exact solution.

y(t) =

√
π

2
et

2/2 erf(
t√
2
) + et

2/2 − t (2)

The error function (Gauss error function), often denoted by erf, is a complex function of a complex variable
defined as [1].

erf(x) =
2√
π

∫ x

0

e−t2dt (3)

2.1 Euler’s (Explicit or Forward) Method

Euler put forward this method for initial value problems (IVP) at 1768. Euler’s method is a numerical
method that is used to approximate the solutions to explicit first-order equations [4, 25]. It is based
on making successive linear approximations to the solution. Consider an initial value problem (IVP) for
smooth function f(t, y(t)).

y′(t) = f(t, y(t)), y(t0) = y0 (4)
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method. Ahamad and Charan [2] in order to solve the initial value problem for fourth-order ODEs presented
5th order Runge-Kutta (RK5) method.

Hossain et al. [9] considered a numerical example to solve second order IVP for ODE using fourth-
order Runge Kutta (RK4) method and Butchers fifth-order Runge-Kutta (BRK5) method. They reduced
the step size as much as possible to compare the approximate solution with the exact solution. They
proposed that Butcher’s fifth-order Runge-Kutta method was more appropriate and proficient for finding
the numerical solution of IVP than the fourth-order Runge Kutta method. Ismail [12] derived a new sixth-
order Runge-Kutta method, depend in on the pre-existing fifth-order Runge Kutta method. This method
preluded a new five-function evaluation technique other than the six or seven function evaluation methods
in the standard model. This method was more efficient than the standard Runge-Kutta method. Kafle et
al. [14] compare the different iterative methods to analyze the damping conditions of series RLC circuits
under the transient situations with DC source and they found the best iterative (BRK5) method to solve
the second-order ODE of series RLC circuit. They observed the three damping conditions by using the
BRK5 method. Kafle et al. [15] observed the application of iterative methods to analyze the different
damping conditions of parallel RLC circuits. They found the Butcher fifth-order Runge-Kutta method is
the best iterative method to solve the second-order ODE of parallel RLC circuit.

2 Numerical Methods and Simulated Results

To solve the initial value problem (IVP) for ordinary differential equations (ODE), we discuss different
iterative methods here. We initiate with Euler’s method, the simplest method, at the beginning. We
exploit the solution of the proposed non-linear differential equation using explicit and implicit Euler method,
classical second order Runge-Kutta (RK2) method, third-order Runge-Kutta (RK3) method, fourth-order
Runge-Kutta (RK4) method, and Butcher’s fifth-order Runge-Kutta (BRK5) method [6, 7]. Also, we
compare the above-mentioned numerical methods with the necessary visualization. For the comparison of
numerical methods we take the IVP [6]:
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on the interval 0 ≤ t ≤ 1 and with the exact solution.
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The error function (Gauss error function), often denoted by erf, is a complex function of a complex variable
defined as [1].
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∫ x

0

e−t2dt (3)

2.1 Euler’s (Explicit or Forward) Method

Euler put forward this method for initial value problems (IVP) at 1768. Euler’s method is a numerical
method that is used to approximate the solutions to explicit first-order equations [4, 25]. It is based
on making successive linear approximations to the solution. Consider an initial value problem (IVP) for
smooth function f(t, y(t)).

y′(t) = f(t, y(t)), y(t0) = y0 (4)
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found that the improved Runge-Kutta (IRK) methods are two-step in nature and require a lower number
of stages per step compared to the classical Runge-Kutta methods and derive the fifth-order Improved
Runge-Kutta method (IRK5) with only five stages. Improve Runge-Kutta (IRK) methods had the lower
number of function evaluations per step. The stability region of the method is presented and numerical
examples had given to illustrate the computational efficiency and accuracy of IRK5 compared to the RK5
method. Ahamad and Charan [2] in order to solve the initial value problem for fourth-order ODEs presented
5th order Runge-Kutta (RK5) method.

Hossain et al. [9] considered a numerical example to solve second order IVP for ODE using fourth-
order Runge Kutta (RK4) method and Butchers fifth-order Runge-Kutta (BRK5) method. They reduced
the step size as much as possible to compare the approximate solution with the exact solution. They
proposed that Butcher’s fifth-order Runge-Kutta method was more appropriate and proficient for finding
the numerical solution of IVP than the fourth-order Runge Kutta method. Ismail [12] derived a new sixth-
order Runge-Kutta method, depend in on the pre-existing fifth-order Runge Kutta method. This method
preluded a new five-function evaluation technique other than the six or seven function evaluation methods
in the standard model. This method was more efficient than the standard Runge-Kutta method. Kafle et
al. [14] compare the different iterative methods to analyze the damping conditions of series RLC circuits
under the transient situations with DC source and they found the best iterative (BRK5) method to solve
the second-order ODE of series RLC circuit. They observed the three damping conditions by using the
BRK5 method. Kafle et al. [15] observed the application of iterative methods to analyze the different
damping conditions of parallel RLC circuits. They found the Butcher fifth-order Runge-Kutta method is
the best iterative method to solve the second-order ODE of parallel RLC circuit.

