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1.  Introduction 

In 1922, S. Banach [2] established a fixed point theorem in complete metric space, which is famous 
now as Banach contraction principle. This principle has been generalized and extended by several authors 
and has wide applications in the field of pure and applied mathematics. In 2000, P. Hitzler and A.K. Seda 
[4] obtained a generalization of topology which they named as dislocated topology. The corresponding 
generalized notion of metric was the dislocated metric. The concept of dislocated metric space was 
appeared in [8] by S. G. Matthews in 1986 under the name of metric domains. In 2002, A. Branciari [3] 
obtained a fixed point theorem for a map satisfying contractive condition of integral type with a summable 
Lebesgue integrable mapping in a complete metric space has been an interesting area of research. B.E 
Rhoades [9] extended the theorem of Banciari [3] with a most general contractive condition.  

The purpose of this paper is to establish some results for integral and rational type contractive 
conditions for two pairs of maps with E.A. property for coincidence point results and with CLR property for 
weakly compatible maps for common fixed point results. Our results extend some fixed point theorems in 
the literature in the setting of dislocated metric space. 

 
2.  Preliminaries 
 

We start with the following definitions, lemmas and theorems.  
 
Definition 1 [4] Let   be a non empty set and let             be a function satisfying the following 
conditions:   

    1.         =        
    2.        =        = 0 implies      
    3.  d(x, y)   d(x, z) + d(z, y) for all x, y, z   X.  

Then d is called dislocated metric (or d-metric) on X and the pair (X, d) is called the dislocated metric space 
(or d-metric space).  
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Definition 2 [10] Let   and   be two self mappings defined on a metric space      . We say that the 

mappings   and   satisfy Common Limit Range Property        property if there exists a sequence 

       such that  

    
   

       
   

       

 
Definition 3 [1] Let   and   be two self mappings defined on a metric space      . We say that the 

mappings   and   satisfy (E. A.) property if there exists a sequence        such that  

    
   

       
   

      for some      

 
Definition 4 [6] Let   and   be mappings from a metric space       into itself. Then,   and   are said 
to be weakly compatible if they commute at their coincident point; that is,       for some     
implies          

 
3  Main Results: 
Now we establish the following result to obtain coincidence point for the given two pairs of mappings using 

E. A. property.  

Theorem 1  Let (X,d) be a dislocated metric space. Let             satisfying the following 

conditions  

                               (1) 
 

 ∫          
         ∫        

                     (2) 
 where         is a Lebesgue integrable mapping which is summable, non-negative and such that  

 ∫                               (3) 
 

                                                    
                                      (4) 

 If the pairs       or       satisfy E. A. property and T(X) is closed then   

i)  the maps A and T have a coincidence point  

ii)  the maps B and S have a coincidence point  

 
Proof: Assume that the pair       satisfy E.A. property, so there exists a sequence        such that  

    
   

       
   

      (5) 

 for some    . Since          , so there exists a sequence        such that        . Hence,  
    

   
       

   
      (6) 

 From condition (2) we have 
 

 ∫            
         ∫          

        (7) 
 where  
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 Since, 

    
   

              
   

              
   

             

 and  

    
   

              
   

                    

 Therefore taking limit as     in (7) we get  

    
   ∫            

           
   

  ∫          
        

               
   

∫  
        

 
       

 that is  

    
   ∫          

             
   ∫          

        

 which is a contradiction, since         .  

Hence,            . Now we have  

    
   

       
   

       
   

       
   

      

 Assume      is closed, then there exits     such that     . We claim that     .  

Now from condition (2) we have, 

 
 ∫           

         ∫         
        (8) 

 where  
                                                         
                                                                 

 
Since,  
    

   
                  

    
   

             
   

              
   

            

 So, taking limit as     in (8), We conclude that  

 ∫         
          ∫         

        (9) 

 which is a contradiction. Therefore               . 

Hence, 
          (10) 

 This proves that   is the coincidence point of      .  
Similarly we can show that   is the coincidence point of the pair        
This completes the proof of our theorem. 
 
On the light of the above theorem we can establish the following corollaries. 
 
 



59

Dinesh Panthi / Some Theorems on Integral and Rational Type Contractive Conditions in Dislocated ….. 
 

58 
 

 
Definition 2 [10] Let   and   be two self mappings defined on a metric space      . We say that the 

mappings   and   satisfy Common Limit Range Property        property if there exists a sequence 

       such that  

    
   

       
   

       

 
Definition 3 [1] Let   and   be two self mappings defined on a metric space      . We say that the 

mappings   and   satisfy (E. A.) property if there exists a sequence        such that  

    
   

       
   

      for some      

 
Definition 4 [6] Let   and   be mappings from a metric space       into itself. Then,   and   are said 
to be weakly compatible if they commute at their coincident point; that is,       for some     
implies          

 
3  Main Results: 
Now we establish the following result to obtain coincidence point for the given two pairs of mappings using 

E. A. property.  

Theorem 1  Let (X,d) be a dislocated metric space. Let             satisfying the following 

conditions  

                               (1) 
 

