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1. Introduction
In 1922, S. Banach [2] established a fixed point theorem in complete metric space, which is famous

now as Banach contraction principle. This principle has been generalized and extended by several authors
and has wide applications in the field of pure and applied mathematics. In 2000, P. Hitzler and A.K. Seda
[4] obtained a generalization of topology which they named as dislocated topology. The corresponding
generalized notion of metric was the dislocated metric. The concept of dislocated metric space was
appeared in [8] by S. G. Matthews in 1986 under the name of metric domains. In 2002, A. Branciari [3]
obtained a fixed point theorem for a map satisfying contractive condition of integral type with a summable
Lebesgue integrable mapping in a complete metric space has been an interesting area of research. B.E
Rhoades [9] extended the theorem of Banciari [3] with a most general contractive condition.

The purpose of this paper is to establish some results for integral and rational type contractive
conditions for two pairs of maps with E.A. property for coincidence point results and with CLR property for
weakly compatible maps for common fixed point results. Our results extend some fixed point theorems in
the literature in the setting of dislocated metric space.

2. Preliminaries

We start with the following definitions, lemmas and theorems.

Definition 1 [4] Let X be a non empty set and let d: X X X — [0, ) be a function satisfying the following
conditions:

L d(x,y) = d(y,x)

2. d(x,y)= d(y,x) =0 implies x = y.

3. dx,y) < d(x,z)td(z y)forallx,y, z € X.
Then d is called dislocated metric (or d-metric) on X and the pair (X, d) is called the dislocated metric space
(or d-metric space).
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Definition 2 [10] Let A and S be two self mappings defined on a metric space (X,d). We say that the
mappings A and S satisfy Common Limit Range Property (CLRy) property if there exists a sequence
{x,,} € X such that

lim Ax, = lim Sx,, = Ax

n—co n—oo
Definition 3 [1] Let A and S be two self mappings defined on a metric space (X,d). We say that the
mappings A and S satisfy (E. A.) property if there exists a sequence {x,} € X such that

lim Ax,, = lim Sx,, = u for some u € X.

n—oo n—-oo

Definition 4 [6] Let A and S be mappings from a metric space (X,d) into itself. Then, A and S are said
to be weakly compatible if they commute at their coincident point, that is, Ax = Sx for some x € X
implies ASx = SAx.

3 Main Results:
Now we establish the following result to obtain coincidence point for the given two pairs of mappings using

E. A. property.
Theorem 1 Let (X,d) be a dislocated metric space. Let A,B,S,T:X — X satisfying the following

conditions
AX) € S(X) and BX) S T(X) (1)
d(Ax,B M(x, 1
[y poyde < k [}V gy, kef0,) )
where ¢: RT - R* is a Lebesgue integrable mapping which is summable, non-negative and such that
foe ¢(t)dt >0 foreach €>0 3)

M(x,y) = {d(Tx,Sy)d(Tx,Ax) + d(Sy,Ax) + d(Tx,Sy) + d(Tx, Ax)
+d(By,Sy) + d(Tx,By) + d(By,Sy)d(Ax, Sy)} 4
If the pairs (A,T) or (B,S) satisfy E. A. property and T(X) is closed then
i) the maps A and T have a coincidence point

ii) the maps B and S have a coincidence point

Proof: Assume that the pair (4,T) satisfy E.A. property, so there exists a sequence {x,} € X such that

limAx, = limTx, = u (5)
n—oo n—oo

for some u € X. Since A(X) € S(X), so there exists a sequence {y,} € X such that Ax,, = Sy,. Hence,
lim Ax, = lim Sy, = u (0)
n—-oo n—-oo

From condition (2) we have

d(Axp,Byn M(xpyn
[ g yae < k [ gyde (7)
where

M (%, yn) = {d(Txy, Syn)d(Txpn, Axp) + A(Syn, Axn) + d(Txp, Syn) + d(Txy, Axy)
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+ d(Byn, Syn) + d(Txp, Byn) + d(Byn, Syn)d(Axy, Syn)}