2 Numerical Methods and Simulated Results

To solve the initial value problem (IVP) for ordinary differential equations (ODE), we discuss different
iterative methods here. We initiate with Euler’s method, the simplest method, at the beginning. We
exploit the solution of the proposed non-linear differential equation using explicit and implicit Euler method,
classical second order Runge-Kutta (RK2) method, third-order Runge-Kutta (RK3) method, fourth-order
Runge-Kutta (RK4) method, and Butcher’s fifth-order Runge-Kutta (BRK5) method [6, 7]. Also, we
compare the above-mentioned numerical methods with the necessary visualization. For the comparison of
numerical methods we take the IVP [6]:
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on the interval 0 ≤ t ≤ 1 and with the exact solution.
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The error function (Gauss error function), often denoted by erf, is a complex function of a complex variable
defined as [1].

erf(x) =
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π

∫ x

0

e−t2dt (3)

2.1 Euler’s (Explicit or Forward) Method

Euler put forward this method for initial value problems (IVP) at 1768. Euler’s method is a numerical
method that is used to approximate the solutions to explicit first-order equations [4, 25]. It is based
on making successive linear approximations to the solution. Consider an initial value problem (IVP) for
smooth function f(t, y(t)).

y′(t) = f(t, y(t)), y(t0) = y0 (4)
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Let, yn be the position at time tn with step size h. By the definition of the derivative, we have

dy

dt
= lim

h→0

y(t+ h)− y(t)

h
⇒ dy

dt
≈ y(t+ h)− y(t)

h

When h → 0 , from Fig. 1, it is clear that, at that time the slope at that point or the tangential
approximation lies completely in the curve. Slope at the point (tn, yn) is

yn+1 − yn
h

≈ dy

dt
= f(tn, yn)

⇒ yn+1 = yn + hf(tn, yn). (5)

This formula is called Forward Euler’s or Explicit Euler’s Method [16].
The simulated result for the IVP (1) and exact solution given by equation (2) by using the Forward

Euler method is shown below.

Figure 2: Explicit Euler with exact.

tn Explicit Euler Method
Approximate solution Exact solution Error

0.0 0.000000 0.000000 0.000000
0.1 1.000000 1.005347 0.005347
0.2 1.011000 1.022889 0.001189
0.3 1.035220 1.055192 0.019972
0.4 1.075277 1.105319 0.030042
0.5 1.134288 1.176975 0.042687
0.6 1.216002 1.274679 0.058677
0.7 1.324962 1.403988 0.079026
0.8 1.466710 1.571788 0.105078
0.9 1.648046 1.786666 0.138620
1.0 1.877370 2.059407 0.182037

Table 1: Explicit Euler with error.

As we understand about the numerical methods, if the step size h is smaller then the numerical method
gives the more accurate result i.e. less error. Here, the Forward Euler method is more accurate if the step
size h is smaller. Table 1 below shows the result of the Forward Euler method with the exact solution and
approximate solutions for the step size h = 0.1. The last column in Table 1 contains the data of errors
which is the modulus of difference between the exact solution and approximate solutions. From Fig. 2, we

Figure 1: Visualization of Euler method Left: Explicit and Right: Implicit [25].
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observed that the approximate solution curve represented by the red line is approaching the exact solution
curve represented by the green line.

2.2 Euler’s (Implicit or Backward) Method

The backward Euler method is almost similar to the forward Euler approach, backward Euler method uses
the next point tn+1 as the point for calculating the derivative [19, 26]. From Fig. 1, slope at the point
(tn+1, yn+1) is given by

yn+1 − yn
h

≈ dy

dt
= f(tn+1, yn+1)

⇒ yn+1 = yn + hf(tn+1, yn+1). (6)

This procedure is then iterated until tn+1 converges onto a solution. Which is called Implicit (Backward)
Euler Formula [25].

The simulated result for the IVP (1) and exact solution given by equation (2) by using the Backward
Euler method is shown below:

Figure 3: Implicit Euler with exact.

tn Implicit Euler Method
Approximate solution Exact solution Error

0.0 0.000000 0.000000 0.000000
0.1 1.011000 1.005347 0.005653
0.2 1.035442 1.022889 0.012553
0.3 1.076247 1.055192 0.021055
0.4 1.136948 1.105319 0.031629
0.5 1.221869 1.176975 0.044894
0.6 1.336347 1.274679 0.061668
0.7 1.487024 1.403988 0.083036
0.8 1.682233 1.571788 0.110445
0.9 1.932506 1.786666 0.145840
1.0 2.251250 2.059407 0.191843

Table 2: Implicit Euler with error.