 ∫          
         ∫        

                     (2) 
 where         is a Lebesgue integrable mapping which is summable, non-negative and such that  

 ∫                               (3) 
 

                                                    
                                      (4) 

 If the pairs       or       satisfy E. A. property and T(X) is closed then   

i)  the maps A and T have a coincidence point  

ii)  the maps B and S have a coincidence point  

 
Proof: Assume that the pair       satisfy E.A. property, so there exists a sequence        such that  

    
   

       
   

      (5) 

 for some    . Since          , so there exists a sequence        such that        . Hence,  
    

   
       

   
      (6) 

 From condition (2) we have 
 

 ∫            
         ∫          

        (7) 
 where  

                                                                  

Nepal Journal of Mathematical Sciences (NJMS),Vol. 2, No. 2, 2021 (August): 57-66 
 

59 
 

                                                                        
 Since, 

    
   

              
   

              
   

             

 and  

    
   

              
   

                    

 Therefore taking limit as     in (7) we get  

    
   ∫            

           
   

  ∫          
        

               
   

∫  
        

 
       

 that is  

    
   ∫          

             
   ∫          

        

 which is a contradiction, since         .  

Hence,            . Now we have  

    
   

       
   

       
   

       
   

      

 Assume      is closed, then there exits     such that     . We claim that     .  

Now from condition (2) we have, 

 
 ∫           

         ∫         
        (8) 

 where  
                                                         
                                                                 

 
Since,  
    

   
                  

    
   

             
   

              
   

            

 So, taking limit as     in (8), We conclude that  

 ∫         
          ∫         

        (9) 

 which is a contradiction. Therefore               . 

Hence, 
          (10) 

 This proves that   is the coincidence point of      .  
Similarly we can show that   is the coincidence point of the pair        
This completes the proof of our theorem. 
 
On the light of the above theorem we can establish the following corollaries. 
 
 



 60

Dinesh Panthi / Some Theorems on Integral and Rational Type Contractive Conditions in Dislocated ….. 
 

60 
 

Corrollary 1 Let (X,d) be a dislocated metric space. Let           satisfying the following conditions  

                               
 

 ∫          
         ∫        

                     
 where         is a Lebesgue integrable mapping which is summable, non-negative and such that  

 ∫                               
 

                                                     
                                                 

 If the pairs       or       satisfy E. A. property and S(X) is closed then   

i) the maps A and S have a coincidence point  

ii) the maps B and S have a coincidence point  

 
Corrollary 2 Let (X,d) be a dislocated metric space. Let           satisfying the following conditions  

                               
 

 ∫          
         ∫        

                     
 where        is a Lebesgue integrable mapping which is summable, non-negative and such that  

 ∫                               
 

                                                    
                                                        

 If the pairs       or       satisfy E. A. property and T(X) is closed then   
          i) the maps A and T have a coincidence point  

ii) the maps A and S have a coincidence point  
 

Corrollary 3 Let (X,d) be a dislocated metric space. Let         satisfying the following conditions  
           
 

 ∫          
         ∫        

                     
 where        is a Lebesgue integrable mapping which is summable, non-negative and such that  

 ∫                               (11) 
 

                                                     
                                                        

 If the pair       satisfy E. A. property and S(X) is closed thenthe maps A and S have a coincidence point.  
 

Corrollary 4 Let (X,d) be a dislocated metric space. Let           satisfying the following conditions  
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 ∫          
         ∫        

                     

 where        is a Lebesgue integrable mapping which is summable, non-negative and such that  

 ∫                               
 

                                              
                                                      

 If the pairs       or       satisfy E. A. property and T(X) is closed then   
i) the maps A and I have a coincidence point  
ii) the maps B and I have a coincidence point  
 

Now, we establish the following common fixed point theorem satisfying common limit range property and 
weakly compatible conditions for two pairs of mappings. 

 
Theorem 2  Let (X,d) be a dislocated metric space. Let             satisfying the following 
conditions  

                               (12) 
 

 ∫          
         ∫        

                      (13) 
 where, 

 
                                                             

                                                      
          (14) 

and         is a Lebesgue integrable mapping which is summable, non-negative and such 
that  

 ∫                               (15) 
 

 
    1.  The pairs       or       satisfy (CLR)-property  
    2.  The pairs       and       are weakly compatible  
 then   
i) the maps A and T have a coincidence point  
ii) the maps B and S have a coincidence point  
iii) the maps A, B, S and T have an unique common fixed point.  
 