Since,
lim d(Tx,,Sy,) = limd(Tx,, Ax,;) = limd(Sy,, Ax,) =0
n—-oo n—oo n-o

and
lim d(Byy, Sy,) = limd(Tx,, By,) = d(By,, u)
n—oco n—»oo

Therefore taking limit as n — oo in (7) we get

Lim [ g yde < Timk [ (o)
n—oo

n—oo

d(Byn,u)
< 2k lim b (t)dt

n—oo
that is

lim [ geyde < 2k lim [P p(e)de
n—oo

n—oo v 0
S _ . 1
which is a contradiction, since k € [O’E)’

Hence, lim,,_,, By, = u. Now we have
lim Ax, = lim Tx, = lim By, = lim Sy, = u
n—-oo n—-oo n—-oo n—-oo

Assume T(X) is closed, then there exits v € X such that Tv = u. We claim that Av = u.

Now from condition (2) we have,

d(Av,Byy, M@y,
Jy P gde < ke [)1 gy (®)
where
M, y,) = {d(Tv,Sy,)d(Tv, Av) + d(Sy,, Av) + d(Tv,Sy,) + d(Tv, Av)
+d(BYn, Syn) + d(Tv, Byn) + d(Byn, Syn)d(Av, Sy,)}
Since,

lim d(Sy,, Av) = d(u, Av)

n—oo

limd(Tv,Sy,) = limd(By,, Sy,) = limd(Tv,By,) =0
n—oo n—-oo n—-o

So, taking limit as n — o in (8), We conclude that

d(u,Av)

Iy peyde < 2k [ gyt 9)

which is a contradiction. Therefore d(Av,u) = 0 = Av = u.
Hence,
Av=u=Tv. (10)
This proves that v is the coincidence point of (4, T).
Similarly we can show that v is the coincidence point of the pair (B, S).
This completes the proof of our theorem.

On the light of the above theorem we can establish the following corollaries.
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Corrollary 1 Let (X,d) be a dislocated metric space. Let A, B,S: X — X satisfying the following conditions
AX) S S(X) and B(X) <€ S(X)

[ pyde < k )17 ptyde, ke[0,2)

where ¢: R* - R™ is a Lebesgue integrable mapping which is summable, non-negative and such that
fOE d(t)dt >0 foreach € >0

M(x,y) = {d(Sx,Sy)d(Sx, Ax) + d(Sy, Ax) + d(Sx,Sy) + d(Sx, Ax)
+d(By,Sy) + d(Sx,By) + d(By,Sy)d(Ax,Sy)}
If the pairs (4,S) or (B,S) satisfy E. A. property and S(X) is closed then
1) the maps A and S have a coincidence point

i) the maps B and S have a coincidence point

Corrollary 2 Let (X,d) be a dislocated metric space. Let A,S,T: X = X satisfying the following conditions
AX)<S S(X) and AX) € T(X)

d(Ax,Ay) M(x,y) 1
Jo p)dt <k [ ¢()dt, kel0,7)

where ¢: RT — R*is a Lebesgue integrable mapping which is summable, non-negative and such that
foe ¢(t)dt >0 foreach €>0

M(x,y) = {d(Tx,Sy)d(Tx, Ax) + d(Sy, Ax) + d(Tx,Sy) + d(Tx, Ax)
+d(Ay,Sy) + d(Tx,Ay) + d(Ay,Sy)d(Ax, Sy)}

If the pairs (A,T) or (4,S) satisty E. A. property and T(X) is closed then
1) the maps A and T have a coincidence point

ii) the maps A and S have a coincidence point

Corrollary 3 Let (X,d) be a dislocated metric space. Let A,S: X — X satisfying the following conditions
AX) € S(X)

d(Ax,Ay) M(x,y) 1
N p)dt <k [ p(t)dt, kelo,7)

where ¢: RT — Rtis a Lebesgue integrable mapping which is summable, non-negative and such that
foe ¢(t)dt >0 foreach €>0 (11)

M(x,y) = {d(Sx,Sy)d(Sx, Ax) + d(Sy, Ax) + d(Sx,Sy) + d(Sx, Ax)
+d(Ay,Sy) + d(Sx, By) + d(Ay, Sy)d(Ax, Sy)}
If the pair (4, S) satisfy E. A. property and S(X) is closed thenthe maps A and S have a coincidence point.