Our understanding of any numerical method is that if the step size h is sufficiently reduced then the
method gives more accurate results and lesser error. Here, the Implicit Euler method is more accurate if
the step size h is smaller. Table 2 below shows the result of the Implicit Euler method with the exact
solution and approximate solutions for the step size h = 0.1. The last column in Table 2 contains the
data of errors which is the modulus of difference between the exact solution and approximate solutions.
From Fig. 3, we observed that the approximate solution curve represented by the red line is approaching
the exact solution curve represented by the green line. In this method, the approximate solution curve is
converging faster towards the exact solution curve than the Explicit Euler method.

2.3 Classical Second-Order Runge-Kutta Method

The Runge-Kutta 2nd order method is a numerical technique used to solve an ordinary differential equation
of the form (4). Only first-order ordinary differential equations can be solved by using the Runge-Kutta
2nd order method [3]. It is obvious from above Fig 4 that the our error will get minimized if we take an
average of the slope at the point (tn, yn) represented by the red line and slope at the point (tn+1, yn+1)
represented by the yellow line. Let k1 be the slope at (tn, yn) i.e., k1 = f(tn, yn) and k2 be the slope at the
point (tn+1, yn+1) i.e., k2 = f(tn+1, yn+1) = f(tn +h, yn +hk1). Thus, the average of k1 and k2 is given by

k3 =
k1 + k2

2
=

1

2
[f(tn, yn) + f(tn+1, yn+1)]

Therefore, we have
⇒ yn+1 = yn + hk3
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observed that the approximate solution curve represented by the red line is approaching the exact solution
curve represented by the green line.

2.2 Euler’s (Implicit or Backward) Method

The backward Euler method is almost similar to the forward Euler approach, backward Euler method uses
the next point tn+1 as the point for calculating the derivative [19, 26]. From Fig. 1, slope at the point
(tn+1, yn+1) is given by

yn+1 − yn
h

≈ dy

dt
= f(tn+1, yn+1)

⇒ yn+1 = yn + hf(tn+1, yn+1). (6)

This procedure is then iterated until tn+1 converges onto a solution. Which is called Implicit (Backward)
Euler Formula [25].

The simulated result for the IVP (1) and exact solution given by equation (2) by using the Backward
Euler method is shown below:

Figure 3: Implicit Euler with exact.

tn Implicit Euler Method
Approximate solution Exact solution Error

0.0 0.000000 0.000000 0.000000
0.1 1.011000 1.005347 0.005653
0.2 1.035442 1.022889 0.012553
0.3 1.076247 1.055192 0.021055
0.4 1.136948 1.105319 0.031629
0.5 1.221869 1.176975 0.044894
0.6 1.336347 1.274679 0.061668
0.7 1.487024 1.403988 0.083036
0.8 1.682233 1.571788 0.110445
0.9 1.932506 1.786666 0.145840
1.0 2.251250 2.059407 0.191843

Table 2: Implicit Euler with error.

Our understanding of any numerical method is that if the step size h is sufficiently reduced then the
method gives more accurate results and lesser error. Here, the Implicit Euler method is more accurate if
the step size h is smaller. Table 2 below shows the result of the Implicit Euler method with the exact
solution and approximate solutions for the step size h = 0.1. The last column in Table 2 contains the
data of errors which is the modulus of difference between the exact solution and approximate solutions.
From Fig. 3, we observed that the approximate solution curve represented by the red line is approaching
the exact solution curve represented by the green line. In this method, the approximate solution curve is
converging faster towards the exact solution curve than the Explicit Euler method.

2.3 Classical Second-Order Runge-Kutta Method

The Runge-Kutta 2nd order method is a numerical technique used to solve an ordinary differential equation
of the form (4). Only first-order ordinary differential equations can be solved by using the Runge-Kutta
2nd order method [3]. It is obvious from above Fig 4 that the our error will get minimized if we take an
average of the slope at the point (tn, yn) represented by the red line and slope at the point (tn+1, yn+1)
represented by the yellow line. Let k1 be the slope at (tn, yn) i.e., k1 = f(tn, yn) and k2 be the slope at the
point (tn+1, yn+1) i.e., k2 = f(tn+1, yn+1) = f(tn +h, yn +hk1). Thus, the average of k1 and k2 is given by

k3 =
k1 + k2

2
=

1

2
[f(tn, yn) + f(tn+1, yn+1)]

Therefore, we have
⇒ yn+1 = yn + hk3
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observed that the approximate solution curve represented by the red line is approaching the exact solution
curve represented by the green line.

2.2 Euler’s (Implicit or Backward) Method

The backward Euler method is almost similar to the forward Euler approach, backward Euler method uses
the next point tn+1 as the point for calculating the derivative [19, 26]. From Fig. 1, slope at the point
(tn+1, yn+1) is given by

yn+1 − yn
h

≈ dy

dt
= f(tn+1, yn+1)

⇒ yn+1 = yn + hf(tn+1, yn+1). (6)

This procedure is then iterated until tn+1 converges onto a solution. Which is called Implicit (Backward)
Euler Formula [25].