 Proof: Assume that the pair       satisfy        property, so there exists a sequence        such 
that  

    
   

       
   

       (16) 

 for some    . Since          , so there exists a sequence        such that           
            . We show that  

    
   

       (17) 

 From condition (13) we have  

 ∫            
         ∫          

         (18) 
 where  
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 Taking limit as     in (18)we get  

    
   ∫            

            
   ∫          

         (19) 

 Since  
    

   
              

   
              

   
             

 
 
    

   
              

   
             

   
           

 Hence we have  

    
   ∫           

              
   ∫           

        

 which is a contradiction, since          . 
Therefore,  
    

   
               

   
        

 Now we have  
    

   
       

   
       

   
       

   
       

 Assume           , then there exits     such that      . 
We claim that      . 
Now from condition (13)  

 ∫           
          ∫         

        (20) 
 where  

          
                   

         
                               

                                 
                 

         
  

 
Since  
    

   
                            

    
   

             
   

              
   

            

 So, taking limit as     in (20), we conclude that  

 ∫          
           ∫          

        (21) 
 which is a contradiction. 

Hence                  . 
This proves that   is the coincidence point of of the maps B and S . 
Therefore,                 
Since the pair (B, S) is weakly compatible, so  
               

 Since           there exists a point     such that        We show that  
         
From condition (13),  

 ∫          
          ∫        

         
 where,  
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     ∫  
        

 
         ∫  

      

 
           ∫  

        

 
       

 which is a contradiction. Hence                 . 
            

This proves that   is the coincidence point of the maps   and    
Since the pair       is weakly compatible so,  
               

 We show that     . 

From condition (13)  

 ∫         
        ∫          

          ∫        
         

 where  
                                                             

                                                      
          

                                                                   

                                                
         

                                        
                              

 

 ∫  
       

 
       ∫  

        

 
         ∫  

      

 
          ∫  

       

 
        

 which is a contradiction.  
Hence               . Similarly we obtain     . 

              . This establishes that   is the common fixed point of four 

mappings       and    
 
Uniqueness: 

let       be other common fixed point of the mappings       and  , then by the condition 
(13)  

 ∫        
        ∫          

          ∫        
        (22) 

 where  
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         ∫  

      

 
          ∫  

       

 
        

 which is a contradiction.  
Hence               . Similarly we obtain     . 

              . This establishes that   is the common fixed point of four 

mappings       and    
 
Uniqueness: 

let       be other common fixed point of the mappings       and  , then by the condition 
(13)  

 ∫        
        ∫          

          ∫        
        (22) 

 where  



 64

Dinesh Panthi / Some Theorems on Integral and Rational Type Contractive Conditions in Dislocated ….. 
 

64 
 

                                                            

                                           
          

                                                  

                                   
        

                                 
                   

 

 ∫  
      

 
       ∫  

        

 
         ∫  

      

 
           ∫  

      

 
       

 which is a contradiction. 
Hence,               This establishes the uniqueness of the common fixed point. 

 
Now, on the light of above theorem we can establish the following corollaries. 
 
Corrollary 5 Let (X,d) be a dislocated metric space. Let           satisfying the following conditions  

                               
 

 ∫          
         ∫        

                      
 where, 

 

                                                             

                                             
          

 
and        is a Lebesgue integrable mapping which is summable, non-negative and such that  

 ∫                               
 

 
    1.  The pairs       or       satisfy (CLR)-property  
    2.  The pairs       and       are weakly compatible  
 then   
i) the maps A and S have a coincidence point  

ii) the maps B and S have a coincidence point  

iii) the maps A, B and S have an unique common fixed point.  

 
 

Corrollary 6 Let (X,d) be a dislocated metric space. Let           satisfying the following conditions  
                               

 
 ∫          

         ∫        
                      

 where, 
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and        is a Lebesgue integrable mapping which is summable, non-negative and such that  
 ∫                               
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Corrollary 7 Let (X,d) be a dislocated metric space. Let         satisfying the following conditions  

           
 

 ∫          
         ∫        

                      
 where, 

                                                             

                                                     
          

 
and         is a Lebesgue integrable mapping which is summable, non-negative and such that  

 ∫                               
 

    1.  The pair       satisfy (CLR)-property  
    2.  The pair       is weakly compatible  
 then, the maps A and S have a coincidence point and an unique common fixed point. 
 

Corrollary 8 Let (X,d) be a dislocated metric space. Let           satisfying the following conditions  
                          

 
 ∫          

         ∫        
                      

 where, 
 
                                                     
                                         

         
and        is a Lebesgue integrable mapping which is summable, non-negative and such that  
 ∫                               

 
    1.  The pairs       or       satisfy (CLR)-property  

    2.  The pairs       and       are weakly compatible  

 then   

i)  the maps A and I have a coincidence point  
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    2.  The pairs       and       are weakly compatible  

 then   

i)  the maps A and I have a coincidence point  



 66

Dinesh Panthi / Some Theorems on Integral and Rational Type Contractive Conditions in Dislocated ….. 
 

66 
 

ii)  the maps B and I have a coincidence point  

iii)  the maps A, B and I have an unique common fixed point.  
 

Conclusion 
In this article, we used the (E.A.) property to establish coincidence point results and CLR property to claim 

the existence of common fixed point results of some rational and integral type contraction for two pairs of 

weakly compatible mappings. Our theorems extend and generalize the theorems of A. Branciary [3], B.E. 

Rhoades [9], P.Vijayaraju et.al [11] and J. Kumar [7] in the setting of dislocated metric spaces. 
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