Corrollary 4 Let (X,d) be a dislocated metric space. Let A,B,1: X — X satisfying the following conditions
A(X) and B(X) < I(X)
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JEEE g yde < k [ goyde, k€0, )

where ¢: RT — R*is a Lebesgue integrable mapping which is summable, non-negative and such that

foe ¢()dt >0 foreach €>0

M(x,y) = {d(x,y)d(x,Ax) + d(y,Ax) + d(x,y) + d(x, Ax)

+d(By,y) +d(x, By) + d(By,y)d(Ax,y)}

If the pairs (A,1) or (B, 1) satisfy E. A. property and T(X) is closed then
1) the maps A and I have a coincidence point
ii) the maps B and I have a coincidence point

Now, we establish the following common fixed point theorem satisfying common limit range property and
weakly compatible conditions for two pairs of mappings.

Theorem 2 Let (X,d) be a dislocated metric space. Let A,B,S,T:X — X satisfying the following
conditions
AX) S S(X) and BX) S T(X) (12)

fod(Ax,By) P(t)dt < k fé”(x’y) ¢(t)dt, k €0, %) (1)

where,
M(x,y) = (L 4 (T, Sy) + d(Tx, Ax) + d(BY, Sy)
a(By,Sy)d(Ax,Sy)
d(Tx,By) } (14)
and ¢: Rt - R" is a Lebesgue integrable mapping which is summable, non-negative and such

+d(Tx,By) +d(Sy, Ax) +

that
foe ¢(t)dt >0 foreach €>0 (15)

1. The pairs (A,T) or (B,S) satisfy (CLR)-property
2. The pairs (4,T) and (B,S) are weakly compatible
then
1) the maps A and T have a coincidence point
ii) the maps B and S have a coincidence point
iii) the maps A, B, S and T have an unique common fixed point.

Proof: Assume that the pair (4,T) satisfty (CLR,) property, so there exists a sequence {x,} € X such
that
lim Ax,, = lim Tx, = Ax (16)

n—oo n—oo
for some x € X. Since A(X) S S(X), so there exists a sequence {y,} € X such that lim,_,.,A4x, =
lim,,_, Sy, = Ax. We show that
lim Bx,, = Ax (17)

n—oo

From condition (13) we have

where
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A(Txn,SYn)A(Txy,AXy)
d(Txn,Byn)

M(xp, yn) = {

d(BYn,Syn)d(Axn,Syn)
+d(Tx,, Byy) + d(Syy, Ax,) + AT By 1

+d(Tx,, Syy) + d(Txy,, Axy) + d(Byy, Syn)

Taking limit as n — oo in (18)we get
lim [ g yae < klim [ gy, (19)
n—oo n—oo

Since
lim d(Tx,,Sy,) = limd(Tx,, Ax,;) = limd(Sy,, Ax,) =0
n—-oo n—-oo n—oo

lim d(Ax,, By,) = llm d(Ax By,) = llm d(Byn,Syn)

n—oo
Hence we have
lim [P gyt < 2k lim [ H(A%Eya)

n—oo *0

P(t)de
which is a contradiction, since k € [O'H)'
Therefore,
lim d(Ax, By,) = 0 = lim By,, = Ax.
n—oo n—co
Now we have
lim Ax,, = lim Tx,, = lim By,, = lim Sy, = Ax

n—oo n—oo n—oo n—oo
Assume A(X) € S(X) , then there exits v € X such that Ax = Sv.
We claim that Bv = Sv.
Now from condition (13)

J-d(Aanv) b(t)dt < k fM(an)

p(t)dt (20)

where

A(Txyn,Sv)A(Txn,AXy)
d(Tx,,Bv)

M (xy, U) = {

+d(Tx,, Bv) + d(Sv, Ax,,) +

+ d(Tx,,Sv) + d(Tx,, Ax,) + d(Bv, Sv)

d(Bv,Sv)d (Axn,Sv)}
Ad(Txp,Bv)