The simulated result for the IVP (1) and exact solution given by equation (2) by using the Backward
Euler method is shown below:

Figure 3: Implicit Euler with exact.

tn Implicit Euler Method
Approximate solution Exact solution Error

0.0 0.000000 0.000000 0.000000
0.1 1.011000 1.005347 0.005653
0.2 1.035442 1.022889 0.012553
0.3 1.076247 1.055192 0.021055
0.4 1.136948 1.105319 0.031629
0.5 1.221869 1.176975 0.044894
0.6 1.336347 1.274679 0.061668
0.7 1.487024 1.403988 0.083036
0.8 1.682233 1.571788 0.110445
0.9 1.932506 1.786666 0.145840
1.0 2.251250 2.059407 0.191843

Table 2: Implicit Euler with error.

Our understanding of any numerical method is that if the step size h is sufficiently reduced then the
method gives more accurate results and lesser error. Here, the Implicit Euler method is more accurate if
the step size h is smaller. Table 2 below shows the result of the Implicit Euler method with the exact
solution and approximate solutions for the step size h = 0.1. The last column in Table 2 contains the
data of errors which is the modulus of difference between the exact solution and approximate solutions.
From Fig. 3, we observed that the approximate solution curve represented by the red line is approaching
the exact solution curve represented by the green line. In this method, the approximate solution curve is
converging faster towards the exact solution curve than the Explicit Euler method.

2.3 Classical Second-Order Runge-Kutta Method

The Runge-Kutta 2nd order method is a numerical technique used to solve an ordinary differential equation
of the form (4). Only first-order ordinary differential equations can be solved by using the Runge-Kutta
2nd order method [3]. It is obvious from above Fig 4 that the our error will get minimized if we take an
average of the slope at the point (tn, yn) represented by the red line and slope at the point (tn+1, yn+1)
represented by the yellow line. Let k1 be the slope at (tn, yn) i.e., k1 = f(tn, yn) and k2 be the slope at the
point (tn+1, yn+1) i.e., k2 = f(tn+1, yn+1) = f(tn +h, yn +hk1). Thus, the average of k1 and k2 is given by

k3 =
k1 + k2

2
=

1

2
[f(tn, yn) + f(tn+1, yn+1)]

Therefore, we have
⇒ yn+1 = yn + hk3
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⇒ yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn+1)]

⇒ yn+1 = yn +
h

2
[f(tn, yn) + f(tn + h, yn + hk1)]. (7)

This is the Classical second order Runge-Kutta method. It is also known as Heun’s method or the Improved
Euler method [12, 26].

The simulated result for the IVP (1) and exact solution given by equation (2) by using the Classical
Second Order Runge-Kutta (Heun’s or RK2) method is shown below.

Figure 5: Heun’s (RK2) with exact.

tn RK2 Method
Approximate solution Exact solution Error

0.0 0.000000 0.000000 0.000000
0.1 1.005500 1.005347 0.000153
0.2 1.023193 1.022889 0.000304
0.3 1.055640 1.055192 0.000448
0.4 1.105901 1.105319 0.000258
0.5 1.177672 1.176975 0.000697
0.6 1.275461 1.274679 0.000782
0.7 1.404804 1.403988 0.000816
0.8 1.572558 1.571788 0.000770
0.9 1.787266 1.786666 0.000600
1.0 2.059649 2.059407 0.000242

Table 3: RK2 with error.

Table 3 shows the result of RK2 method with exact solution and approximate solutions for the step size
h = 0.1. The last column in Table 3 contains the data of errors which is the modulus of difference between
the exact solution and approximate solutions. From Fig. 5, we observed that the approximate solution
curve represented by the red line is approaching the exact solution curve represented by the green line. In
this method, the approximate solution curve is converging faster towards the exact solution curve than the
Explicit and Implicit Euler method.

2.4 Third Order Runge-Kutta (RK3) Method

The Third-order Runge-Kutta method (RK3) is widely used for solving initial value problems (IVP) for
ordinary differential equations (ODE). The general formula for the Runge-Kutta third-order (RK3) method

Figure 4: Visualization of Heun’s method [25].
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is shown below [12, 24].

yn+1 = yn + h

[
k1
6

+
2k2
3

+
k3
6

]
(8)

ooooooooowhere k1 = f(tn, yn), k2 = f

(
tn +

h

2
, yn +

h

2
k1

)
, k3 = f(tn + h, yn − hk1 + 2hk2).

The simulated result for the IVP (1) and exact solution given by equation (2) by using the Third Order
Runge-Kutta (RK3) method is shown below.

Figure 6: RK3 method with exact.

tn RK3 Method
Approximate solution Exact solution Error

0.0 0.000000 0.000000 0.000000
0.1 1.005351 1.005347 0.000004
0.2 1.022899 1.022889 0.000000
0.3 1.055208 1.055192 0.000016
0.4 1.105342 1.105319 0.000023
0.5 1.177006 1.176975 0.000031
0.6 1.274719 1.274679 0.000040
0.7 1.404039 1.403988 0.000051
0.8 1.571848 1.571788 0.000060
0.9 1.786736 1.786666 0.000070
1.0 2.059486 2.059407 0.000079

Table 4: RK3 with error.

Table 4 shows the result of the RK3 method with the exact solution and approximate solutions for the step
size h = 0.1. The last column in Table 4 contains the data of errors which is the modulus of difference
between the exact solution and approximate solutions. From Fig. 6, we observed that the approximate
solution curve represented by the red line is approaching the exact solution curve is represented by the
green line. In this method, the approximate solution curve is converging faster towards the exact solution
curve than the Explicit Euler method Implicit Euler method and RK2 method. The error is also less than
that of other mentioned methods.

2.5 Fourth Order Runge-Kutta (RK4) Method

This method was devised by two German mathematicians, Runge about 1894 A.D., and extended by Kutta
a few years later. The Runge-Kutta method is most familiar because it is pretty accurate, steady, and simple
to program [26]. This method is notable by their order in the logic that they concur with Taylor’s series
solution up to terms of hr where r is the order of the method. The fourth-order Runge-Kutta method
(RK4) is broadly used for solving initial value problems (IVP) for ordinary differential equation (ODE)
[16]. The general formula for the fourth-order Runge-Kutta method is shown below [7, 12].

yn+1 = yn + h[
k1
6

+
k2
3

+
k3
3

+
k4
6
]ooooooooowith (9)

k1 = f(tn, yn), k2 = f(tn +
h

2
, yn +

h

2
k1), k3 = f(tn +

h

2
, yn +

h

2
k2), k4 = f(tn + h, yn + hk3).

The simulated result for the IVP ( 1) and exact solution given by equation ( 2) by using the Fourth Order
Runge-Kutta (RK4) method are shown below.

Table 5 shows the result of the RK4 method with the exact solution and approximate solutions for the
step size h = 0.1. The last column in Table 5 contains the data of errors which is the modulus of difference
between the exact solution and approximate solutions. From Fig. 8, we observed that the approximate
solution curve represented by the red line is approaching the exact solution curve represented by the green
line. In this method, the approximate solution curve is converging faster towards the exact solution curve
than the Explicit Euler method Implicit Euler method, RK2 method, and RK3 method. The error is also
less than that of the other above-mentioned methods.
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Figure 7: Visualization of RK4 method [7, 26].

Figure 8: RK4 method with exact.

tn RK4 Method
Approximate solution Exact solution Error

0.0 0.000000 0.000000 0.000000
0.1 1.005346 1.005347 0.000001
0.2 1.022889 1.022889 0.000000
0.3 1.055192 1.055192 0.000000
0.4 1.105319 1.105319 0.000000
0.5 1.176975 1.176975 0.000000
0.6 1.274679 1.274679 0.000000
0.7 1.403988 1.403988 0.000000
0.8 1.571787 1.571788 0.000001
0.9 1.786665 1.786666 0.000001
1.0 2.059407 2.059407 0.000000

Table 5: RK4 with error.

2.6 Butchers Fifth Order Runge-Kutta (BRK5) Method

This method is distinguished by their order in the sense that agrees with Taylor’s series solution up to
terms of hr where r is the order of the method [7, 13]. In this method, we consider the equation (4).

yn+1 = yn +
h

90
(7k1 + 32k2 + 12k4 + 32k5 + 7k6) (10)

ooooooooowhere tn+1 = tn + h, k1 = f(tn, yn), k2 = f

(
tn +

h

4
, yn +

h

4
k1

)
,
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is shown below [12, 24].

yn+1 = yn + h
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k1
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3

+
k3
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]
(8)

ooooooooowhere k1 = f(tn, yn), k2 = f

(
tn +

h

2
, yn +

h

2
k1

)
, k3 = f(tn + h, yn − hk1 + 2hk2).

The simulated result for the IVP (1) and exact solution given by equation (2) by using the Third Order
Runge-Kutta (RK3) method is shown below.

Figure 6: RK3 method with exact.

tn RK3 Method
Approximate solution Exact solution Error

0.0 0.000000 0.000000 0.000000
0.1 1.005351 1.005347 0.000004
0.2 1.022899 1.022889 0.000000
0.3 1.055208 1.055192 0.000016
0.4 1.105342 1.105319 0.000023
0.5 1.177006 1.176975 0.000031
0.6 1.274719 1.274679 0.000040
0.7 1.404039 1.403988 0.000051
0.8 1.571848 1.571788 0.000060
0.9 1.786736 1.786666 0.000070
1.0 2.059486 2.059407 0.000079

Table 4: RK3 with error.

Table 4 shows the result of the RK3 method with the exact solution and approximate solutions for the step
size h = 0.1. The last column in Table 4 contains the data of errors which is the modulus of difference
between the exact solution and approximate solutions. From Fig. 6, we observed that the approximate
solution curve represented by the red line is approaching the exact solution curve is represented by the
green line. In this method, the approximate solution curve is converging faster towards the exact solution
curve than the Explicit Euler method Implicit Euler method and RK2 method. The error is also less than
that of other mentioned methods.