Since
lim d(Tx,, Bv) = d(Ax, Bv) = d(Sv, Bv)

n—oo

lim d(Tx,,Sv) = limd(Tx,,Ax,) = limd(Sv, Ax,) =0
n—oo n—->0oo n—co
So, taking limit as n — oo in (20), we conclude that

J-d(Sva) ¢(t)dt <2k fd(Sva) ¢(t)dt (21)
which is a contradiction.
Hence d(Sv,Bv) = 0= Sv =Bv .
This proves that v is the coincidence point of of the maps B and S .
Therefore, Sv = Bv = Ax = w(Say)
Since the pair (B, S) is weakly compatible, so
BSv = SBv = Bw = Sw
Since B(X) € T(X) there exists a point u € X such that Bv = Tu. We show that
Tu=Au=w
From condition (13),

fd(Aqu) ¢(t)dt<kf

M(u,v)

¢()dt,

where,
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d(Tu,Sv)d(Tu, Au)
d(Tu, Bv)
+d(Tu, Bv) + d(Sv, Au) +

M(u,v) = { + d(Tu,Sv) + d(Tu, Au) + d(Bv, Sv)

d(Bv,Sv) d(Au,Sv)}
d(Tu,Bv)

= {d(Bv, Au) + d(Bv, Bv) + d(Bv, Au) + d(Bv, Bv)
+{d(Bv, Bv) + d(Bv, Au) + d(Au, Bv)}

= {3d(Bv, Bv) + 4d(Bv, Au)}

< 10d(Bv, Au)

d(Au,Bv)

d(Au,Bv) M(u,v)
f P(t)dt < k f d(t)dt < 10 kj d(t)dt
0 0

0
which is a contradiction. Hence d(Au, Bv) = 0 = Au = Bv.

~Au=Bv=Tu=w
This proves that u is the coincidence point of the maps A and T.
Since the pair (A4,T) is weakly compatible so,
ATu =TAu = Aw =Tw
We show that Aw = w.

From condition (13)

™ @t = [ gde <k [ g0,
where
d(Tw,Sv)d(Tw,Aw)

d(Tw,Bv)

M(w,v) = { + d(Tw,Sv) + d(Tw, Aw) + d(Bv, Sv)

d(Bv,Sv)d(Aw,Sv)

+d(Tw, Bv) + d(Sv, Aw) + d(Tw,Bv) }

d(Aw,w)d(Aw,Aw)

=gy T dAw,w) + d(Aw, Aw) + d(w,w)

d(w,w)d(Aw,w)
+d(AW, W) + d(W, AW) + W}
= {3d(Aw,w) + 2d(Aw, Aw) + 2d(w,w)}

<11d(Aw,w)

d(Aw,w) d(Aw,Bv) M(w,v) d(Aw,w)
f p(O)dt = f p(t)dt < k f P(t)dt < 11kf P(O)dt,
0 0 0 0

which is a contradiction.
Hence d(Aw,w) = 0 = Aw = w. Similarly we obtain Bw = w.

~ Aw = Bw =Sw =Tw = w. This establishes that w is the common fixed point of four

mappings A4,B,S and T.

Uniqueness:
let z(# w) be other common fixed point of the mappings A4, B,S and T, then by the condition
(13)
" p@de = [ pyde < k [1 ot (22)
where
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d(Tw,Sz)d(Tw, Aw)
d(Tw,Bz)
+d(Tw,Bz) + d(Sz, Aw) +

M(w,z) ={

+ d(Tw,Sz) + d(Tw,Aw) + d(Bz,S5z)

a(Bz 2w S,
d(Tw,Bz)
dWRIWW) L 4w, 2) + d(w,w) + d(z,2)

- { ad(w,z)
d(z,z)d(w,z)
+d(w,z) +d(z,w) + T dwo 1

=3d(w,z) + 2d(w,w) + 2d(z, 2)
<11d(w,2)

ad(w,z) d(Aw,Bz) M(w,z) ad(w,z)
f (t)dt = f Pp(t)dt < k f P(t)dt < 11 kj P(t)dt
0 0 0 0

which is a contradiction.
Hence, d(w,z) = 0 = w = z. This establishes the uniqueness of the common fixed point.