2.5 Fourth Order Runge-Kutta (RK4) Method

This method was devised by two German mathematicians, Runge about 1894 A.D., and extended by Kutta
a few years later. The Runge-Kutta method is most familiar because it is pretty accurate, steady, and simple
to program [26]. This method is notable by their order in the logic that they concur with Taylor’s series
solution up to terms of hr where r is the order of the method. The fourth-order Runge-Kutta method
(RK4) is broadly used for solving initial value problems (IVP) for ordinary differential equation (ODE)
[16]. The general formula for the fourth-order Runge-Kutta method is shown below [7, 12].

yn+1 = yn + h[
k1
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+
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+
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3

+
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]ooooooooowith (9)
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2
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2
k2), k4 = f(tn + h, yn + hk3).

The simulated result for the IVP ( 1) and exact solution given by equation ( 2) by using the Fourth Order
Runge-Kutta (RK4) method are shown below.

Table 5 shows the result of the RK4 method with the exact solution and approximate solutions for the
step size h = 0.1. The last column in Table 5 contains the data of errors which is the modulus of difference
between the exact solution and approximate solutions. From Fig. 8, we observed that the approximate
solution curve represented by the red line is approaching the exact solution curve represented by the green
line. In this method, the approximate solution curve is converging faster towards the exact solution curve
than the Explicit Euler method Implicit Euler method, RK2 method, and RK3 method. The error is also
less than that of the other above-mentioned methods.
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Figure 7: Visualization of RK4 method [7, 26].

Figure 8: RK4 method with exact.

tn RK4 Method
Approximate solution Exact solution Error

0.0 0.000000 0.000000 0.000000
0.1 1.005346 1.005347 0.000001
0.2 1.022889 1.022889 0.000000
0.3 1.055192 1.055192 0.000000
0.4 1.105319 1.105319 0.000000
0.5 1.176975 1.176975 0.000000
0.6 1.274679 1.274679 0.000000
0.7 1.403988 1.403988 0.000000
0.8 1.571787 1.571788 0.000001
0.9 1.786665 1.786666 0.000001
1.0 2.059407 2.059407 0.000000

Table 5: RK4 with error.

2.6 Butchers Fifth Order Runge-Kutta (BRK5) Method

This method is distinguished by their order in the sense that agrees with Taylor’s series solution up to
terms of hr where r is the order of the method [7, 13]. In this method, we consider the equation (4).
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is shown below [12, 24].
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(8)
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)
, k3 = f(tn + h, yn − hk1 + 2hk2).

The simulated result for the IVP (1) and exact solution given by equation (2) by using the Third Order
Runge-Kutta (RK3) method is shown below.

Figure 6: RK3 method with exact.

tn RK3 Method
Approximate solution Exact solution Error

0.0 0.000000 0.000000 0.000000
0.1 1.005351 1.005347 0.000004
0.2 1.022899 1.022889 0.000000
0.3 1.055208 1.055192 0.000016
0.4 1.105342 1.105319 0.000023
0.5 1.177006 1.176975 0.000031
0.6 1.274719 1.274679 0.000040
0.7 1.404039 1.403988 0.000051
0.8 1.571848 1.571788 0.000060
0.9 1.786736 1.786666 0.000070
1.0 2.059486 2.059407 0.000079

Table 4: RK3 with error.

Table 4 shows the result of the RK3 method with the exact solution and approximate solutions for the step
size h = 0.1. The last column in Table 4 contains the data of errors which is the modulus of difference
between the exact solution and approximate solutions. From Fig. 6, we observed that the approximate
solution curve represented by the red line is approaching the exact solution curve is represented by the
green line. In this method, the approximate solution curve is converging faster towards the exact solution
curve than the Explicit Euler method Implicit Euler method and RK2 method. The error is also less than
that of other mentioned methods.

2.5 Fourth Order Runge-Kutta (RK4) Method

This method was devised by two German mathematicians, Runge about 1894 A.D., and extended by Kutta
a few years later. The Runge-Kutta method is most familiar because it is pretty accurate, steady, and simple
to program [26]. This method is notable by their order in the logic that they concur with Taylor’s series
solution up to terms of hr where r is the order of the method. The fourth-order Runge-Kutta method
(RK4) is broadly used for solving initial value problems (IVP) for ordinary differential equation (ODE)
[16]. The general formula for the fourth-order Runge-Kutta method is shown below [7, 12].
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k2), k4 = f(tn + h, yn + hk3).

The simulated result for the IVP ( 1) and exact solution given by equation ( 2) by using the Fourth Order
Runge-Kutta (RK4) method are shown below.