Now, on the light of above theorem we can establish the following corollaries.

Corrollary 5 Let (X,d) be a dislocated metric space. Let A,B,S: X = X satisfying the following conditions
AX) € S(X) and B(X)cT(X)

JEAEE g yde < k [P goyde, k€0, %)

where,

M(x,y) = (FE0T 4 d(Sx, Sy) + d(Sx, Ax) + d(BY, SY)

d(By.Sy)d(Ax,Sy)}

+d(Sx, By) + d(Sy, Ax) + — S =

and ¢:R* — R*is a Lebesgue integrable mapping which is summable, non-negative and such that
foe ¢(t)dt >0 foreach €>0

1. The pairs (4,5) or (B,S) satisfy (CLR)-property
2. The pairs (4,S) and (B,S) are weakly compatible
then
i) the maps A and S have a coincidence point
ii) the maps B and S have a coincidence point

iii) the maps A, B and S have an unique common fixed point.

Corrollary 6 Let (X,d) be a dislocated metric space. Let A,S,T: X = X satisfying the following conditions
AX) € S(X) and AX) € TX)

[HE) g yde < k [ poyde, k€0, )

where,
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__ (A(Tx,Sy)d(Tx,Ax)
MCo,y) = Teay) T d(Tx,Sy) + d(Tx, Ax) + d(Ay,Sy)

d(Ay,Sy)d(Ax.Sy)

+d(Tx,Ay) + d(Sy, Ax) + d(Tx,Ay) }

and ¢: Rt - R7is a Lebesgue integrable mapping which is summable, non-negative and such that
fOE ¢(t)dt >0 foreach €>0
1. The pairs (4,T) or (4,S) satisfy (CLR)-property
2. The pairs (A,T) and (4, S) are weakly compatible
then

i) the maps A and T have a coincidence point

ii) the maps A and S have a coincidence point

iii) the maps A, S and T have an unique common fixed point.

Corrollary 7 Let (X,d) be a dislocated metric space. Let A,S: X — X satisfying the following conditions
AX) € S(X)

JEE) gyt < k [ poyde, k€0, =)
where,

M(x,y) = (FEEDI ¢ d(Sx, Sy) + d(Sx, A%) + d(47,5)

d(Ay,Sy)d(Ax,Sy)

+d(Sx,Ay) + d(Sy, Ax) + d(sx,Ay) }

and ¢: R* - R* is a Lebesgue integrable mapping which is summable, non-negative and such that
foe ¢(t)dt >0 foreach €>0

1. The pair (4,S) satisfy (CLR)-property
2. The pair (4,S) is weakly compatible
then, the maps A and S have a coincidence point and an unique common fixed point.

Corrollary 8 Let (X,d) be a dislocated metric space. Let A,B,1: X — X satisfying the following conditions
A(X) and BX) < I(X)

[ poyde <k [V poydt, k €[0,5)

where,

d(x,y)d(x,A
M(x,y) = (FC2EE 4 d(x,y) + d(x, Ax) + d(By,Y)

+d(x, By) + d(y, Ax) + %‘;(}gm}
and ¢: Rt - R7is a Lebesgue integrable mapping which is summable, non-negative and such that

fOE ¢(t)dt >0 foreach € >0

1. The pairs (A4,1) or (B,I) satisfy (CLR)-property
2. The pairs (4,1) and (B,I) are weakly compatible
then

i) the maps A and I have a coincidence point
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ii) the maps B and I have a coincidence point

iii) the maps A, B and I have an unique common fixed point.

Conclusion
In this article, we used the (E.A.) property to establish coincidence point results and CLR property to claim

the existence of common fixed point results of some rational and integral type contraction for two pairs of
weakly compatible mappings. Our theorems extend and generalize the theorems of A. Branciary [3], B.E.

Rhoades [9], P.Vijayaraju et.al [11] and J. Kumar [7] in the setting of dislocated metric spaces.
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