Table 5 shows the result of the RK4 method with the exact solution and approximate solutions for the
step size h = 0.1. The last column in Table 5 contains the data of errors which is the modulus of difference
between the exact solution and approximate solutions. From Fig. 8, we observed that the approximate
solution curve represented by the red line is approaching the exact solution curve represented by the green
line. In this method, the approximate solution curve is converging faster towards the exact solution curve
than the Explicit Euler method Implicit Euler method, RK2 method, and RK3 method. The error is also
less than that of the other above-mentioned methods.
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Figure 7: Visualization of RK4 method [7, 26].

Figure 8: RK4 method with exact.

tn RK4 Method
Approximate solution Exact solution Error

0.0 0.000000 0.000000 0.000000
0.1 1.005346 1.005347 0.000001
0.2 1.022889 1.022889 0.000000
0.3 1.055192 1.055192 0.000000
0.4 1.105319 1.105319 0.000000
0.5 1.176975 1.176975 0.000000
0.6 1.274679 1.274679 0.000000
0.7 1.403988 1.403988 0.000000
0.8 1.571787 1.571788 0.000001
0.9 1.786665 1.786666 0.000001
1.0 2.059407 2.059407 0.000000

Table 5: RK4 with error.

2.6 Butchers Fifth Order Runge-Kutta (BRK5) Method

This method is distinguished by their order in the sense that agrees with Taylor’s series solution up to
terms of hr where r is the order of the method [7, 13]. In this method, we consider the equation (4).

yn+1 = yn +
h

90
(7k1 + 32k2 + 12k4 + 32k5 + 7k6) (10)

ooooooooowhere tn+1 = tn + h, k1 = f(tn, yn), k2 = f

(
tn +

h

4
, yn +

h

4
k1

)
,

85



 86

Jeevan Kafle, Bhogendra K.Thakur ,& Grishma Acharya  /  Formulative Visualization of Numerical ……. 

86

Jeevan Kafle, Bhogendra K. Thakur, & Grishma Acharya/ Formulative Visualization of...

k3 = f

(
tn +

h

4
, yn +

1

8
hk1 +

1

8
hk2

)
, k4 = f

(
tn +

h

2
, yn − 1

2
hk2 + hk3

)
,

k5 = f

(
tn +

3h

4
, yn +

3

16
hk1 +

9

16
hk4

)
,

k6 =

(
tn + h, yn − 3

7
hk1 +

2

7
hk2 +

12

7
hk3 −

12

7
hk4 +

8

7
hk5

)
.

The simulated result for the IVP ( 1) and exact solution given by equation ( 2) by using the Butcher Fifth
Order Runge-Kutta (BRK5) method is shown below.

Figure 9: BRK5 method with exact.

tn BRK5 Method
Approximate solution Exact solution Error

0.0 0.000000 0.000000 0.000000
0.1 1.005347 1.005347 0.000000
0.2 1.022889 1.022889 0.000000
0.3 1.055192 1.055192 0.000000
0.4 1.105319 1.105319 0.000000
0.5 1.176975 1.176975 0.000000
0.6 1.274679 1.274679 0.000000
0.7 1.403988 1.403988 0.000000
0.8 1.571788 1.571788 0.000000
0.9 1.786666 1.786666 0.000000
1.0 2.059407 2.059407 0.000000

Table 6: BRK5 with error.

Table 6 shows the result of the BRK5 method with the exact solution and approximate solutions for the
step size h = 0.1. The last column in Table 6 contains the data of errors which is the modulus of difference
between the exact solution and approximate solutions. From Fig. 9, we observed that the approximate
solution curve represented by the red line is approaching the exact solution curve represented by the green
line. In this method, the approximate solution curve is converging faster towards the exact solution curve
than the Explicit Euler method Implicit Euler method, RK2 method, RK3 method, and RK4 method. The
error is also less than that of the other above-mentioned methods.

2.7 Comparison of numerical methods

Figure 10: Comparison of Euler, RK2, RK3, RK4 and BRK5 method with exact solution.
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The simulated result for the IVP ( 1) and exact solution given by equation ( 2) by using the Butcher Fifth
Order Runge-Kutta (BRK5) method is shown below.

Figure 9: BRK5 method with exact.

tn BRK5 Method
Approximate solution Exact solution Error

0.0 0.000000 0.000000 0.000000
0.1 1.005347 1.005347 0.000000
0.2 1.022889 1.022889 0.000000
0.3 1.055192 1.055192 0.000000
0.4 1.105319 1.105319 0.000000
0.5 1.176975 1.176975 0.000000
0.6 1.274679 1.274679 0.000000
0.7 1.403988 1.403988 0.000000
0.8 1.571788 1.571788 0.000000
0.9 1.786666 1.786666 0.000000
1.0 2.059407 2.059407 0.000000

Table 6: BRK5 with error.

Table 6 shows the result of the BRK5 method with the exact solution and approximate solutions for the
step size h = 0.1. The last column in Table 6 contains the data of errors which is the modulus of difference
between the exact solution and approximate solutions. From Fig. 9, we observed that the approximate
solution curve represented by the red line is approaching the exact solution curve represented by the green
line. In this method, the approximate solution curve is converging faster towards the exact solution curve
than the Explicit Euler method Implicit Euler method, RK2 method, RK3 method, and RK4 method. The
error is also less than that of the other above-mentioned methods.

2.7 Comparison of numerical methods

Figure 10: Comparison of Euler, RK2, RK3, RK4 and BRK5 method with exact solution.
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From the above results, we see that the approximation results converge to the exact solution and if the
step size is decreased then the error also decreased. This shows that the small step size gives an improved
estimation. The Butcher fifth-order Runge-Kutta method requires five evaluations per step, so it should
give more accurate results in comparison with others methods. Other methods were found to be less
accurate due to the inaccurate numerical results. From the above study the Butcher fifth-order Runge-
Kutta method was found to be more accurate and also the approximate solution converged faster to the
exact solution when compared to the other methods. It may be concluded that the Butcher fifth-order
Runge-Kutta method is powerful and more efficient in finding numerical solutions of initial value problems
(IVP).

3 Conclusion

As we see in the above simulation results that numerical solution produced more error than any other
method like analytical method. The implicit Euler method gives more approximate results than the Euler
method. Besides Euler and Implicit Euler, the RK3 method gives less error in approximating the solution.
Runge-Kutta’s fourth-order method (RK4) is pretty accurate and steady so it gives a more accurate solution
other than Euler, Implicit Euler, and RK3 method. It exhibits less error to the exact solution. Among all
these methods Butcher fifth-order Runge-Kutta method (BRK5) is the best for approximating the solution
of the non-linear equation as it gives the least error with the highest approximation. From the above
discussion, we observed that the approximate results converge to the exact solution and if the step size
is decreased then the error is also reduced. The small step size gives improved estimation. The Butcher
fifth-order Runge-Kutta method requires five evaluations per step, so it should give more accurate results
compared with other methods. The Butcher fifth-order Runge-Kutta method was found to be highly
accurate and also the approximate solution converged faster to the exact solution compared to the other
methods. We conclude that to obtain more accurate result higher order numerical methods is appropriate
than lower-order methods.
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Abstract: During the classical period, the South Asian region had an illustrious history of 
mathematics, and it was regarded as fertile ground for the birth of pioneer mathematicians that produced 
a wide range of mathematical ideas and creations that made significant contributions. Among them, three 
creative personalities Bhaskaracarya, Gopal Pande and Bharati Krishna Tirthaji and their specific 
methods to find square roots are focused on this study. The analytical study of their methods is 
expressing in comparison with similarities, variety and simplicity.  

Each of the three mathematical treatise has its own formula for calculating the square roots. The Lilavati 
seems to have some effect upon the Vedic and Pande’s systems. In spite of having influenced by Lilavati, 
Gopal Pande disagreed on the problems regarding square roots and cube roots. To prove his point, 
Gopal Pande used the unitary method against the method described in Bhaskaracarya's famous book 
Lilavati. In the case of practicality and simplicity, the Vedic method is more practical, interesting and 
simpler to understand for the mathematics learners in comparison to the other two methods.  

Keywords: Square Root, Lilavati, Pande’s method, Vedic Mathematics. 

1. Introduction 

In mathematics, a square root of a number n is a number m such that m2 = n. In other words, a square 
root of a number is another number which, when multiplied by itself, produces the first number. A 
positive (real) number has two real square roots, a negative number two imaginary square root. The 
positive square root of a positive number n is denoted by √  [8]. There are two methods taught in our 
present-day classroom in school level by conventional approach i.e., method of factors and method of 
division. Both the methods are lengthy and time consuming by conventional approach. Therefore, 
extracting the square root of a number is considered a tedious job for school level students without using 
calculator. 

The estimation of square roots has a long tradition dating back to Babylonian civilization. Babylonian 
collection clay tablet was created around 1800 BC to 1600 BC by showing √  = 1.414213….. [17] 
Egyptian extracted square roots by an inverse proportion method in 1650 BC [2],[4] . In ancient India, the 
knowledge of square roots was at least as old as Sulbha Sutras, dated around 800 BC to 500 BC[1],[5]. 
Aryabhata, in Aryabhatiya has given a method for finding the square root of the number [5]. It was 
known to the ancient Greeks that the square roots of the positive integers that are not perfect squares are 
always irrational number [5]. The square root of 2 is assumed to date back earlier to Pythagorians [5]. In 
china, the square root is approximated by using “excess and deficiency” method in between 202 BC to 
186 BC [7]. According to Jeffrey A. Oaks (1964), Arabs used square root at the end of twelfth 
century[11]. According to historian of mathematician D.E. Smith (1922 – 1974), Aryabhata‟s method for 
finding square roots was first introduced in Europe in 1546 [5].  

Apart from the above-mentioned mathematical society, mathematicians who used classical procedures 
have made significant contributions to the discovery of square roots. Among them, the South Asian 
region is regarded as fertile ground for the birth of pioneer mathematicians who produced a wide range of 
mathematical concepts and inventions [14]. This article mainly focused on three South Asian 




